Canad. Math. Bull. Vol. 19 (3), 1976

A NOTE ON BEST SIMULTANEOUS APPROXIMATION IN NORMED LINEAR SPACES

BY

ARNE BRØNDSTED

The purpose of the present note is to point out that the results of D. S. Goel, A. S. B. Holland, C. Nasim and B. N. Sahney [1] on best simultaneous approximation are easy consequences of simple facts about convex functions. Given a normed linear space X, a convex subset K of X, and points x_1, x_2 in X, [1] discusses existence and uniqueness of $k^* \in K$ such that

$$\max(||x_1-k^*||, ||x_2-k^*||) = \inf_{k \in K} \max(||x_1-k||, ||x_2-k||).$$

If we let $\varphi_i(k) := ||x_i - k||$ for i = 1, 2, let $\varphi_i := \varphi_1 \lor \varphi_2$ and let

$$A := \{k \in K \mid \varphi(k) = \inf \varphi(K)\},\$$

then existence of k^* means that A is non-empty, and uniqueness of k^* means that A is at most one-pointed. Now, φ_1 and φ_2 are norm-continuous and convex functions on K, and therefore φ is norm-continuous and convex on K. In particular, the level sets

$$L(\alpha) := \{k \in K \mid \varphi(k) \leq \alpha\}$$

are norm-closed (relatively to K) and convex. Furthermore, they are bounded. Note that

$$A = \bigcap \{ L(\alpha) \mid \inf \varphi(K) < \alpha \}.$$

From this we may conclude the following:

The set A is convex; cf. [1, Lemma 2.3]. In fact, A is a level set.

When K is (a closed subset of) a finite dimensional subspace of X, then $A \neq \emptyset$; cf. [1, Lemma 2.2]. In fact, under the conditions stated the level sets are compact. (Here convexity is not involved.)

When X is a reflexive Banach space (e.g. when X is a uniformly convex Banach space), and K is closed, then $A \neq \emptyset$; cf. the existence statement of [1, Proposition 4.1]. In fact, being norm-closed and convex, the level sets are weakly closed. By the boundedness and the reflexivity of X it next follows that the level sets are weakly compact.

In order to obtain uniqueness statements we need the following easy result:

LEMMA. If X is a strictly convex space, then φ is not constant on any segment. 359

A. BRØNDSTED

Proof. Suppose that $\varphi = a$ on a segment $[k_0, k_1]$. By the strict convexity of X, φ_1 cannot be constant on $[k_0, k_1]$. Therefore, we must have $\varphi_1(k) < a$ for some $k \in [k_0, k_1]$. By the continuity of φ_1 on $[k_0, k_1]$ it next follows that we have $\varphi_1 < a$ on a whole subsegment of $[k_0, k_1]$. But then we must have $\varphi_2 = a$ on this subsegment, which is contradicted by the strict convexity of X.

Now, it follows from the lemma that if X is strictly convex, then A is at most one-pointed. This proves [1, Proposition 3.1] and the uniqueness statement of [1, Proposition 4.1].

Reference

1. D. S. Goel, A. S. B. Holland, C. Nasim and B. N. Sahney, On best simultaneous approximation in normed linear spaces, Canad. Math. Bull. 17 (1974), pp. 523-527.

University of Copenhagen Denmark

360