# Epidemiology and Psychiatric Sciences

cambridge.org/eps

# **Special Article**

**Cite this article:** Chen PJ *et al* (2022). Parental education and youth suicidal behaviours: a systematic review and meta-analysis. *Epidemiology and Psychiatric Sciences* **31**, e19, 1–16. https://doi.org/10.1017/S20457960220004X

Received: 8 October 2021 Revised: 4 February 2022 Accepted: 7 February 2022

#### Key words:

Adolescence; adolescent; country income level; geographical region; parental education; suicide; suicidal attempt; suicidal behaviour; suicidal ideation; socioeconomic status; youth

#### Author for correspondence:

P. J. Chen, E-mail: pei-jung.1.chen@kcl.ac.uk

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.



# Parental education and youth suicidal behaviours: a systematic review and meta-analysis

P. J. Chen<sup>1,2</sup> , N. Mackes<sup>1</sup>, C. Sacchi<sup>3</sup>, A. J. Lawrence<sup>1</sup>, X. Ma<sup>1</sup>, R. Pollard<sup>1</sup>,
M. Matter<sup>1</sup>, C. Morgan<sup>4</sup> , S. Harding<sup>5</sup>, G. Schumann<sup>6</sup>, C. Pariante<sup>6</sup>, M. A. Mehta<sup>7</sup>,
G. Montana<sup>8</sup>, C. Nosarti<sup>9,10</sup> and P. Dazzan<sup>1</sup>

<sup>1</sup>Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; <sup>2</sup>Department of Psychiatry, Chang Gung Memorial Hospital at Taoyuan and Chang Gung University, Taoyuan, Taiwan; <sup>3</sup>Department of Developmental Psychology and Socialisation, University of Padova, Padua, Italy; <sup>4</sup>Health Service & Population Research Department, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; <sup>5</sup>Division of Diabetes and Nutritional Sciences, King's College London, London, UK; <sup>6</sup>Biological Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; <sup>7</sup>Department of Neuroimaging & Psychopharmacology, Centre of Neuroimaging Sciences, King's College London, London, UK; <sup>8</sup>Department of Data Science, University of Warwick, Coventry, UK; <sup>9</sup>Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK and <sup>10</sup>Centre for the Developing Brain, Department of Perinatal Imaging & Health, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK

#### Abstract

**Aims.** Lower parental education has been linked to adverse youth mental health outcomes. However, the relationship between parental education and youth suicidal behaviours remains unclear. We explored the association between parental education and youth suicidal ideation and attempts, and examined whether sociocultural contexts moderate such associations. **Methods.** We conducted a systematic review and meta-analysis with a systematic literature search in PubMed, PsycINFO, Medline and Embase from 1900 to December 2020 for studies with participants aged 0–18, and provided quantitative data on the association between parental education and youth suicidal ideation and attempts (death included). Only articles published in English in peer-reviewed journals were considered. Two authors independently assessed eligibility of the articles. One author extracted data [e.g. number of cases and noncases in each parental education level, effect sizes in forms of odds ratios (ORs) or beta coefficients]. We then calculated pooled ORs using a random-effects model and used moderator analysis to investigate heterogeneity.

**Results.** We included a total of 59 articles (63 study samples, totalling 2 738 374 subjects) in the meta-analysis. Lower parental education was associated with youth suicidal attempts [OR = 1.12, 95% Confidence Interval (CI) = 1.04-1.21] but not with suicidal ideation (OR = 1.05, 95% CI = 0.98-1.12). Geographical region and country income level moderated the associations. Lower parental education was associated with an increased risk of youth suicidal attempts in Northern America (OR = 1.26, 95% CI = 1.10-1.45), but with a decreased risk in Eastern and South-Eastern Asia (OR = 0.72, 95% CI = 0.54-0.96). An association of lower parental education and increased risk of youth suicidal ideation was present in high-income countries (HICs) (OR = 1.14, 95% CI = 1.05-1.25), and absent in low- and middle-income countries (LMICs) (OR = 0.91, 95% CI = 0.77-1.08).

**Conclusions.** The association between youth suicidal behaviours and parental education seems to differ across geographical and economical contexts, suggesting that cultural, psychosocial or biological factors may play a role in explaining this association. Although there was high heterogeneity in the studies reviewed, this evidence suggests that the role of familial sociodemographic characteristics in youth suicidality may not be universal. This highlights the need to consider cultural, as well as familial factors in the clinical assessment and management of youth's suicidal behaviours in our increasingly multicultural societies, as well as in developing prevention and intervention strategies for youth suicide.

#### Introduction

Suicide is the third leading cause of death among youths worldwide (Chen *et al.*, 2020). Suicidal behaviours, including suicidal ideation (thought of killing oneself) and suicidal attempt (non-fatal, self-inflicted destructive acts with explicit or inferred intent to die), are well recognised precursors of suicide death. In fact, evidence suggests that over one-third of youths with suicidal ideation go on to attempt suicide, and suicide rates consistently increase

from childhood to adolescence (Cha *et al.*, 2018). A greater understanding of the risks associated with suicidal behaviours is needed in order to guide more effective intervention and prevention strategies in context-specific ways (Dervic *et al.*, 2006; Yip *et al.*, 2015). Identifying these risk factors in this particular age group across different societies is therefore of pressing importance. However, existing studies have been largely limited by the use of relatively small sample sizes and by the evaluation of cohorts mostly collected in a single, high-income country (HIC) (Yip *et al.*, 2015).

Family characteristics, along with individual and societal factors, have been shown to contribute to youth suicidal behaviours, and among these, family socioeconomic disadvantage has been suggested to be one of the major risk factors (Aggarwal *et al.*, 2017). Family socioeconomic status (SES) is associated with a wide array of exposures, resources and susceptibilities that may impact health (Galobardes *et al.*, 2006), and families with lower SES suffer from multiple forms of disadvantage (Reiss *et al.*, 2019). Through material hardship, greater parental stress and parental mental health problems and harsher parenting, familial socioeconomic inequalities can contribute to poor mental outcomes on the offspring (Weinberg *et al.*, 2019).

Parental education, as one of the most commonly assessed indicators of familial SES, has been widely studied for its relation to youth mental health outcomes, and found to play a role even when other socioeconomic confounders are taken into account (Sonego et al., 2013). Furthermore, parental education has been found to have a stronger relationship with child and adolescent mental health compared to other family SES indicators, such as parental unemployment or lower occupational status (Reiss et al., 2019). Parental education, specifically reflecting the possession or availability of knowledge, has been noted to affect parenting styles (Carr and Pike, 2012), disciplinary practices (Bøe et al., 2014), health investment (Lindeboom et al., 2009), home literacy environment (Keshavarz and Baharudin, 2013) and parental school involvement (Padilla-Moledo et al., 2016), which have been proposed to independently and/or jointly influence youth mental health outcomes.

When it comes to youth suicidality, there is yet no agreement as to whether and how parental education could be associated with a higher risk. While some studies have reported lower parental education to be a risk factor for youth suicidal behaviours (Dubow et al., 1989; Andrews and Lewinsohn, 1992; Evans et al., 2004), others have found no association or even a protective role (Gage, 2013; Chang et al., 2017). Differences in sociocultural contexts in these studies have been proposed to be contributing to these contradictory findings (Bøe et al., 2012). As a result, an effort should be made to further elucidate the role of sociocultural contextual differences in these studies, as this could not only help the interpretation of results, but also highlight potential different mediating pathways through which parental education could be related to the risk of youth suicidal behaviours across the globe. Therefore, we conducted this first systematic review and synthesis of empirical evidence on parental education and youth suicidal behaviours, while taking into account the possible role of sociocultural contexts, as reflected by geographical region and country income level.

The primary goal of this systematic review was to establish whether there is an association between parental education and either youth suicidal ideation or suicidal attempts (including suicide death). Our secondary goal was to determine if geographical region and country income level could potentially moderate any observed association.

#### Methods

#### Search strategy

We followed the Meta-analyses of Observational Studies in Epidemiology (MOOSE) guidelines (Stroup et al., 2000). We conducted a systematic search on PubMed, PsycINFO, Medline and Embase to screen for studies reporting on the association between parental education and youth suicidality. We applied the following search string: (family OR familial OR household OR parental OR caregiver OR guardian OR mother OR maternal OR father OR paternal) AND (education\* OR school\*) AND (suicid\* OR parasuici\* OR 'self-harm' OR 'self-injur\*' OR 'self-poison\*' OR 'self-cut\*' OR 'self-destruct\*' OR 'self-inflict\*') AND (teen OR teenager OR adolescen\* OR children OR youngster OR youth). We limited search results to (1) English publications, (2) peerreviewed journals and (3) published between January 1900 and December 2020. Two authors (P. J. C. and N. M.) independently assessed the eligibility of each study. When eligibility could not be established through titles and abstracts, the authors retrieved the full text. Any discrepancy was resolved through discussion and opinion of a third author (P. D.). The search strategy initially vielded a total of 6091 articles (after de-duplication). The search was later supplemented by a screening of the references of the studies included.

#### Inclusion criteria

We included papers that fulfilled the following criteria: (1) education of parents (or parental figures, such as caregivers or household heads) was assessed and reported as a categorical variable, or reported with beta coefficients if education was measured as a continuous variable; (2) youth suicidal behaviour (thoughts/ ideations, attempts or deaths) was assessed separately and independently from other constructs (i.e. other risky behaviours or mental disorders) before the age of 18 (included); (3) concrete case number or person-years data in accordance with different parental educational level was provided, or quantitative associations between parental education level and adolescent suicidal behaviour was reported in the forms of odds ratio (OR) or beta coefficients. We excluded studies of youths with autism spectrum disorders, schizophrenia spectrum disorders and intellectual disabilities. For studies that investigated the same population, we chose the larger or, where this was equal, the most recent one. Reviews, meta-analysis, commentaries, editorials and correspondences were not included.

#### Study factor

Parental education level, the main study factor, was assessed and reported differently across studies. For the primary analyses, we coded studies according to their treatment of parental education level as a predictor of outcome. For the secondary analyses, we re-categorised parental educational levels into low, middle and high for the purpose of standardisation. Using the International Standard Classification of Education level 3 (ISCED 3; http://uis.unesco.org) as the cut-off point, we categorised an education level below ISCED 3 as low education (i.e. illiteracy, no education, basic or primary education, middle school, lower secondary education or education years below 12); an education level equals to ISCED 3 as middle education (i.e. upper secondary education, high school graduate or education years equal to 12) and an

education level above ISCED 3 as high education (i.e. college/university/master/doctoral degree or education years above 12).

#### Outcomes

Outcomes of interest were youth suicidal ideation and suicidal attempts (including suicide death). We used the definitions or criteria made to determine positive outcomes in each study. However, studies on youth self-harming behaviours that did not specify whether this had a suicidal intent were excluded from the present review.

#### Data extraction

General study characteristics including name of the first author, publication year, country/region where the study was conducted, cohort name, case definition and outcome type were extracted. We also extracted: (1) classifications of parental education; (2) methods of assessment of parental education and youth suicidal behaviour (questionnaire, interview or data-linkage); (3) source of information about suicidal behaviours (adult-report, childrenreport or data-linkage); (4) timeframe of suicidal behaviour assessment (lifetime or specific timeframe, such as e.g. previous 6-12 months); (5) type of data from which the association was determined (cross-sectional or longitudinal); (6) sample type (community or clinical); (7) female/male participant ratio; (8) study country income level as per The World Bank 2021 data (high or low and middle; https://datahelpdesk.worldbank.org) and (9) study geographical region based on the sustainable development goal indicators, the regional groupings defined under the Standard Country or Area Codes for Statistical Use of the United Nations Statistics Division (sub-Saharan Africa, Northern Africa and Western Asia, Central and Southern Asia, Eastern and South-Eastern Asia, Latin America and the Caribbean, Oceania, Europe and Northern America; https://unstats.un.org/sdgs/indicators/regional-groups). For pooling, we obtained the maximally adjusted estimate of the OR compared with the reference for each education level, and the corresponding 95% confidence interval (CI). If ORs were unavailable, we computed ORs from raw data presented in the original studies. If the study measured parental education in years and reported only beta coefficients, we multiplied the coefficients by 4 (a correction factor chosen to reflect the difference in mean years of education between high- and low-parental education level) to better align the results with the rest of the studies on the same scale. If both maternal and paternal education levels were provided, maternal education level was chosen as representative, as more studies chose maternal education as a proxy for parental education. If the study provided survey year or sex stratification of the youths, the results were analysed separately.

#### Risk of bias assessment

We used the Newcastle–Ottawa Quality Assessment Scale for (1) cross-sectional studies, (2) cohort studies and (3) case control studies to assess risk of bias. Information on (1) sample selection, (2) comparability of cohorts and (3) assessment of outcome were collected. For cohort studies, however, we did not include the question about whether follow-up duration was sufficiently long for the outcome to occur, as this was not applicable. As a result, a maximum score of 8, 8 and 9 could be reached for cross-sectional studies, cohort studies and case control studies,

respectively. A total score of 0-4 was considered as indicative of high risk of bias; 5-6 of some concern and 7-9 of low risk of bias.

#### Data analysis

Random effects meta-analyses with DerSimonian-Laird estimator (DerSimonian and Laird, 1986) were conducted using R (version 4.0.3 GUI 1.73) with the metaphor (Viechtbauer, 2010) and meta (Balduzzi et al., 2019) packages to estimate pooled ORs and 95% CI. Suicidal ideation and suicidal attempt/death were treated as separate outcomes and analysed independently. For the primary analysis, we first derived pooled estimates of the association with outcomes of the lowest parental education level against the highest parental education level from each study with the highest level as the reference; if the study treated parental education as a continuous variable or only provided regression coefficients, we used the beta coefficients (corrected as aforementioned if education was measured in years) as the log odds (Szumilas, 2010). We then performed secondary analyses by pooling estimates of the middle parental education level group (equal to ISCED 3) against the high group (above ISCED 3) with the high group as the reference, the low group (below ISCED 3) against the middle group with the middle group as the reference, and the low group against the high group with the high group as the reference. Secondary analyses were designed to reveal more details on whether and how a specific parental educational achievement could be associated with youth suicidal behaviours.

Heterogeneity was assessed by Q test and  $I^2$  statistics. An  $I^2$  value of 50% was indicative of moderate heterogeneity, whereas 75% was considered substantial. When heterogeneity was observed in the data, we tested moderating effects by applying mixed-effects models. Geographical region and country income level were selected as moderators of interest. Other potential moderators investigated were sample type, female ratio, study design, outcome assessment methods, outcome assessment subject, time-frame of the assessed outcome and risk of bias. Risk of publication bias was assessed via visual inspection of funnel plots, supplemented by Egger's test (Egger *et al.*, 1997).

### Results

We identified 8726 articles from PsycINFO, Medline, Embase and PubMed. Of these, 2635 were duplicates and were therefore removed, with 6091 remaining. Further 5889 were later excluded based on titles and abstracts. An additional 145 studies were excluded following screening of full texts. Backward search of the references of the remaining 56 articles resulted in three additional records, leaving a total of 59 articles satisfying the eligibility criteria (Fig. 1).

The 59 articles, published between 1900 and 2020, encompassed 63 eligible study samples, with samples ranging 35 to 2 395 677 individuals, with a total sample size of n = 2.738 374. Details of the samples included are presented in Table 1.

The samples were mainly from the community (k = 57), with only six studies including clinical populations. Overall, 61 samples estimated the association between parental education and youth suicidal behaviour using outcome data measured at a single time point (cross-sectional), and two samples used cumulative outcome data from repeated assessments obtained during a follow-up period (longitudinal). Most of the samples were from Europe and Northern America (k = 34), followed by Eastern and South-Eastern Asia (k = 16), Western Asia (k = 7), Latin



Fig. 1. Flow diagram of the present systematic review and meta-analysis.

America and the Caribbean (k = 3), Central and Southern Asia (k = 3)= 1), Oceania (k = 1) and sub-Saharan Africa (k = 1). A minimal sample number of six from a particular geographical region would qualify its inclusion in the moderator analysis. Most samples included school age adolescents (k = 56) and only seven samples included children under the age of 10 years. Half of the samples used maternal education as their study factor (k = 32), while the others assessed education of fathers, caregivers, wage earners or the highest education in the household or between parents. In total, 47 samples incorporated ISCED 3 or equivalent in their classification of parental education, therefore allowing us to perform secondary comparisons as detailed in 'Methods' section. Among the 63 samples included, 39 investigated suicidal thought/ ideation as one of their primary outcomes, and 46 investigated suicidal attempt/death, 21 studied both. Most samples assessed these outcomes through questionnaires (k = 40), and the majority derived information regarding suicidal behaviours directly from the participants (k = 49). Among the samples included, 34 originally reported adjusted ORs, ORs or beta coefficients, while 29 reported cross-tabulated data. The results of the risk of bias assessment are presented in the online Supplementary material (Tables S1-S3). Among the 39 samples that reported an association between parental education and suicidal ideation, 62% (k = 24) fell into the high-risk category, 36% (k = 14) were rated as of some concerns and only 2% (k = 1) were rated as low risk. On the other hand, of the 46 samples that evaluated suicidal attempt, 59% were rated as low or of some concern (k = 6 and 21), while 41% (k = 19) were rated as high risk.

For the purpose of evaluating the overall effect of parental educational on youth suicidal behaviours, in the primary meta-analyses we used ORs of the lowest parental education level defined in each study with the highest parental educational level as the reference wherever possible, to estimate effect sizes. Pooled effect sizes indicate the risk or likelihood for youth suicidal behaviours for youths with the lower educated parents. Figures 2a and 2b summarise the pooled ORs for suicidal ideation and suicidal attempt. The pooled results reveal a small, but positive association between lower parental education and youth suicidal attempts (OR = 1.12, 95% CI = 1.04-1.21), but not suicidal ideation (OR = 1.05, 95% CI = 0.98-1.12). The heterogeneity ranged from moderate ( $I^2 = 70\%$  for suicidal attempt) to substantial ( $I^2$ = 83% for suicidal ideation), indicating the need for moderator analyses (Table 2). These showed that geographical region (p =0.008) and country income level (p = 0.02) were significant moderators of the direction and strength of the association between lower parental education and youth suicidal attempts and ideation. In particular, lower parental education was associated with an increased risk of youth suicidal attempts for studies conducted in Northern America (OR = 1.26, 95% CI = 1.10-1.45), but such association was reversed in studies conducted in Eastern and South-Eastern Asia, where higher parental education was associated with an increased risk of youth suicide attempts (OR =

#### Table 1. Characteristics of the studies included in the meta-analysis

https://doi.org/10.1017/S204579602200004X Published online by Cambridge University Press

|                                                          |                   |                   |       |           |                         |                                         | Parental education                                                                                                    | Suicidal behaviour   |                 |            |         |                                       |  |
|----------------------------------------------------------|-------------------|-------------------|-------|-----------|-------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|------------|---------|---------------------------------------|--|
| Authors (year,<br>country/region)                        | Sample<br>size, N | Female<br>sex (%) | Age   | Sample    | Study type <sup>a</sup> | Parent lo<br>evaluated Classification a |                                                                                                                       | Ideation/<br>attempt | Tool            | Assessment | Subject | Timeframe                             |  |
| Abdeen <i>et al.</i> (2018,<br>Palestine)                | 5713              | 0.7               | 13    | Community | Cross-sectional         | М                                       | Below secondary; secondary;<br>above secondary                                                                        | Both                 | HBSC-ME         | Q          | Child   | 12 months                             |  |
| Alaimo et al. (2002, USA)                                | 754               | 0.52              | 15-16 | Community | Cross-sectional         | 0                                       | Below high school; high school;<br>above high school                                                                  | Both                 | DIS             | I          | Child   | Lifetime                              |  |
| Allen and<br>Goldman-Mellor ( <mark>2018,</mark><br>USA) | 4463              | 0.49              | 14.6  | Community | Cross-sectional         | 0                                       | No education; high school; some college; college graduate                                                             | Ideation             | -               | I          | Child   | 12 months                             |  |
| Amit <i>et al.</i> (2014, Israel)                        | 620               | 0.48              | 14–17 | Community | Cross-sectional         | М                                       | 0-11; 12; 13 or more years                                                                                            | Both                 | DAWBA           | I          | Both    | 4 weeks                               |  |
| Anteghini <i>et al</i> . ( <mark>2001,</mark><br>Brazil) | 1960              | 0.55              | 13-17 | Community | Cross-sectional         | 0                                       | No more than high school; some college                                                                                | Both                 | CAHS            | Q          | Child   | Lifetime                              |  |
| Armağan <i>et al</i> . (2020,<br>Turkey)                 | 60                | 0.93              | 12-18 | Clinical  | Cross-sectional         | М                                       | Primary school; secondary school;<br>high school                                                                      | Attempt              | -               | I          | Both    | June–<br>December<br>2017             |  |
| Asarnow <i>et al</i> . ( <mark>2011</mark> ,<br>USA)     | 327               | 0.7               | 15.9  | Clinical  | Cross-sectional         | 0                                       | At least college graduate                                                                                             | Attempt              | K-SADS          | I          | Both    | Lifetime                              |  |
| Assari et al. (2020, USA)                                | 3271              | 0.5               | 9.5   | Community | Cross-sectional         | O Did not complete high school;         |                                                                                                                       | Attempt              | K-SADS          | I          | Adult   | Lifetime                              |  |
| Beattie et al. (2019, India)                             | 1191              | 1                 | 13–14 | Community | Cross-sectional         | 0                                       | Illiterate; literate                                                                                                  | Ideation             | -               | Q          | Child   | 2 weeks                               |  |
| Bolat et al. (2017, Turkey)                              | 142               | 0.85              | 14.5  | Clinical  | Cross-sectional         | М                                       | Years                                                                                                                 | Attempt              | Referral        | I          | Child   | November<br>2014–<br>November<br>2015 |  |
| Borges <i>et al</i> . (2008,<br>Mexico)                  | 3005              | -                 | 12–17 | Community | Cross-sectional         | 0                                       | None/elementary school; junior<br>high school; high school; university<br>+                                           | Both                 | WMH-CID-A       | I          | Child   | Lifetime                              |  |
| Bush and Qeadan (2020,<br>USA) sample 1                  | 2661              | -                 | 14–17 | Community | Cross-sectional         | М                                       | Below high school; high school;<br>above or equal to college                                                          | Attempt              | NM-YRRS         | Q          | Child   | 12 months                             |  |
| Bush and Qeadan (2020,<br>USA) sample 2                  | 3473              | -                 | 14–17 | Community | Cross-sectional         | М                                       | A Below high school; high school;<br>above or equal to college                                                        |                      | NM-YRRS         | Q          | Child   | 12 months                             |  |
| Bush and Qeadan (2020,<br>USA) sample 3                  | 3117              | -                 | 14–17 | Community | Cross-sectional         | М                                       | Below high school; high school;<br>above or equal to college                                                          | Attempt              | NM-YRRS         | Q          | Child   | 12 months                             |  |
| Chang et al. (2017, China)                               | 13 952            | 0.47              | 10-18 | Community | Cross-sectional         | М                                       | M Primary school or below; junior<br>middle school; high school or<br>technical secondary school; college<br>or above |                      | -               | Q          | Child   | 12 months                             |  |
| Chau et al. (2013, France)                               | 1559              | 0.5               | 13.5  | Community | Cross-sectional         | 0                                       | Low-parental education                                                                                                | Attempt              | Kandel<br>Scale | Q          | Child   | Lifetime                              |  |
| Chen et al. (2020, China)                                | 610               | 0.49              | 15    | Community | Cross-sectional         | 0                                       | O Unspecified                                                                                                         |                      | BSSI            | Q          | Child   | Lifetime                              |  |

σ

# Table 1. (Continued.)

|                                                                          |                   |                   |       |           |                         |                                         | Parental education                                                                                                                         | Suicidal behaviour   |         |            |         |                                        |
|--------------------------------------------------------------------------|-------------------|-------------------|-------|-----------|-------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|------------|---------|----------------------------------------|
| Authors (year, country/region)                                           | Sample<br>size, N | Female<br>sex (%) | Age   | Sample    | Study type <sup>a</sup> | Parent Classification Id<br>evaluated a |                                                                                                                                            | Ideation/<br>attempt | Tool    | Assessment | Subject | Timeframe                              |
| Chiu et al. (2017, Taiwan)                                               | 2896              | 0.5               | 15    | Community | Cross-sectional         | М                                       | ≤12; >12 years                                                                                                                             | Ideation             | SCL-15  | Q          | Child   | 1 week                                 |
| Cornell and Huang (2016,<br>USA)                                         | 47 888            | 0.51              | 14–17 | Community | Cross-sectional         | 0                                       | Did not graduate from high school;<br>graduated from a high school;<br>graduated from a 2-year college;<br>completed post-graduate studies | Both                 | YRBS    | Q          | Child   | 12 months                              |
| DiLLi <i>et al.</i> (2010, Turkey)                                       | 136               | 0.83              | 13.8  | Clinical  | Cross-sectional         | М                                       | Illiterate; primary school; high Att school, university                                                                                    |                      | SPS     | I          | Child   | November<br>2005–<br>September<br>2007 |
| Franić <i>et al</i> . (2011, USA)                                        | 803               | 0.5               | 12    | Community | Cross-sectional         | М                                       | 8; 8–12; >12 years                                                                                                                         | Ideation             | -       | Q          | Child   | Lifetime                               |
| Freuchen <i>et al</i> . (2012,<br>Norway)                                | 378               | -                 | 0-15  | Community | Cross-sectional         | М                                       | Elementary/secondary school;<br>university                                                                                                 | Attempt              | Linkage | Linkage    | Linkage | Lifetime                               |
| Gage (2013, Ethiopia)                                                    | 2709              | 1                 | 14.2  | Community | Cross-sectional         | 0                                       | Neither educated; one parent; both parents educated                                                                                        | Both                 | -       | Q          | Child   | 3 months                               |
| Haavisto <i>et al</i> . (2005,<br>Finland)                               | 2098              | 0                 | 18    | Community | Cross-sectional         | 0                                       | Not graduated from upper<br>secondary school; graduated from<br>upper secondary school                                                     | Both                 | -       | Q          | Child   | 6 months                               |
| Kim et al. (2019, Korea)                                                 | 3201              | 0.45              | 15.1  | Community | Cross-sectional         | М                                       | ≤6; 7–9; 10–12; ≥13 years                                                                                                                  |                      | -       | Q          | Child   | 1 year                                 |
| King <i>et al</i> . (2019, USA)                                          | 2104              | 0.63              | 15.1  | Clinical  | Cross-sectional         | М                                       | High school graduate or less; some<br>college/technical training; college<br>graduate/professional                                         |                      | C-SSRS  | Q          | Child   | June 2015–<br>July 2016                |
| Kokkevi <i>et al</i> . ( <mark>2011,</mark><br>Greece)                   | 46 668            | -                 | 14–18 | Community | Cross-sectional         | 0                                       | Primary/unknown; beyond primary                                                                                                            | Attempt              | -       | Q          | Child   | Lifetime                               |
| Kovess-Masfety <i>et al.</i><br>(2015, Europe based,<br>multi-countries) | 4491              | 0.49              | 8.7   | Community | Cross-sectional         | М                                       | High school not completed; high<br>school completed; continued after<br>high school                                                        | Ideation             | DI      | Q          | Child   | Lifetime                               |
| Lee and Shin (2017,<br>Korea)                                            | 72 435            | 0.49              | 12–17 | Community | Cross-sectional         | М                                       | Below high school graduation; high school graduation; above college graduation; missing                                                    | Both                 | KYRBS   | Q          | Child   | 12 months                              |
| Leslie <i>et al</i> . (2010, USA)                                        | 993               | 0.57              | 11-15 | Community | Cross-sectional         | 0                                       | Below high school; high school<br>diploma/equivalent; above high<br>school                                                                 |                      | -       | Ι          | Child   | Lifetime                               |
| Liang et al. (2014, China)                                               | 2131              | 0.49              | 13.9  | Community | Cross-sectional         | М                                       | ≤9; >9 years                                                                                                                               | Attempt              | SHQ     | Q          | Child   | 1 year                                 |
| Liu et al. (2019, China)                                                 | 11 831            | 0.49              | 15    | Community | Cross-sectional         | 0                                       | Primary school; middle school; E<br>high school; professional school;<br>college or above                                                  |                      | AHQ     | Q          | Child   | 1 year                                 |
| Liu et al. (2005, China)                                                 | 284               | 0.4               | 15.6  | Community | Cross-sectional         | М                                       | M Primary school or less; middle At school; high school; college                                                                           |                      | YSR     | Q          | Child   | 6 months                               |

| Liu and Sun (2005, China)                       | 1920 | 0.45 | 13.6  | Community | Cross-sectional | М | Illiterate/semi-illiterate; primary<br>school; middle school; high school;<br>college                                                                                   | Ideation | CBCL         | Q | Both  | 6 months  |
|-------------------------------------------------|------|------|-------|-----------|-----------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|---|-------|-----------|
| Lu <i>et al</i> . (2020, China)                 | 464  | 0.46 | 11–17 | Community | Cross-sectional | М | Primary school or below; middle                                                                                                                                         |          | SDQ          | Q | Child | 1 year    |
| Maimon <i>et al.</i> (2010, USA)                | 990  | 0.52 | 11–16 | Community | Cross-sectional | М | Below high school; some high At<br>school; finished high school; above<br>high school; bachelor's degree or<br>more                                                     |          | -            | I | Child | Lifetime  |
| Mars et al. (2014, UK)                          | 4799 | 0.59 | 16    | Community | Cross-sectional | М | Below O level; O-level; A level;<br>degree                                                                                                                              | Attempt  | CASE         | Q | Child | Lifetime  |
| Martin <i>et al</i> . (2016, USA)               | 360  | 0.28 | 3–7   | Clinical  | Cross-sectional | М | Completed high school/GED                                                                                                                                               | Both     | DIPA         | I | Adult | Lifetime  |
| Min <i>et al</i> . (2012, Korea)                | 676  | 0.5  | 6.5   | Community | Cross-sectional | 0 | Both parents college educated; one<br>parent college educated; neither<br>parent college educated                                                                       | Ideation | BASC-2       | Q | Adult | Lifetime  |
| Nock et al. (2013, USA)                         | 6483 | -    | 13–18 | Community | Cross-sectional | 0 | Below high school; high school;<br>some college; college graduate                                                                                                       | Both     | CIDI         | I | Child | Lifetime  |
| Oppenheimer <i>et al</i> . (2018,<br>USA)       | 238  | 0.57 | 12.2  | Community | Longitudinal    | 0 | Above or equal to BA                                                                                                                                                    | Ideation | SITBI        | I | Both  | Lifetime  |
| Paul and Ortin (2019 <i>a</i> ,<br>USA)         | 1090 | 0.51 | 6     | Community | Cross-sectional | 0 | Years                                                                                                                                                                   | Both     | CBCL         | I | Adult | 6 months  |
| Paul and Ortin (2019 <i>b</i> ,<br>USA)         | 2958 | 0.47 | 9     | Community | Cross-sectional | 0 | Below high school; high school or equivalent; some college or higher                                                                                                    | Both     | CBCL         | I | Adult | 6 months  |
| Peter <i>et al</i> . (2008,<br>Canada)          | 1032 | 0.53 | 12-15 | Community | Cross-sectional | 0 | Highest level of parental education                                                                                                                                     | Ideation | NLSCY        | Q | Child | 12 months |
| Phil and Minde (1995,<br>Canada)                | 35   | 1    | 13-16 | Community | Cross-sectional | 0 | Both parents have 0–6 years; one<br>parent has 0–6 years, the other has<br>7 or more years; both parents have<br>7 or more years                                        | Attempt  | -            | I | Both  | Lifetime  |
| Resch <i>et al</i> . (2008,<br>Germany)         | 1681 | -    | 7–17  | Community | Cross-sectional | 0 | Low-parental education                                                                                                                                                  | Both     | YSR          | I | Both  | Lifetime  |
| Reyes <i>et al</i> . (2011, Puerto<br>Rico)     | 585  | 0.53 | 12-15 | Community | Cross-sectional | М | Below high school; completed high school; above high school                                                                                                             | Attempt  | CAPI         | I | Child | 12 months |
| Sabo <i>et al</i> . (2005, USA)<br>sample 1     | 7993 | 1    | 14–18 | Community | Cross-sectional | М | Years                                                                                                                                                                   | Both     | -            | Q | Child | 1 year    |
| Sabo <i>et al</i> . (2005, USA)<br>sample 2     | 7825 | 0    | 14–18 | Community | Cross-sectional | Μ | Years                                                                                                                                                                   | Both     | -            | Q | Child | 1 year    |
| Sampasa-Kanyinga and<br>Hamilton (2016, Canada) | 4955 | 0.52 | 15.2  | Community | Cross-sectional | 0 | High school or less; some college/<br>university; university degree; do<br>not know                                                                                     |          | YRBS         | Q | Child | 12 months |
| Shin et al. (2009, Korea)                       | 1857 | 0.51 | 13.8  | Community | Cross-sectional | М | ≤12; >13 years                                                                                                                                                          | Both     | K-YSR        | Q | Child | 6 months  |
| Slap <i>et al</i> . (2001, USA)                 | 6517 | 0.5  | 16    | Community | Cross-sectional | 0 | Below high school or equivalent;<br>no VS; high school or equivalent, or<br>VS; VS or college after high school<br>graduation; college graduate;<br>professional school | Attempt  | Likert Scale | I | Child | 12 months |

https://doi.org/10.1017/S204579602200004X Published online by Cambridge University Press

7

#### Table 1. (Continued.)

|                                                        |                   |                   |       |           |                         | Parental education                                   |                                                                                                   | Suicidal behaviour   |         |            |         |           |
|--------------------------------------------------------|-------------------|-------------------|-------|-----------|-------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------|---------|------------|---------|-----------|
| Authors (year,<br>country/region)                      | Sample<br>size, N | Female<br>sex (%) | Age   | Sample    | Study type <sup>a</sup> | Parent Classification Id<br>evaluated a              |                                                                                                   | Ideation/<br>attempt | Tool    | Assessment | Subject | Timeframe |
| Steck <i>et al.</i> (2018,<br>Switzerland)             | 2 395 677         | 0.49              | 10-18 | Community | Longitudinal            | O Compulsory; secondary; tertiary; Atte<br>not known |                                                                                                   | Attempt              | Linkage | Linkage    | Linkage | Lifetime  |
| Toros <i>et al</i> . (2004, Turkey)                    | 4143              | 0.5               | 11–16 | Community | Cross-sectional         | М                                                    | Years                                                                                             | Attempt              | CBDI    | Q          | Child   | Lifetime  |
| Tran <i>et al</i> . ( <mark>2020,</mark><br>Vietnam)   | 6427              | 0.54              | 13-17 | Community | Cross-sectional         | М                                                    | M High school and lower; diploma Id<br>and higher                                                 |                      | CES-D   | Q          | Child   | 12 months |
| Wang et al. (2019, China)                              | 1347              | 0.48              | 12.5  | Community | Cross-sectional         | 0                                                    | Elementary or less; middle/high I<br>school; college or above; not sure                           |                      | -       | Q          | Child   | 1 month   |
| Whetstone <i>et al</i> . (2007, USA) sample 1          | 2197              | 1                 | 10-16 | Community | Cross-sectional         | 0                                                    | Below high school; high school graduate; some college or above                                    |                      | YRBS    | Q          | Child   | Lifetime  |
| Whetstone <i>et al</i> . (2007,<br>USA) sample 2       | 2095              | 0                 | 10-16 | Community | Cross-sectional         | 0                                                    | O Below high school; high school graduate; some college or above                                  |                      | YRBS    | Q          | Child   | Lifetime  |
| Xiao <i>et al</i> . (2020, China)                      | 2898              | 0.48              | 14    | Community | Cross-sectional         | Μ                                                    | <ul> <li>Elementary and below; senior high I school and above</li> </ul>                          |                      | BSSI    | Q          | Child   | Lifetime  |
| Yuen <i>et al</i> . (2000, USA)                        | 3327              | 0.52              | -     | Community | Cross-sectional         | 0                                                    | Below or equal to high school;                                                                    |                      | MLES    | Q          | Child   | Lifetime  |
| Zalsman <i>et al</i> . ( <mark>2016,</mark><br>Israel) | 957               | 0.49              | 14–17 | Community | Cross-sectional         | Μ                                                    | 0-11; 12; 13+ years                                                                               |                      | DAWBA   | I          | Child   | Lifetime  |
| Zhang et al. (2018, China)                             | 16 271            | 0.48              | 15.3  | Community | Cross-sectional         | М                                                    | Elementary or below; junior high<br>school; senior high school; college<br>or above               |                      | -       | Q          | Child   | 12 months |
| Zubrick <i>et al</i> . (2016,<br>Australia)            | 2653              | -                 | 12–17 | Community | Cross-sectional         | 0                                                    | Year 10 or below; year 11 or 12;<br>diploma or certificate III/IV;<br>bachelor's degree or higher |                      | YRBS    | Q          | Child   | 12 months |

AHQ, Adolescent Health Questionnaire; BASC-2, Behaviour Assessment System for Children; BSSI, Beck Scale for Suicidal Ideation; CAHS, Canada Adolescent Health Survey; CAPI, Computer-Assisted Personal Interviewing; C-SSRS, Columbia-Suicide Severity Rating Scale; CASE, Child and Adolescent Self-harm in Europe; CBCL, Child Behaviour Checklist; CBDI, Child Beck Depression Inventory; CES-D, Center for Epidemiologic Studies Depression; CIDI, Composite International Diagnostic Interview; DAWBA, Development And Well-Being Assessment; DI, Dominic Interactive; DIPA, the Diagnostic Infant and Preschool Assessment; DIS, Diagnostic Interview Schedule; HBSC-ME, Health Behaviour in School aged Children in the Middle East study; I, Interview, K-SADS, Kiddie Schedule for Affective Disorders and Schizophrenia; KYRBS, Korean Youth Risk Behaviour Survey; K-YSR, Youth Self Report-Korean version; M, Mother; MLES, Major Life Events Scale; NLSCY, National Longitudinal Survey of Children and Youth; NM-YRRS, New Mexico Youth Risk and Resiliency Survey; O, Other; Q, Questionnaire; SITBI, Self-Injurious Thoughts and Behaviours Interview; SPS, Suicide Probability Scale; WMH-CIDI-A, World Mental Health computer assisted Adolescent version of the Composite Interview; YRBS, Youth Risk Behaviour Survey; YSR, Youth Self Report.

<sup>a</sup>'Cross-sectional' type refers to the outcome data used to determine the association in the study was assessed at a single timepoint; 'longitudinal' type refers to the outcome data used to determine the association in the study was repeatedly assessed and accumulated during the follow-up period.



**Fig. 2.** (*a*) Primary analysis: forest plot of the association between parental education and youth suicidal ideation. (*b*) Primary analysis: forest plot of the association between parental education and youth suicidal attempts.

0.72, 95% CI = 0.54–0.96). In addition, lower parental education was only associated with an increased risk of youth suicidal ideation in HICs (OR = 1.14, 95% = 1.05–1.25), and the association was absent in studies conducted in low- and middle-income countries (LMICs) (OR = 0.91, 95% CI = 0.77–1.08). Egger's regression test indicated no significant publication bias for both

outcomes. The funnel plots also showed no notable asymmetries (online Supplementary Figs S1A and S1B).

A total of 47 samples incorporated ISCED 3 or equivalent in their classification of parental education. These studies were selected for the secondary analyses, in which we evaluated the relationship between lower parental education and youth suicidal



Fig. 2. Continued.

behaviours across three parental education level subgroups (low, middle and high). Pooled results showed an increase in risk for suicidal ideation in youths of parents with low education level compared to those of parents with middle-educational level (k = 13, OR = 1.28, 95% CI = 1.06–1.54) (Fig. 3).

#### Discussion

Our main finding is that lower parental education is significantly associated with a small increase in the risk of youth suicidal attempts. Furthermore, we found that having parents with a low education level (below ISCED 3) is associated with a higher risk of suicidal ideation than having parents with a middle-education level (equals to ISCED 3). Finally, we also found that the association between parental education and youth suicidal behaviours is moderated by both geographic region and country income level. Specifically, lower parental education is associated with an increased risk of youth suicidal ideation and attempts in studies conducted in HICs and Northern America, respectively, while the opposite is true for studies conducted in Eastern and

# Epidemiology and Psychiatric Sciences

# Table 2. Univariate moderator analysis of the relationship between parental education and youth suicidal behaviours

|                  |                                | Eff |           |      |      | size analysis | Heterogeneity analysis |                    |  |
|------------------|--------------------------------|-----|-----------|------|------|---------------|------------------------|--------------------|--|
| Outcome          | Moderator                      | k   | Ν         | Ь    | OR   | 95% CI        | p                      | I <sup>2</sup> (%) |  |
| Suicidal ideatio | on                             | 39  | 241 047   |      |      |               |                        |                    |  |
|                  | Sample type                    |     |           |      |      |               | 0.47                   |                    |  |
|                  | Community                      | 38  | 230 687   |      | 1.05 | 0.98-1.13     |                        | 82.70              |  |
|                  | Clinical                       | 1   | 360       |      | 1.47 | 0.60-3.61     |                        | N/A                |  |
|                  | % Female (continuous)          | 35  | 226 925   | 0.05 |      |               | 0.66                   |                    |  |
|                  | Study design                   |     |           |      |      |               | 0.37                   |                    |  |
|                  | Cross-sectional                | 38  | 240 809   |      | 1.04 | 0.97-1.12     |                        | 83.00              |  |
|                  | Longitudinal                   | 1   | 238       |      | 1.41 | 0.74-2.69     |                        | N/A                |  |
|                  | Country income level           |     |           |      |      |               | 0.02*                  |                    |  |
|                  | High                           | 26  | 185 923   |      | 1.14 | 1.05-1.25     |                        | 71.60              |  |
|                  | Low-middle                     | 13  | 55 124    |      | 0.91 | 0.77-1.08     |                        | 85.50              |  |
|                  | Geographical region            |     |           |      |      |               | 0.35                   |                    |  |
|                  | Europe and Northern America    | 18  | 99 406    |      | 1.14 | 1.00-1.29     |                        | 78.10              |  |
|                  | Eastern and South-Eastern Asia | 13  | 122 833   |      | 0.96 | 0.81-1.28     |                        | 87.80              |  |
|                  | Outcome assessment             |     |           |      |      |               | 0.15                   |                    |  |
|                  | Questionnaire                  | 28  | 218 438   |      | 1.06 | 0.99-1.15     |                        | 86.80              |  |
|                  | Other                          | 11  | 22 609    |      | 0.93 | 0.80-1.09     |                        | 6.40               |  |
|                  | Outcome assessment subject     |     |           |      |      |               | 0.23                   |                    |  |
|                  | Child                          | 31  | 231 504   |      | 1.04 | 0.97-1.12     |                        | 85.90              |  |
|                  | Other                          | 8   | 9543      |      | 1.24 | 0.93-1.66     |                        | 0.00               |  |
|                  | Timeframe                      |     |           |      |      |               | 0.76                   |                    |  |
|                  | Lifetime                       | 15  | 29 210    |      | 1.08 | 0.91-1.30     |                        | 83.50              |  |
|                  | Other                          | 24  | 211 837   |      | 1.05 | 0.96-1.15     |                        | 78.50              |  |
|                  | Risk of bias                   |     |           |      |      |               | 0.05                   |                    |  |
|                  | Low                            | 1   | 1090      |      | 1.59 | 0.89-2.84     |                        | N/A                |  |
|                  | Some concern                   | 14  | 85 425    |      | 0.89 | 0.73-1.09     |                        | 86.30              |  |
|                  | High                           | 24  | 154 532   |      | 1.14 | 1.03-1.25     |                        | 80.40              |  |
| Suicidal attem   | pt                             | 46  | 2 704 716 |      |      |               |                        |                    |  |
|                  | Sample type                    |     |           |      |      |               | 0.52                   |                    |  |
|                  | Community                      | 41  | 2 701 947 |      | 1.12 | 1.03-1.20     |                        | 72.50              |  |
|                  | Clinical                       | 5   | 2769      |      | 1.27 | 0.86-1.87     |                        | 17.30              |  |
|                  | % Female (continuous)          | 37  | 2 634 597 | 0.12 |      |               | 0.35                   |                    |  |
|                  | Study design                   |     |           |      |      |               | 0.001                  |                    |  |
|                  | Cross-Sectional                | 45  | 309 039   |      | 1.14 | 1.06-1.23     |                        | 68.90              |  |
|                  | Longitudinal                   | 1   | 2 395 677 |      | 0.67 | 0.50-0.90     |                        | N/A                |  |
|                  | Country income level           |     |           |      |      |               | 0.07                   |                    |  |
|                  | High                           | 34  | 2 648 092 |      | 1.18 | 1.09-1.28     |                        | 68.50              |  |
|                  | Low-middle                     | 12  | 56 624    |      | 0.90 | 0.67-1.20     |                        | 74.00              |  |
|                  | Geographical region            |     |           |      |      |               | 0.008*                 |                    |  |
|                  | Europe                         | 6   | 2 448 061 |      | 1.12 | 0.80-1.56     |                        | 77.70              |  |
|                  | Northern America               | 22  | 115 831   |      | 1.26 | 1.10-1.45     |                        | 64.60              |  |

(Continued)

#### Table 2. (Continued.)

|         |                                |    |           |   | Effect | size analysis |      | Heterogeneity analysis |
|---------|--------------------------------|----|-----------|---|--------|---------------|------|------------------------|
| Outcome | Moderator                      | k  | Ν         | b | OR     | 95% CI        | p    | l <sup>2</sup> (%)     |
|         | Eastern and South-Eastern Asia | 7  | 118 761   |   | 0.72   | 0.54-0.96     |      | 69.40                  |
|         | Western Asia                   | 6  | 11 151    |   | 1.17   | 0.96-1.41     |      | 37.70                  |
|         | Outcome assessment             |    |           |   |        |               | 0.23 |                        |
|         | Questionnaire                  | 27 | 278 677   |   | 1.16   | 1.07-1.26     |      | 77.40                  |
|         | Other                          | 19 | 2 426 039 |   | 1.02   | 0.83-1.25     |      | 42.30                  |
|         | Outcome assessment subject     |    |           |   |        |               | 0.95 |                        |
|         | Child                          | 37 | 299 239   |   | 1.13   | 1.05-1.22     |      | 71.90                  |
|         | Other                          | 9  | 2 405 477 |   | 1.12   | 0.78-1.60     |      | 64.50                  |
|         | Timeframe                      |    |           |   |        |               | 0.30 |                        |
|         | Lifetime                       | 20 | 2 481 278 |   | 1.17   | 1.02-1.35     |      | 62.30                  |
|         | Other                          | 26 | 223 438   |   | 1.07   | 0.98-1.18     |      | 72.60                  |
|         | Risk of bias                   |    |           |   |        |               | 0.41 |                        |
|         | Low                            | 6  | 3194      |   | 1.13   | 0.79-1.62     |      | 45.20                  |
|         | Some concern                   | 21 | 118 727   |   | 1.22   | 1.04-1.43     |      | 66.30                  |
|         | High                           | 19 | 2 582 795 |   | 1.06   | 0.94-1.20     |      | 74.90                  |

\*p < 0.05.



Fig. 3. Secondary analysis: forest plot of the associations between lower parental education and youth suicidal behaviours across parental education level subgroups.

South-Eastern Asia, where higher parental education appears to be associated with a higher risk of youth suicidal attempts.

Our first finding is consistent with reports from an older systematic review conducted by Evans *et al.* (2004), which reported

that among family socioeconomic characteristics, lower parental educational level and worries for family finance were the only factors associated with an increased risk of adolescent suicidality. Multiple potential pathways have been proposed to mediate the association between higher parental education level and more favourable youth health outcomes. For instance, several studies conducted in the West support that higher parental education is associated with better parent-child interaction (Zavas et al., 2000), more positive parenting (Carr and Pike, 2012), healthier lifestyle (Jablonska et al., 2012) and increased resource buffering against stressful life events and supporting children's problem solving (Reiss et al., 2019). Higher parental education could also be indicative of a broad social and economic positive influence on the home environment, as higher education could give access to higher earnings and more affluent living (Lindeboom et al., 2009). Higher education could also enable parents to better recognise problematic issues in adolescents via stronger mental health literacy and access to sources of support (Villatoro et al., 2018). All of the above could potentially help promote child and adolescents' well-being and better mental health. In line with this, our first finding supports a possible protective role of higher parental education against youth suicidal attempts.

In contrast, we found no association between lower parental education and youth suicidal ideation in the primary analysis, although such an association became evident in a secondary analysis across education level subgroups, where low education levels were associated with an increased risk of suicidal ideation compared to middle-education levels. The fact that lower parental education was associated with an increased risk of youth suicidal attempts but not with a risk of suicidal ideation in our primary analysis somewhat echoes an observation previously made by Kapi et al. (2007), who suggested that family SES could be more closely related to externalising behaviours rather than internalising domains of adolescent psychopathology. Also, 90% of participants included in studies of suicidal ideation were in their middle to late adolescence, and some authors have suggested that the influence of family SES on youth mental health outcomes could diminish with age (Bøe et al., 2012).

Taken together, the findings of our primary and secondary analyses suggest that the relationship between parental education and youth suicidal ideation might not be linear. Different parental educational milestones may have different effects on this particular outcome, as our secondary analyses showed youths with parents who completed high school had a relatively lower risk of disclosing suicidal ideation compared to those whose parents did not acquire a high school diploma. In contrast, parental education higher than high school was no longer associated with such reduced risk, suggesting that other factors might counteract a potential protective effect of education.

The relevance of factors other than parental education alone is supported by our finding that geographical region and country income level moderated the relationship between parental education and youth suicidal behaviours. This finding suggests that cultural, psychosocial, economical contexts and possibly biological factors, could play a significant role in this particular association. Previous evidence has suggested that contextual differences could affect the relationship between parental education and youth's well-being (Assari et al., 2018). When studying the influence of parental education, it is vital to take into account contextual factors such as politics, racial compositions, societal attitudes, neighbourhood characteristics, in which families are embedded, as the effect of socioeconomic indicators is complex and can vary across different contexts (Assari et al., 2018). For instance, while highparental education may be linked to positive and less harsh parenting styles in Western cultures, it has also been associated with higher academic expectations and performance stress in

Asian cultures, particularly Chinese (Chang *et al.*, 2017). Meanwhile, social expectations and academic pressure to excel are risk factors shared among youths in Asian countries, and prior research has already highlighted that differences in patterns of suicide between East Asia and the West merit further attention (Kwak and Ickovics, 2019).

Similarly, previous literature has also indicated that cultural and social differences between LMICs and HICs could play a role in the presentation and course of youth self-injurious behaviours (Aggarwal *et al.*, 2017). The role of parental education in child health outcomes has become more attenuated over recent decades in low-resource settings as reported by a recent study (Karlsson *et al.*, 2019). Our findings are especially important in light of the fact that 78% of all self-imposed lethal acts occur in LMICs, while the vast majority of research concerning youth suicide is based on populations living in North America and in European countries (Kim, 2019). Our results highlight the importance of investigating context-specific risk and protective factors for youth suicidality, as data informing country and regional variation are urgently warranted to identify modifiable risk factors and to inform differential service needs globally (Biswas *et al.*, 2020).

Nevertheless, our findings should be interpreted with caution in view of some important limitations. For example, moderate to substantial heterogeneity was present in the studies included in the primary analyses. Despite our extensive efforts to explore the sources, we could identify only some of the many possible moderators. Residual differences between studies could be related to sample characteristics, study design, and definitions and classifications of parental education. In addition, the qualitative assessment revealed that several studies had medium to high risk of bias. This was mainly due to suboptimal practices in exposure ascertainment and outcome assessment, since most studies applied selfadministered questionnaires to participants. Also, the crosssectional nature of most of the data included did not make it possible to conclude whether and how parental education is directly or indirectly associated with youth suicidal behaviours. Finally, the studies included in the meta-analysis varied widely in sample size, with one single study contributing to over 85% of the total participant numbers (Steck et al., 2018). However, this study was not overly represented in the synthesis results as it investigated youth suicide death rather than suicidal ideation or attempts. With a much lower prevalence rate, the precision of the study's estimated effect size was reduced despite having a large sample size, which attenuated the study's weight in the random effects model.

On the other hand, the present study also has several strengths. First, we believe that this is the first study to have systematically assessed the effect of parental education as an independent variable in youth suicidal behaviours. As noted in previous research, different indicators of family SES could affect health outcomes through different pathways, and therefore should not be combined (Padilla-Moledo *et al.*, 2016). Second, by considering suicidal ideation and attempts separately, we show that these two components of suicidal behaviours, although highly correlated, could in fact have different risk profiles and require different preventive and intervention strategies. Third, our secondary analyses suggest that any effect may not follow a 'dose-dependent' pattern. Fourth and last, our results show how critical it is to acknowledge the between-context variation in the association between parental education and youth mental health outcomes.

In conclusion, the present meta-analysis offers a comprehensive synthesis of existing evidence on the relationship between parental education and youth suicidal behaviours, notwithstanding the high heterogeneity of the studies included. In general, our findings provide initial evidence of an association between lower parental education and increased risk of youth suicidal attempt. In addition, the findings suggest that this association may differ across different geographical and economical contexts, possibly related to cultural, psychosocial and/or biological factors. This indicates that it is crucial for future research to gather more evidence on the determinants of youth suicidal behaviours across the global setting. Furthermore, it highlights the importance of taking into account the cultural as well as the familial context in the clinical management of youth suicidal behaviour in our increasingly multicultural societies.

**Supplementary material.** The supplementary material for this article can be found at https://doi.org/10.1017/S204579602200004X.

**Data.** All data used in the systematic review and meta-analyses can be found in the included studies. Extracted data by the authors can be found in the online Supplementary materials.

Acknowledgements. This work was supported by the Abroad Advanced Study Fellowship, Chang Gung Medical Foundation, Taiwan (P. J. C.) and the Medical Research Council, UK (P. D., grant number: MR/S003444/1). The funders had no influence on the design, collection, analysis and interpretation of the data, writing, reporting or submitting the study for publication.

Author contributions. P. J. C. and N. M. reviewed literature search results independently. P. J. C. and N. M. had full access to the data and take responsibility for its accuracy and integrity. P. J. C., N. M., C. S., A. J. L., C. M., S. H., C. N. and P. D. completed concept formation and study design. P. J. C., N. M., C. S., A. J. L., C. N. and P. D. contributed to data selection, data analysis or interpretation of the data. P. J. C. drafted the manuscript. N. M., C. S., A. J. L., X. M., R. P., M. M., C. M., S. H., G. S., C. P., M. A. M., G. M., C. N. and P. D. critically revised the manuscript for important intellectual content. P. J. C., N. M., C. S., A. J. L., C. N. M., C. S., A. J. L., C. N. and P. D. provided administrative, technical or material support. N. M., A. J. L., C. N. and P. D. provided expert supervision during data extraction, analysis and interpretation and writing of the manuscript. C. S., C. P. and M. A. M. provided expert supervision during data interpretation and writing of the manuscript. Senior academic P. D. p. D. supervised all stages of elaboration of the study.

**Role of the funding source.** The funders had no role in study design, data collection, data analysis, data interpretation or writing of the report.

**Conflict of interest.** The funders had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript and decision to submit the manuscript for publication.

#### References

- Abdeen Z, Brunstein-Klomek A, Nakash O, Shibli N, Nagar M, Agha H, Hallaq S, Kanat-Maymon Y, Juerges H and Levav I (2018) The association between political violence and the connection between bullying and suicidality among Palestinian youth. Suicide and Life-threatening Behavior 48, 95–104.
- Aggarwal S, Patton G, Reavley N, Sreenivasan SA and Berk M (2017) Youth self-harm in low-and middle-income countries: systematic review of the risk and protective factors. *International Journal of Social Psychiatry* 63, 359– 375.
- Alaimo K, Olson CM and Frongillo EA (2002) Family food insufficiency, but not low family income, is positively associated with dysthymia and suicide symptoms in adolescents. *The Journal of Nutrition* 132, 719–725.
- Allen K and Goldman-Mellor S (2018) Neighborhood characteristics and adolescent suicidal behavior: evidence from a population-based study. *Suicide and Life-threatening Behavior* 48, 677–689.

- Amit B, Krivoy A, Mansbach-Kleinfeld I, Zalsman G, Ponizovsky A, Hoshen M, Farbstein I, Apter A, Weizman A and Shoval G (2014) Religiosity is a protective factor against self-injurious thoughts and behaviors in Jewish adolescents: findings from a nationally representative survey. *European Psychiatry* 29, 509–513.
- Andrews JA and Lewinsohn PM (1992) Suicidal attempts among older adolescents: prevalence and co-occurrence with psychiatric disorders. Journal of the American Academy of Child & Adolescent Psychiatry 31, 655–662.
- Anteghini M, Fonseca H, Ireland M and Blum RW (2001) Health risk behaviors and associated risk and protective factors among Brazilian adolescents in Santos, Brazil. *Journal of Adolescent Health* 28, 295–302.
- Armağan A, Gökçe Nur S, Gizem G, Miraç BU and Ayşe EA (2020) The role of sociodemographic, clinical and neuropsychological variables in suicide attempts in depressed adolescents. Archives of Neuropsychiatry 57, 312.
- Asarnow JR, Porta G, Spirito A, Emslie G, Clarke G, Wagner KD, Vitiello B, Keller M, Birmaher B and McCracken J (2011) Suicide attempts and nonsuicidal self-injury in the treatment of resistant depression in adolescents: findings from the TORDIA study. *Journal of the American Academy of Child & Adolescent Psychiatry* 50, 772–781.
- Assari S, Caldwell CH and Mincy RB (2018) Maternal educational attainment at birth promotes future self-rated health of white but not black youth: a 15-year cohort of a national sample. *Journal of Clinical Medicine* 7, 93.
- Assari S, Boyce S, Bazargan M and Caldwell CH (2020) African Americans' diminished returns of parental education on adolescents' depression and suicide in the Adolescent Brain Cognitive Development (ABCD) study. *European Journal of Investigation in Health, Psychology and Education* 10, 656–668.
- **Balduzzi S, Rücker G and Schwarzer G** (2019) How to perform a meta-analysis with R: a practical tutorial. *Evidence-Based Mental Health* **22**, 153–160.
- Beattie TS, Prakash R, Mazzuca A, Kelly L, Javalkar P, Raghavendra T, Ramanaik S, Collumbien M, Moses S and Heise L (2019) Prevalence and correlates of psychological distress among 13–14 year old adolescent girls in North Karnataka, South India: a cross-sectional study. BMC Public Health 19, 1–12.
- Biswas T, Scott JG, Munir K, Renzaho AM, Rawal LB, Baxter J and Mamun AA (2020) Global variation in the prevalence of suicidal ideation, anxiety and their correlates among adolescents: a population based study of 82 countries. *EClinicalMedicine* 24, 100395.
- Bøe T, Øverland S, Lundervold AJ and Hysing M (2012) Socioeconomic status and children's mental health: results from the Bergen Child Study. Social Psychiatry and Psychiatric Epidemiology 47, 1557–1566.
- Bøe T, Sivertsen B, Heiervang E, Goodman R, Lundervold AJ and Hysing M (2014) Socioeconomic status and child mental health: the role of parental emotional well-being and parenting practices. *Journal of Abnormal Child Psychology* 42, 705–715.
- Bolat N, Kadak T, Eliacik K, Sargin E, Incekas S and Gunes H (2017) Maternal and paternal personality profiles of adolescent suicide attempters. *Psychiatry Research* 248, 77–82.
- Borges G, Benjet C, Medina-Mora ME, Orozco R and Nock M (2008) Suicide ideation, plan, and attempt in the Mexican adolescent mental health survey. *Journal of the American Academy of Child & Adolescent Psychiatry* 47, 41–52.
- Bush A and Qeadan F (2020) Social support and its effects on attempted suicide among American Indian/Alaska Native youth in New Mexico. Archives of Suicide Research 24, 337–359.
- Carr A and Pike A (2012) Maternal scaffolding behavior: links with parenting style and maternal education. *Developmental Psychology* **48**, 543.
- Cha CB, Franz PJ, Guzmán EM, Glenn CR, Kleiman EM and Nock MK (2018) Annual research review: suicide among youth epidemiology, (potential) etiology, and treatment. *Journal of Child Psychology and Psychiatry* **59**, 460–482.
- Chang H, Yan Q, Tang L, Huang J, Ma Y, Ye X and Yu Y (2017) A comparative analysis of suicide attempts in left-behind children and non-left-behind children in rural China. *PLoS One* **12**, e0178743.
- Chau K, Baumann M and Chau N (2013) Socioeconomic inequities patterns of multi-morbidity in early adolescence. *International Journal for Equity in Health* 12, 1–12.

- Chen J, Zheng X, Li C, Xiong Q, Yu Q, Shi S and Hu Y (2020) The association between parental marriage satisfaction and adolescent suicidal ideation: the moderating effect of breastfeeding duration. *Children and Youth Services Review* **118**, 105459.
- Chiu Y-C, Tseng C-Y and Lin F-G (2017) Gender differences and stagespecific influence of parent-adolescent conflicts on adolescent suicidal ideation. *Psychiatry Research* 255, 424–431.
- **Cornell D and Huang F** (2016) Authoritative school climate and high school student risk behavior: a cross-sectional multi-level analysis of student self-reports. *Journal of Youth and Adolescence* **45**, 2246–2259.
- DerSimonian R and Laird N (1986) Meta-analysis in clinical trials. *Controlled Clinical Trials* 7, 177–188.
- Dervic K, Gould MS, Lenz G, Kleinman M, Akkaya-Kalayci T, Velting D, Sonneck G and Friedrich MH (2006) Youth suicide risk factors and attitudes in New York and Vienna: a cross-cultural comparison. *Suicide and Life-Threatening Behavior* **36**, 539–552.
- DiLLi D, Dallar Y and Cakir I (2010) Psychological characteristics of adolescent suicide attempters presenting to a pediatric emergency service. *Turkish Journal of Medical Sciences* **40**, 377–390.
- **Dubow EF, Kausch DF, Blum MC, Reed J and Bush E** (1989) Correlates of suicidal ideation and attempts in a community sample of junior high and high school students. *Journal of Clinical Child Psychology* **18**, 158–166.
- Egger M, Smith GD, Schneider M and Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. *BMJ* **315**, 629–634.
- **Evans E, Hawton K and Rodham K** (2004) Factors associated with suicidal phenomena in adolescents: a systematic review of population-based studies. *Clinical Psychology Review* **24**, 957–979.
- Franić T, Dodig G, Kardum G, Marčinko D and Ujević A (2011) Early adolescence and suicidal ideations in Croatia. *Crisis* **32**, 334–345.
- Freuchen A, Kjelsberg E, Lundervold AJ and Grøholt B (2012) Differences between children and adolescents who commit suicide and their peers: a psychological autopsy of suicide victims compared to accident victims and a community sample. *Child and Adolescent Psychiatry and Mental Health* 6, 1–12.
- Gage AJ (2013) Association of child marriage with suicidal thoughts and attempts among adolescent girls in Ethiopia. *Journal of Adolescent Health* 52, 654–656.
- Galobardes B, Shaw M, Lawlor DA, Lynch JW and Smith GD (2006) Indicators of socioeconomic position (part 1). Journal of Epidemiology & Community Health 60, 7–12.
- Haavisto A, Sourander A, Multimäki P, Parkkola K, Santalahti P, Helenius H, Nikolakaros G, Moilanen I, Kumpulainen K and Piha J (2005) Factors associated with ideation and acts of deliberate self-harm among 18-year-old boys. Social Psychiatry and Psychiatric Epidemiology 40, 912–921.
- Jablonska B, Lindblad F, Östberg V, Lindberg L, Rasmussen F and Hjern A (2012) A national cohort study of parental socioeconomic status and nonfatal suicidal behaviour – the mediating role of school performance. *BMC Public Health* **12**, 1–8.
- Kapi A, Veltsista A, Kavadias G, Lekea V and Bakoula C (2007) Social determinants of self-reported emotional and behavioral problems in Greek adolescents. Social Psychiatry and Psychiatric Epidemiology 42, 594–598.
- Karlsson O, De Neve J-W and Subramanian S (2019) Weakening association of parental education: analysis of child health outcomes in 43 lowand middle-income countries. *International Journal of Epidemiology* 48, 83–97.
- Keshavarz S and Baharudin R (2013) Perceived parenting style of fathers and adolescents' locus of control in a collectivist culture of Malaysia: the moderating role of fathers' education. *The Journal of Genetic Psychology* 174, 253–270.
- Kim HH-S (2019) Parental overprotection and youth suicide behavior in lowand middle-income countries: a multilevel analysis of cross-national data. *International Journal of Public Health* **64**, 173–184.
- Kim SH, Kim J-S, Yoo HY and Ryu E (2019) Parental occupational status and suicidal ideation in adolescent: cross-sectional secondary data analysis. *Journal of Pediatric Nursing* **45**, e57–e63.
- King CA, Grupp-Phelan J, Brent D, Dean JM, Webb M, Bridge JA, Spirito A, Chernick LS, Mahabee-Gittens EM and Mistry RD (2019) Predicting 3-month risk for adolescent suicide attempts among pediatric emergency

department patients. Journal of Child Psychology and Psychiatry 60, 1055-1064.

- Kokkevi A, Rotsika V, Arapaki A and Richardson C (2011) Increasing selfreported suicide attempts by adolescents in Greece between 1984 and 2007. *Social Psychiatry and Psychiatric Epidemiology* **46**, 231–237.
- Kovess-Masfety V, Pilowsky DJ, Goelitz D, Kuijpers R, Otten R, Moro MF, Bitfoi A, Koç C, Lesinskiene S and Mihova Z (2015) Suicidal ideation and mental health disorders in young school children across Europe. *Journal of Affective Disorders* 177, 28–35.
- Kwak CW and Ickovics JR (2019) Adolescent suicide in South Korea: risk factors and proposed multi-dimensional solution. *Asian Journal of Psychiatry* 43, 150–153.
- Lee S and Shin A (2017) Association of atopic dermatitis with depressive symptoms and suicidal behaviors among adolescents in Korea: the 2013 Korean Youth Risk Behavior Survey. *BMC Psychiatry* 17, 1–11.
- Leslie LK, James S, Monn A, Kauten MC, Zhang J and Aarons G (2010) Health-risk behaviors in young adolescents in the child welfare system. *Journal of Adolescent Health* **47**, 26–34.
- Liang S, Yan J, Zhang T, Zhu C, Situ M, Du N, Fu X and Huang Y (2014) Differences between non-suicidal self injury and suicide attempt in Chinese adolescents. *Asian Journal of Psychiatry* 8, 76–83.
- Lindeboom M, Llena-Nozal A and van Der Klaauw B (2009) Parental education and child health: evidence from a schooling reform. *Journal of Health Economics* 28, 109–131.
- Liu X and Sun Z (2005) Age of attaining nocturnal bladder control and adolescent suicidal behavior. *Journal of Affective Disorders* 87, 281–289.
- Liu X, Tein J-Y, Sandler IN and Zhao Z (2005) Psychopathology associated with suicide attempts among rural adolescents of China. Suicide and Life-Threatening Behavior 35, 265–276.
- Liu X, Chen H, Liu Z, Wang J and Jia C (2019) Prevalence of suicidal behaviour and associated factors in a large sample of Chinese adolescents. *Epidemiology and Psychiatric Sciences* 28, 280–289.
- Lu J, Lin L, Roy B, Riley C, Wang E, Wang K, Li L, Wang F and Zhou X (2020) The impacts of parent-child communication on left-behind children's mental health and suicidal ideation: A cross sectional study in Anhui. *Children and youth service review* 110, 104785.
- Maimon D, Browning CR and Brooks-Gunn J (2010) Collective efficacy, family attachment, and urban adolescent suicide attempts. *Journal of Health and Social Behavior* 51, 307–324.
- Mars B, Heron J, Crane C, Hawton K, Kidger J, Lewis G, Macleod J, Tilling K and Gunnell D (2014) Differences in risk factors for self-harm with and without suicidal intent: findings from the ALSPAC cohort. *Journal of Affective Disorders* 168, 407–414.
- Martin SE, Liu RT, Mernick LR, DeMarco M, Cheek SM, Spirito A and Boekamp JR (2016) Suicidal thoughts and behaviors in psychiatrically referred young children. *Psychiatry Research* 246, 308–313.
- Min HJ, Jon D-I, Jung MH, Hong N, Song MA, Kim YS, Harkavy-Friedman JM, Im H-J and Hong HJ (2012) Depression, aggression, and suicidal ideation in first graders: a school-based cross-sectional study. *Comprehensive Psychiatry* 53, 1145–1152.
- Nock MK, Green JG, Hwang I, McLaughlin KA, Sampson NA, Zaslavsky AM and Kessler RC (2013) Prevalence, correlates, and treatment of lifetime suicidal behavior among adolescents: results from the National Comorbidity Survey Replication Adolescent Supplement. JAMA Psychiatry 70, 300–310.
- **Oppenheimer CW, Stone LB and Hankin BL** (2018) The influence of family factors on time to suicidal ideation onsets during the adolescent developmental period. *Journal of Psychiatric Research* **104**, 72–77.
- Padilla-Moledo C, Ruiz J and Castro-Piñero J (2016) Parental educational level and psychological positive health and health complaints in Spanish children and adolescents. *Child: Care, Health and Development* 42, 534–543.
- Paul E and Ortin A (2019a) Correlates of suicidal ideation and self-harm in early childhood in a cohort at risk for child abuse and neglect. Archives of Suicide Research 23, 134–150.
- Paul E and Ortin A (2019b) Psychopathological mechanisms of early neglect and abuse on suicidal ideation and self-harm in middle childhood. *European Child & Adolescent Psychiatry* 28, 1311–1319.

- Peter T, Roberts LW and Buzdugan R (2008) Suicidal ideation among Canadian youth: a multivariate analysis. Archives of Suicide Research 12, 263–275.
- Phil RM and Minde K (1995) Socio-cultural determinants of psychiatric symptomatology in James Bay Cree children and adolescents. *The Canadian Journal of Psychiatry* 40, 304–312.
- Reiss F, Meyrose A-K, Otto C, Lampert T, Klasen F and Ravens-Sieberer U (2019) Socioeconomic status, stressful life situations and mental health problems in children and adolescents: results of the German BELLA cohortstudy. *PLoS One* 14, e0213700.
- Resch F, Parzer P and Brunner R (2008) Self-mutilation and suicidal behaviour in children and adolescents: prevalence and psychosocial correlates: results of the BELLA study. *European Child & Adolescent Psychiatry* 17, 92–98.
- Reyes JC, Robles RR, Colón HM, Negrón JL, Matos TD and Calderón JM (2011) Polydrug use and attempted suicide among Hispanic adolescents in Puerto Rico. Archives of Suicide Research 15, 151–159.
- Sabo D, Miller KE, Melnick MJ, Farrell MP and Barnes GM (2005) High school athletic participation and adolescent suicide: a nationwide US study. *International Review for the Sociology of Sport* 40, 5–23.
- Sampasa-Kanyinga H and Hamilton HA (2016) Does socioeconomic status moderate the relationships between school connectedness with psychological distress, suicidal ideation and attempts in adolescents? *Preventive Medicine* 87, 11–17.
- Shin YM, Chung YK, Lim KY, Lee YM, Oh EY and Cho SM (2009) Childhood predictors of deliberate self-harm behavior and suicide ideation in Korean adolescents: a prospective population-based follow-up study. *Journal of Korean Medical Science* 24, 215–222.
- Slap G, Goodman E and Huang B (2001) Adoption as a risk factor for attempted suicide during adolescence. *Pediatrics* 108, e30–e30.
- Sonego M, Llácer A, Galán I and Simón F (2013) The influence of parental education on child mental health in Spain. *Quality of Life Research* 22, 203–211.
- Steck N, Egger M, Schimmelmann BG and Kupferschmid S (2018) Suicide in adolescents: findings from the Swiss National cohort. European Child & Adolescent Psychiatry 27, 47–56.
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA and Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA 283, 2008–2012.
- Szumilas M (2010) Explaining odds ratios. Journal of the Canadian Academy of Child and Adolescent Psychiatry 19, 227.
- Toros F, Bilgin NG, Sasmaz T, Bugdayci R and Camdeviren H (2004) Suicide attempts and risk factors among children and adolescents. Yonsei Medical Journal 45, 367–374.

- Tran QA, Le VTH and Nguyen THD (2020) Depressive symptoms and suicidal ideation among Vietnamese students aged 13–17: results from a crosssectional study throughout four geographical regions of Vietnam. *Health Psychology Open* 7, 2055102920973253.
- Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software* **36**, 1–48.
- Villatoro AP, DuPont-Reyes MJ, Phelan JC, Painter K and Link BG (2018) Parental recognition of preadolescent mental health problems: does stigma matter? Social Science & Medicine 216, 88–96.
- Wang J, Zou J, Luo J, Liu H, Yang Q, Ouyang Y, Hu M and Lin Q (2019) Mental health symptoms among rural adolescents with different parental migration experiences: a cross-sectional study in China. *Psychiatry Research* 279, 222–230.
- Weinberg D, Stevens GW, Duinhof EL and Finkenauer C (2019) Adolescent socioeconomic status and mental health inequalities in the Netherlands, 2001–2017. International Journal of Environmental Research and Public Health 16, 3605.
- Whetstone LM, Morrissey SL and Cummings DM (2007) Children at risk: the association between perceived weight status and suicidal thoughts and attempts in middle school youth. *Journal of School Health* 77, 59–66.
- Xiao Y, Chen Y, Chang W, Pu Y, Chen X, Guo J, Li Y and Yin F (2020) Perceived social support and suicide ideation in Chinese rural left-behind children: a possible mediating role of depression. *Journal of Affective Disorders* 261, 198–203.
- Yip PS, Yousuf S, Chan CH, Yung T and Wu KC-C (2015) The roles of culture and gender in the relationship between divorce and suicide risk: a meta-analysis. Social Science & Medicine 128, 87–94.
- Yuen NY, Nahulu LB, Hishinuma ES and Miyamoto RH (2000) Cultural identification and attempted suicide in Native Hawaiian adolescents. *Journal of the American Academy of Child & Adolescent Psychiatry* 39, 360–367.
- Zalsman G, Shoval G, Mansbach-Kleinfeld I, Farbstein I, Kanaaneh R, Lubin G and Apter A (2016) Maternal versus adolescent reports of suicidal behaviors: a nationwide survey in Israel. European Child & Adolescent Psychiatry 25, 1349–1359.
- Zayas LH, Kaplan C, Turner S, Romano K and Gonzalez-Ramos G (2000) Understanding suicide attempts by adolescent Hispanic females. Social Work 45, 53–63.
- Zhang Y, Wu C, Yuan S, Xiang J, Hao W and Yu Y (2018) Association of aggression and suicide behaviors: a school-based sample of rural Chinese adolescents. *Journal of Affective Disorders* 239, 295–302.
- Zubrick SR, Hafekost J, Johnson SE, Lawrence D, Saw S, Sawyer M, Ainley J and Buckingham WJ (2016) Suicidal behaviours: prevalence estimates from the second Australian Child and Adolescent Survey of Mental Health and Wellbeing. Australian & New Zealand Journal of Psychiatry 50, 899–910.