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Abstract

In this article we explain two different operational interpretations of functional programs by

two different logics. The programs are simply typed λ-terms with pairs, projections, if-then-else

and least fixed point recursion. A logic for call-by-value evaluation and a logic for call-by-

name evaluation are obtained as as extensions of a system which we call the basic logic of

partial terms (BPT). This logic is suitable to prove properties of programs that are valid under

both strict and non-strict evaluation. We use methods from denotational semantics to show

that the two extensions of BPT are adequate for call-by-value and call-by-name evaluation.

Neither the programs nor the logics contain the constant ‘undefined’.

Capsule Review

Strict or call-by-value and non-strict or call-by-name evaluation of functional programs are

central issues in modern functional programming languages. This paper gives a thorough and

illuminating study of these two subjects by providing two extensions of first order predicate

logic that are computationally adequate for strict and non-strict evaluation, respectively.

The paper is written in a very readable and self-contained manner and, therefore, is

accessible to a broad readership. It will be of particular interest to those working on the

logical foundations of functional programming languages.

1 Introduction

In developing a theory for partial computable functions it is convenient to introduce a

special element ⊥ to represent the value ‘undefined’. However, must non-termination

be represented by an undefined element? What is a partial function f from a set A

into a set B? In mathematics, it is usually treated as a total function from its domain

dom(f) ⊆ A into B. In theoretical computer science, partial functions f from A

into B are often identified with total functions from A into the enlarged set B ∪{⊥},
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98 R. F. Stärk

where ⊥ is a new element that does not belong to B and f(x)÷⊥ if x is not in the

domain of f.

In mathematical logic, the first view of partial functions leads to the Logic

of Partial Terms. This is an extension of the first-order predicate calculus with

a definedness predicate which is usually written as t↓ or E(t). Logics of partial

terms and precursors of it have been used for the foundation of explicit and

constructive mathematics (Feferman, 1975; Beeson, 1985). Troelstra and van Dalen

(1988) compare the logic of partial terms with the logic of existence (Scott, 1979). The

Russian constructivist school of N. A. Shanin used similar logics (Pljuvskevivcus,

1968).

The second view of partial functions leads to D. Scott’s Logic for Computable

Functions (LCF) which includes in its language constants ⊥ (Gordon et al., 1979).

Different kinds of LCF’s have been mechanized for formal proofs of properties of

functional programs (Paulson, 1987).

In this article we relate the two different views of partial functions to the two

different evaluation strategies that are used in modern functional programming

languages, namely strict and non-strict (or lazy) evaluation, and try to explain them

with two different logics. What does strict and non-strict evaluation mean?

In a strict functional programming language, the argument of a function is always

evaluated before it is invoked. As a result, if the evaluation of an expression t does

not terminate because it enters an infinite loop, then neither will an expression of

the form f(t). Scheme (Clinger and Rees, 1991) and ML (Milner et al., 1990) are

both examples of this.

In a non-strict language, the arguments to a function are not evaluated until their

values are actually required. For example, evaluating an expression of the form f(t)

may still terminate, even if evaluation of t would not, if the value of the parameter

is not used in the body of f. Miranda (Turner, 1986) and Haskell (Hudlak et al.,

1992) are examples of this approach.

The functional programs we consider in this article are simply typed λ-terms

extended by pairs, projections, if-then-else, and least fixed point recursion. In order

to explain the two different operational interpretations of the programs we introduce

the basic logic of partial terms (BPT) and two extensions of it, VPT for call-by-value

and NPT for call-by-name evaluation. The basic system, BPT, is appropriate to

prove properties of programs which are valid under strict as well as non-strict

evaluation. BPT is a typed subsystem of Beeson’s logic of partial terms (LPT). For

example, the quantifier axioms of BPT are restricted to

∀xA(x)→ A(v) and A(v)→ ∃xA(x)

where v is a syntactic value (a variable, constant, pair of values, abstraction or least

fixed point). Nevertheless, the system BPT is strong enough to prove useful program

transformation rules like the reduction of nested as well as iterated recursion to

simultaneous recursion (see the Appendix).

The logic of partial terms for call-by-value, VPT, is obtained from BPT by adding

the axiom xτ ↓ which says that variables are defined for each type τ. The logic of
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partial terms for call-by-name, NPT, is obtained from BPT by adding the axiom

∃xτ¬x↓ which says that there exist undefined objects for each type τ. We prove that

VPT is adequate for call-by-value and NPT is adequate for call-by-name evaluation.

By that we mean that, (i) for any closed term t, the formula t↓ is derivable iff the

computation of t terminates under the corresponding evaluation strategy, (ii) for

closed terms t of basic type and constants c, the equation t = c is provable iff the

computation of t stops with result c, and (iii) if s ' t is provable, then s and t

are operationally equivalent, i.e. if we replace s in a program by t then the new

program behaves the same way with respect to termination and results of basic

type.

The plan of the paper is at follows. After some preliminaries on CPO’s in

section 3, we introduce in section 4 the notion of a program and say what we

mean by strict and non-strict evaluation. In section 5, we define two kinds of type

structures. One is based on partial continuous functions and the other one on total

continuous functions that can take the value ‘undefined’. In section 6 we show that

the denotational semantics of section 5 are computationally adequate for strict and

non-strict evaluation. (Sections 5 and 6 have the character of a tutorial.) In section 7

we introduce the basic logic of partial terms (BPT) which proves theorems valid

under call-by-value as well as call-by-name evaluation. In section 8, we extend BPT

to VPT. In section 9 we consider another extension, NPT. The results of section 6

are used to show that VPT is computationally adequate for strict and NPT for

non-strict evaluation. This is the main result of the article. In an appendix we show

how some of Moschovakis’ reduction rules of the Formal Language of Recursion

(FLR) can be derived in BPT.

2 Related work

Beeson’s logic of partial terms LPT (Beeson, 1985) has been used by several authors

as a logical basis for functional programming. Feferman uses the logic of partial

terms to provide a logical foundation for the use of type systems in functional

programming and to set up logics for the termination and correctness of programs

(Feferman, 1992a; Feferman, 1992b). His logics are of great expressive power and

flexibility while minimal in proof-theoretic strength. Shankar has designed a logic

which is simple and yet powerful enough for proving program properties which

arise in practice (Shankar, 1989). It is his scheme of induction (a special case

of Scott induction) that we use in our logics. A version of LPT extended by

classes in the style of Feferman’s theory T0 is used in the Program Extractor PX

of Hayashi and Nakano (1988). Since all these logics are based on Beeson’s LPT

they are adequate for untyped, call-by-value languages like, for example, pure

Scheme.

We show in this article how Beeson’s LPT can be restricted such that it is sound

for call-by-name, too. The resulting system is called the basic logic of partial terms

(BPT) and its theorems are true under call-by-value as well as call-by-name. While

the systems just mentioned are all untyped, the programs of BPT are typed and

contain explicit least fixed point recursion.
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Certainly, Scott’s Logic of Computable Functions (LCF) – understood as a for-

malization of domain theory – can be used to reason about both, strict and lazy

evaluation (Gordon et al., 1979; Paulson, 1987). The underlying Polymorphic Pred-

icate λ-Calculus PPλ, however, as it is described in Chapter 7 of Paulson’s book,

is doubtless a logic for non-strict evaluation, if we consider its typed λ-terms as

programs. PPλ contains the axioms (λx t) s = t[s/x] which is in general not true

under call-by-value if s does not terminate. So the question arises about the exact

relationship between PPλ and our logic of partial terms for call-by-name (NPT).

The first problem is that PPλ contains constants ⊥τ for each type τ, whereas our

NPT contains a definedness predicate t↓. A first attempt would be to interpret t↓ as

t 6= ⊥. This approach, however, fails immediately, since in PPλ we have 〈⊥,⊥〉 = ⊥,

whereas in NPT we have 〈s, t〉↓, since lazy pairs are always defined.

Riecke (1991) studies quantifier-free logics with basic relations t↓ and s v t. He is

interested in a completeness theorem for pure (recursion-free) terms with respect to

what he calls the call-by-value model V. By completeness he means that a formula

s v t is derivable in the quantifier-free system iff it is true in V. In our case such

a completeness theorem is impossible, since any finitary system of the strength and

expressiveness we consider in this paper contains total programs which are not

provably total and totality can be expressed using the ‘less defined’ relation v.

Our programs are purely functional. They do not contain assignments, side effects

and destructive operations. This is somewhat a disadvantage. We hope that we

can extend our logics to programs with side-effects using ideas of Mason and

Talcott (1992) such as extending the formulas by contextual assertions.

Logics for partially defined functions are often used in (algebraic) specification

and formal program development. As an example we mention the Logic of Partial

Functions (LPF) for the software development method VDM (Jones and Middelburg,

1994). This logic is three-valued. The third truth value comes in, since an equation

s = t is considered as neither true nor false if one or both of the terms s and t

are undefined. The logics we consider in this article are classical (two-valued). Our

philosophy is that terms can be undefined, but the assertions (formulas) about them

are either true or false. We define an equation s = t to be true, if both s and t are

defined and have the same value; s = t is defined to be false, otherwise. The main

difference to LPF is that we prove that our logics are adequate for call-by-value

(call-by-name, resp.) evaluation of programs that contain nested recursion in higher

types. This has not been done for LPF.

Another specification language that supports partial functions is the Common

Object-Oriented Language for Design COLD-K (Feijs and Jonkers, 1992). This lan-

guage allows descriptions at several levels of abstraction and incorporates many

ideas from algebraic specification and dynamic logic. States are first-order structures

with partial (strict) functions and (possibly empty) universes. Functions, however, are

not treated as ‘objects’ in COLD-K; it does not support higher-order functions. Also

it is the burden of the user to show that there exist least recursive functions which

satisfy the specifications he has written down. This is the fundamental difference

to the way we treat recursion here. In our logics, recursive (higher-order) functions

always exist and the corresponding induction principles are built-in to the logics.
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3 Preliminaries

Since we use denotational semantics as a tool to show that certain proof rules are

correct, we summarize some basic definitions. Let (A,v) be a partial order. A subset

X ⊆ A is called directed if it is non-empty and any two elements x, y ∈ X have an

upper bound in X, i.e. there exists a z ∈ Z such that x v z and y v z. A structure

(A,v,
⊔

) is called a complete partial order (CPO) if
⊔

is a map from the power set

P(A) into A such that
⊔
X is the least upper bound of X for each directed subset

X ⊆ A. A complete partial order carries its natural topology, the Scott Topology. A

subset X ⊆ A is called open, if

(3.1) ∀x, y ∈ A (x v y & x ∈ X =⇒ y ∈ X),

(3.2) ∀Y ⊆ A (Y directed &
⊔
Y ∈ X =⇒ Y ∩X 6= ∅).

This means that a subset X ⊆ A is closed, i.e. is the complement of an open set, if

(3.3) ∀x, y ∈ A (x v y & y ∈ X =⇒ x ∈ X),

(3.4) ∀Y ⊆ X (Y directed =⇒
⊔
Y ∈ X).

A partial function f:A
∼→ B is called continuous, if f−1(Y ) is open for each open set

Y ⊆ B. The inverse image f−1(Y ) is defined to be the set {x ∈ dom (f) | f(x) ∈ Y }.
Equivalently, we can say that f:A

∼→ B is continuous, if

(3.5) dom (f) is open,

(3.6) ∀x, y ∈ dom (f) (x v y =⇒ f(x) v f(y)),

(3.7) ∀X ⊆ dom (f)(X directed =⇒ f(
⊔
X) v

⊔
f(X)).

The set of all partial continuous functions from A into B is denoted by [A
∼→ B]. It

is a CPO under the following ordering. For f, g ∈ [A
∼→ B] define f v g, if

(3.8) dom (f) ⊆ dom (g),

(3.9) ∀x ∈ dom (f)(f(x) v g(x)).

For a directed set F ⊆ [A
∼→ B] let

(3.10) dom (
⊔
F)÷

⋃
{dom (f) | f ∈ F} and

(3.11) (
⊔
F)(x)÷

⊔
{f(x) | f ∈ F & x ∈ dom (f)} for x ∈ dom (

⊔
F).

The product A × B of two CPO’s A and B is the set of all pairs 〈x, y〉 such that

x ∈ A and y ∈ B. It is a CPO under the following ordering:

(3.12) 〈x, y〉 v 〈x′, y′〉 :⇐⇒ x v x′ & y v y′.

For a directed set X ⊆ A× B let

(3.13)
⊔
X÷ 〈

⊔
{x | ∃y 〈x, y〉 ∈ X},

⊔
{y | ∃x 〈x, y〉 ∈ X}〉.

The lift of a CPO (A,v,
⊔

) is obtained by adding a new bottom element ⊥ to A.

Let ⊥ /∈ A. Then (A⊥,v⊥,
⊔
⊥) is defined as follows:

(3.14) A⊥÷A ∪ {⊥},
(3.15) x v⊥ y :⇐⇒ x = ⊥ or x v y.

For a directed set X ⊆ A⊥ let

https://doi.org/10.1017/S0956796898002974 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898002974


102 R. F. Stärk

(3.16)
⊔
⊥X÷

{⊔
(X ∩ A), if (X ∩ A) 6= ∅;
⊥, otherwise.

.

The space of all total continuous functions from A into B is denoted by [A→ B]. If

A and B are pointed (contain a least element ⊥), then a function f:A→ B is called

strict, if f(⊥) = ⊥. The space of all strict, total continuous functions is denoted by

[A ◦→ B]. Note, that [A
∼→ B] is isomorphic to [A→ B⊥] and [A⊥ ◦→ B⊥].

Remark 3.1

There is no essential need for continuity in this article. In the construction of the

function spaces one could drop condition (3.7) and work with monotone functions

only. The fact that fixed points are reached after ω steps is convenient, but not

important here.

4 Evaluation of programs

We consider simply typed programs. Untyped programs or polymorphic programs

will be investigated in another paper. Basic types are denoted by ι, κ. Types ρ, σ, τ

are built up from basic types using product × and arrow →. Types are generated as

follows:

ρ, σ, τ ::= ι | σ × τ | σ → τ.

A signature consists of a set of basic types and a set of constants cι and function

symbols fι1×...×ιn→κ. We assume that the set of basic types always includes the type

bool and that constant and function symbols have associated types. A (partial)

first-order structure for a signature has the form

A = (Aι, . . . , c
A, . . . , fA, . . .),

where Aι is a non-empty set for each basic type ι, cA is an element of Aι, if c

has type ι, and fA is a partial function from Aι1 × . . . × Aιn into Aκ, if f has type

ι1 × . . .× ιn → κ. As an example, take the structure

A = (Abool , Anat , Alist , 0, succ, pred , eq , nil , cons , head , tail , null ),

where Abool is the set of truth values {tt,ff}, Anat is the set of non-negative integers

and Alist is the set of finite lists of non-negative integers. The constants and functions

have the following types:

0nat eqnat×nat→bool head list→nat

succnat→nat nil list tail list→list

prednat→nat consnat×list→list null list→bool

The constants and functions have the standard definitions: 0 is the number zero;

succ is the successor function that adds 1 to its argument; pred is the predecessor

functions that subtracts 1 from its argument, if it is different from zero; eq tests

whether two numbers are equal or not; nil denotes the empty list; cons takes a

number n and a list ` and constructs a new list, the head of which is n and the tail

of which is `; null tests whether a list is empty or not. Note, that pred, head and tail

are partial functions here.
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We need for each type τ a countably infinite set of variables xτ, yτ, . . . of type τ.

Terms (or programs) are denoted by r, s, t. We write tτ to indicate that t is of type τ.

The following list should be understood as an inductive definition. For instance,

item (4) should be read as follows: if s is a term of type ρ → σ and t is a term of

type ρ then st is a term of type σ. Terms are of the following kind:

1. variables: xτ, yτ, . . . , ϕρ→σ , ψρ→σ, . . .

2. constants: cι

3. function constants: fι1×...×ιn→κ

4. applications: (sρ→σtρ)σ

5. abstractions: (λxρ tσ)ρ→σ

6. if-then-else: (rbool ? sτ : tτ)τ

7. pairs: 〈rρ, sσ〉ρ×σ
8. projections: π1(tρ×σ)ρ, π2(tρ×σ)σ

9. least fixed points: LFP (ϕρ→σ = λxρ tσ)ρ→σ

In the following we will omit the types unless it is really necessary to indicate them.

However, all terms are typed in this article. We also make the convention that

variables ϕ and ψ are always of function type and, if we write ϕ x, then x is of the

appropriate argument type. Omitting the types, terms are of the following form:

r, s, t ::= x | c | f | s t | λx t | r ? s : t | 〈s, t〉 | πi(t) | LFP (ϕ = λx t).

The conditional (r ? s : t) has its usual meaning. If r is true then the result is s,

otherwise the result is t. The intended interpretation of LFP (ϕ = λx t) is the least

function that is a solution of the equation ϕ = λx t. In Scheme, for example, the

term LFP (ϕ = λx t), corresponds to the expression

(letrec ((ϕ (lambda (x) t))) ϕ).

In ML, it corresponds to the expression

let fun ϕ x = t in ϕ end.

As an example for the use of LFP, consider the following program:

length :≡LFP (ϕ = λx (null x ? 0 : succ (ϕ (tail x)))

This program computes the length of a list. Another example is the well-known map

functional:

map :≡ λψ LFP (ϕ = λx (null x ? nil : cons 〈ψ (head x ), ϕ (tail x)〉)

It takes a function ψ of type nat → nat and a list x and applies ψ to every element

of x.

The variable ϕ is considered bound in the expression LFP (ϕ = λx t). We denote

by t[s1/x1, . . . , sn/xn] the term that is obtained from t by simultaneously substituting

the term si for the variable xi for i = 1, . . . , n. Of course, we have to rename bound

variables in t if necessary and we assume also that the term si has the same type

as the variable xi. We use the Greek letter Σ to denote substitutions and write tΣ

for the application of Σ to t. The set of free variables of a term t is denoted by
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Table 1. Call-by-value evaluation

v −→ev
v
v

if v is a value
s −→ev

v
u t −→ev

v
v u v −→ap

v
w

s t −→ev
v
w

s −→ev
v
u t −→ev

v
v

〈s, t〉 −→ev
v
〈u, v〉

t −→ev
v
〈u, v〉

π1(t) −→ev
v
u

t −→ev
v
〈u, v〉

π2(t) −→ev
v
v

r −→ev
v

tt s −→ev
v
u

r ? s : t −→ev
v
u

r −→ev
v

ff t −→ev
v
v

r ? s : t −→ev
v
v

t[u/x] −→ev
v
v

(λx t) u −→ap
v
v

t[u/x,LFP (ϕ = λx t)/ϕ] −→ev
v
v

LFP (ϕ = λx t) u −→ap
v
v

f 〈ca1
, ca2
〉 −→ap

v
cb

if fA(a1, a2) ' b

FV(t). A context C[∗τ] is a term that contains occurrences of a special constant ∗τ
which is considered as a hole. If t is a term of type τ, then C[t] denotes the result of

replacing all occurrences of ∗τ in C[∗τ] by t. During this process free variables of t

can become bound.

4.1 Strict evaluation of programs

Given a first-order structure A we define a partial function evalvA which evaluates a

term t to a value. If the evaluation of t does not terminate then evalvA(t) is undefined.

We assume that ca is a new constant of type ι for every element a ∈ Aι. If the set

Aι is generated from constants using constructors, as Anat and Alist in the example

above, then we identify say the constant c2 with the term succ (succ 0) and c[0,1] with

cons 〈0, cons 〈succ 0, nil〉〉.
The objects returned by evalvA are called values (or canonical forms). Values are

denoted by u, v, w and are nothing other than terms of the following form:

u, v, w ::= ca | f | λx t | 〈u, v〉 | LFP (ϕ = λx t).

We define the function evalvA via two relations t −→ev
v
v and u v −→ap

v
w. The relation

t −→ev
v
v means that the term t is evaluated to the value v and u v −→ap

v
w means that

the value u applied to the argument v returns the value w. The rules for t −→ev
v
v and

u v −→ap
v
w are listed in Table 1.

The function evalvA is defined on the argument t iff there exists a value v such that

t −→ev
v
v is derivable in the call-by-value evaluation calculus. If this is the case then

we set evalvA(t) to the unique value v with this property.

4.2 Non-strict evaluation of programs

In the non-strict case a partial function evalnA is defined in a similar way. Both the

calculus and the set of values differ from the strict case. Since it is always clear from

the context whether we are in the strict or non-strict case, we use the letters u, v, w
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Table 2. Call-by-name evaluation

v −→ev
n
v

if v is a value
s −→ev

n
u u t −→ap

n
v

s t −→ev
n
v

t −→ev
n
〈r, s〉 r −→ev

n
u

π1(t) −→ev
n
u

t −→ev
n
〈r, s〉 s −→ev

n
v

π2(t) −→ev
n
v

r −→ev
n

tt s −→ev
n
u

r ? s : t −→ev
n
u

r −→ev
n

ff t −→ev
n
v

r ? s : t −→ev
n
v

t[s/x] −→ev
n
v

(λx t) s −→ap
n
v

t[s/x,LFP (ϕ = λx t)/ϕ] −→ev
n
v

LFP (ϕ = λx t) s −→ap
n
v

t −→ev
n
〈s1, s2〉 s1 −→ev

n
ca1

s2 −→ev
n
ca2

f t −→ap
n
cb

if fA(a1, a2) ' b

to denote values in both cases. Non-strict values are of the following form:

u, v, w ::= ca | f | λx t | 〈s, t〉 | LFP (ϕ = λx t)

The difference is that a pair 〈s, t〉 is considered to be a value for arbitrary terms

s and t and not only for values s and t. Pairs are lazy pairs. This means that

the components of a pair are evaluated only if needed. In the same way as for

call-by-value evaluation we define two relations t −→ev
n
v and u t −→ap

n
v in Table 2.

The function evalnA is defined on the argument t iff there exists a value v such that

t −→ev
n
v is derivable in the call-by-name evaluation calculus. If this is the case then

we set evalnA(t) to the unique value v with this property.

The main difference between strict (call-by-value) evaluation and non-strict (call-

by-name) evaluation lies in the evaluation of an application s t. In the strict case

both s and t are evaluated and the value of s is applied to the value of t. In the

non-strict case only s is evaluated and the argument t is left as it is. Only if the

value of t is really needed, say if s evaluates to a basic function of the structure A,

then t is evaluated.

The advantage of strict evaluation is that an argument of a function is evaluated

at most once. The advantage of non-strict evaluation is that an argument of a

function is only evaluated if it is really needed. Consider the map program from

above. Let t be a term that does not terminate neither in call-by-value nor in

call-by-name evaluation. For example, take

t :≡LFP (ϕ = λx (ϕ x)) 0.

Then in strict evaluation evalvA((map t) nil ) is undefined, whereas in non-strict

evaluation evalnA((map t) nil ) = nil .

Remark 4.1

If we forget about the types and LFP, then our function evalvA is exactly Plotkin’s

function evalV (Plotkin, 1975). Our function evalnA corresponds to Plotkin’s evalN .

What we call call-by-value and call-by-name evaluation calculus, however, is not
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Plotkin’s λV–calculus and λN–calculus. Plotkin’s calculi also include the so-called

ξ-rule M −→ N/λxM −→ λxN.

Moschovakis’s function nval (Moschovakis, 1989, p. 1246) is in a certain sense

more general then evalnA and also less general. It is more general, since Moschovakis’

structures A are functional structures with functionals of type 2. It is less general,

since the Formal Language of Recursion contains programs of type 2 only.

5 Interpretation of programs in type structures

In this section we interpret terms in suitable type structures. Given a first-order

structure A we define in a canonical way for each type τ two complete partial orders

Av
τ = (Av

τ ,vτ,
⊔
τ) and An

τ = (An
τ ,vτ,

⊔
τ,⊥τ).

The definition of Av
τ and An

τ is by induction on the type.

Av
ι ÷ Aι, An

ι ÷ (Aι)⊥,

Av
ρ→σ ÷ [Av

ρ

∼→ Av
σ], An

ρ→σ ÷ [An
ρ → An

σ]⊥,

Av
ρ×σ ÷ Av

ρ × Av
σ, An

ρ×σ ÷ (An
ρ × An

σ)⊥.

By Aι we mean the discrete CPO (Aι,vι,
⊔
ι) with x vι y ⇐⇒ x = y.

Note that in the construction of the space Av
ρ→σ we take the set of all partial

continuous function, whereas in the space An
ρ→σ we take the set of all total continuous

functions. Although the CPO [An
ρ → An

σ] already contains a least element, a new

bottom element is added in the construction of An
ρ→σ . This is done in order to

distinguish the everywhere undefined function from the undefined object of type

ρ → σ. The structures Av
τ were first defined in the dissertation of Platek (1966).

Platek called them HC functionals. The structures An
τ are used in denotational

semantics (Gunter, 1992; Winskel, 1993).

5.1 Interpretation of programs as partial functions

Programs t of type τ can be interpreted with respect to variable assignments as

points in the space Av
τ in a canonical way. An assignment α in A is a function that

assigns to every variable x of type τ an object α(x) of Av
τ . Assignments are total

functions. We define for assignments α and β,

α v β :⇐⇒ α(x) v β(x) for all variables x.

The set of all assignments into A is denoted by Iv
A. The complete partial order

(Iv
A,v,

⊔
) is obtained in the obvious way. For an assignment α we denote by α a

x
the

assignment that is the same as α except for x, to which it assigns the object a.

By induction on the structure of a term tτ one can define a set defA(t) ⊆ Iv
A and,

for each assignment α ∈ defA(t), an element [[t]]v
α ∈ Av

τ such that the following two

invariants are satisfied:

(5.1) α ∈ defA(t) & α v β =⇒ β ∈ defA(t) & [[t]]v
α v [[t]]v

β ,

https://doi.org/10.1017/S0956796898002974 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898002974


Why the constant ‘undefined’? 107

(5.2) A ⊆ Iv
A directed &

⊔
A ∈ defA(t) =⇒

A ∩ defA(t) 6= ∅ & [[t]]v⊔
A
v
⊔
α∈A∩defA(t)[[t]]

v
α.

The idea is that defA(t) is the set of assignments α for which the denotation [[t]]v
α is

defined. The functions defA(·) and [[·]]v
α have the following properties:

(5.3) [[x]]v
α = α(x), [[c]]v

α = cA, [[f]]v
α = fA,

(5.4) α ∈ def (s t) ⇐⇒ α ∈ def (s) ∩ def (t) & [[t]]v
α ∈ dom ([[s]]v

α),

(5.5) α ∈ def (s t) =⇒ [[s t]]v
α = [[s]]v

α([[t]]
v
α),

(5.6) a ∈ dom ([[λx t]]v
α) ⇐⇒ α a

x
∈ def (t),

(5.7) a ∈ dom ([[λx t]]v
α) =⇒ [[λx t]]v

α(a) = [[t]]v
α a
x
,

(5.8) α ∈ def (r ? s : t) ⇐⇒ α ∈ def (r) &

([[r]]v
α = tt & α ∈ def (s) or [[r]]v

α = ff & α ∈ def (t)),

(5.9) α ∈ def (r ? s : t) & [[r]]v
α = tt =⇒ [[r ? s : t]]v

α = [[s]]v
α,

(5.10) α ∈ def (r ? s : t) & [[r]]v
α = ff =⇒ [[r ? s : t]]v

α = [[t]]v
α,

(5.11) α ∈ def (〈s, t〉) ⇐⇒ α ∈ def (s) ∩ def (t),

(5.12) α ∈ def (〈s, t〉) =⇒ [[〈s, t〉]]v
α = 〈[[s]]v

α, [[t]]
v
α〉,

(5.13) α ∈ def (πi(t)) ⇐⇒ α ∈ def (t),

(5.14) α ∈ def (t) & [[t]]v
α = 〈a, b〉 =⇒ [[π1(t)]]v

α = a & [[π2(t)]]v
α = b,

(5.15) If ϕ is of type ρ → σ, then [[LFP (ϕ = λx t)]]v
α is the least function f in

[Av
ρ

∼→ Av
σ] such that f = [[λx t]]v

α
f
ϕ

.

Note that [[λx t]]v
α and [[LFP (ϕ = λx t)]]v

α are always defined, since they are func-

tions. Both can, however, be the empty (everywhere undefined) function. Since the

denotation of a term depends on the values of the assignment to its free variables

only, we can write [[t]]v
A for the denotation of a closed term t.

Properties (5.1) and (5.2) are proved by induction on t. In the case where tτ is of

the form LFP (ϕ = λx r) we have to show the following two statements:

(5.16) α v β =⇒ [[LFP (ϕ = λx r)]]v
α v [[LFP (ϕ = λx r)]]v

β ,

(5.17) [[LFP (ϕ = λx r)]]v⊔
A
v
⊔
α∈A[[LFP (ϕ = λx r)]]v

α for directed sets A ⊆ Iv
A.

Proof

Let Γα: Av
τ → Av

τ be the operator defined by Γα(f) ÷ [[λx r]]v
α
f
ϕ

. By the induction

hypothesis applied to λx r, we obtain:

(5.18) f v g =⇒ Γα(f) v Γα(g),

(5.19) Γα(
⊔
F) =

⊔
{Γα(f) | f ∈ F} for directed sets F ⊆ Av

τ ,

(5.20) α v β =⇒ Γα(f) v Γβ(f),

(5.21) Γ⊔A(f) =
⊔
{Γα(f) | α ∈ A} for directed sets A ⊆ Iv

A.

Let f0
α ÷ ∅, fn+1

α ÷ Γα(f
n
α) for n ∈ N and `α ÷

⊔
n∈N f

n
α . Note, that the empty

function ∅ belongs to Av
τ and that the sequence (fnα)n∈N is increasing. We have:

(5.22) Γα(`α) = `α,

(5.23) Γα(g) v g =⇒ `α v g, for all g ∈ Av
τ .

(5.24) `α = [[LFP (ϕ = λx r)]]v
α,
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Assertion (5.22) can be seen as follows:

Γα(`α) = Γα(
⊔
n∈N

fnα) =
⊔
n∈N

Γα(f
n
α) =

⊔
n∈N

fn+1
α = `α.

For assertion (5.23) assume that Γα(g) v g. Then by induction on n it follows that

fnα v g. Thus `α =
⊔
n∈N f

n
α v g. Assertion (5.24) follows from (5.15).

To show (5.16) we assume that α v β. Then Γα(`β) v Γβ(`β) = `β and, by (5.23),

we can conclude that `α v `β .

To prove (5.17) we assume that A is a directed set of assignments. We have to

show that `⊔A v
⊔
α∈A `α. Let `÷

⊔
α∈A `α. We have:

Γ⊔A(`) =
⊔
α∈A

Γα(`) =
⊔
α∈A

(
⊔
β∈A

Γα(`β)) v
⊔
ξ∈A

Γξ(`ξ) =
⊔
ξ∈A

`ξ = `.

Thus we have Γ⊔A(`) v ` and we can conclude that `⊔A v ` =
⊔
α∈A `α.

Since assignments are total functions, the following substitution lemma is true

only under condition that s is defined.

Lemma 5.1 (Substitution)

Assume that α ∈ defA(s) and β = α
[[s]]v

α

x
. Then we have:

(a) α ∈ defA(t[s/x]) iff β ∈ defA(t),

(b) if α ∈ defA(t[s/x]), then [[t[s/x]]]v
α = [[t]]v

β .

5.2 Interpretation of programs as total functions

For a partial function f:Aι1 × Aι2
∼→ Aκ let f⊥: An

ι1×ι2 → An
κ be the total function

defined as follows:

f⊥(a)÷
{
f(a1, a2), if a = (a1, a2), a1 ∈ Aι1 , a2 ∈ Aι2 and (a1, a2) ∈ dom (f);

⊥κ, otherwise.

Assignments in An
τ are functions that assign to each variable of type τ an object

of An
τ . The set of all assignments is denoted by In

A and (In
A,v,

⊔
) is the associated

complete partial order obtained in the canonical way. The interpretation of a term t

with respect to an assignment α is denoted by [[t]]n
α . Unlike in the partial case, [[t]]n

α is

always defined but can take the value ⊥. By induction on the structure of a term tτ

the value [[t]]n
α ∈ An

τ is defined such that

(5.25) α v β =⇒ [[t]]n
α v [[t]]n

β ,

(5.26) A ⊆ In
A & A directed =⇒ [[t]]n⊔

A
v
⊔
α∈A[[t]]n

α .

The function [[·]]n
α has the following properties:

(5.27) [[x]]n
α = α(x), [[c]]n

α = cA, [[f]]n
α = (fA)⊥,

(5.28) [[s]]n
α 6= ⊥ =⇒ [[s t]]n

α = [[s]]n
α([[t]]

n
α),

(5.29) [[s]]n
α = ⊥ =⇒ [[s t]]n

α = ⊥,

(5.30) [[λx t]]n
α(a) = [[t]]n

α a
x
,

(5.31) [[r]]n
α = tt =⇒ [[r ? s : t]]n

α = [[s]]n
α ,
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(5.32) [[r]]n
α = ff =⇒ [[r ? s : t]]n

α = [[t]]n
α ,

(5.33) [[r]]n
α = ⊥ =⇒ [[r ? s : t]]n

α = ⊥,

(5.34) [[〈s, t〉]]n
α = 〈[[s]]n

α , [[t]]
n
α〉,

(5.35) [[t]]n
α = 〈a1, a2〉 =⇒ [[π1(t)]]n

α = a1 & [[π2(t)]]n
α = a2,

(5.36) [[t]]n
α = ⊥ =⇒ [[π1(t)]]n

α = ⊥ & [[π2(t)]]n
α = ⊥,

(5.37) If ϕ is of type ρ → σ, then [[LFP (ϕ = λx t)]]n
α is the least function f in

[An
ρ → An

σ] such that f = [[λx t]]n
α
f
ϕ

.

Unlike in the partial case, the substitution lemma is true without any restriction.

The following equality holds even if [[s]]n
α = ⊥.

Lemma 5.2 (Substitution)

[[t[s/x]]]n
α = [[t]]n

β , where β = α
[[s]]n

α

x
.

As a consequence, we obtain that the β-reduction rule is true in the total case, i.e.

we have [[(λx t)s]]n
α = [[t[s/x]]]n

α for all assignments α. In the partial case, this equality

is only true under condition that α ∈ def (s).

6 Adequacy results

In this section we show that the type structures Av
τ and An

τ are adequate for strict

and non-strict evaluation. Let tτ be a closed term of arbitrary type. Then we have:

(6.1) [[t]]v
A is defined iff evalvA(t) is defined.

(6.2) [[t]]n
A 6= ⊥τ iff evalnA(t) is defined.

Let tι be a closed term of basic type and a ∈ Aι. Then we have:

(6.3) [[t]]v
A = a iff evalvA(t) = ca.

(6.4) [[t]]n
A = a iff evalnA(t) = ca.

These four facts are well-known. Proofs can be found, for example, in Winskel’s

book (Winskel, 1993). Since we use these results in sections 8 and 9 to show that the

logics VPT and NPT are adequate for strict and non-strict evaluation, we sketch

the proofs here briefly.

6.1 Strict evaluation and the structures Av
τ

One direction is easy. If evalvA(t) = v, i.e. if t −→ev
v

v is derivable according to

Table 1, then t and v have the same denotation in Av
τ . Note, that for values v, the

interpretation [[v]]v
α is defined for arbitrary assignments α.

Lemma 6.1 (Soundness of call-by-value evaluation)

(a) If t −→ev
v
v then α ∈ defA(t) and [[t]]v

α = [[v]]v
α for all assignments α ∈ Iv

A.

(b) If u v −→ap
v
w then α ∈ defA(u v) and [[u v]]v

α = [[w]]v
α for all α ∈ Iv

A.

For the other direction we need relations a �τ v between objects a ∈ Av
τ and values v

of type τ. The relation a �τ v can be read as: a is an approximation for v.
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Definition 6.2

The relation a �τ v between points a ∈ Av
τ and values v of type τ is defined by

induction on τ.

(6.5) a �ι v :⇐⇒ v = ca.

(6.6) f �ρ→σ u :⇐⇒ ∀a ∈ dom (f)∀vρ(a �ρ v =⇒ ∃w(u v −→ap
v
w & f(a) �σ w)).

(6.7) 〈a, b〉 �ρ×σ 〈u, v〉 :⇐⇒ a �ρ u & b �σ v.

We omit the subscript τ in �τ if it is clear from to context. Because of the following

property, the relations �τ are sometimes called inclusive predicates (Gunter, 1992).

Lemma 6.3

Let F ⊆ Av
τ be directed and let v be of type τ. If f �τ v for each f ∈ F , then⊔

F �τ v.

Proof

By induction on τ.

In the following lemma Σ denotes a substitution [v1/x1, . . . , vn/xn] of values for

variables. Σ can be understood as an environment.

Lemma 6.4 (Adequacy of call-by-value evaluation)

If α(x) � xΣ for each x ∈ FV(t) and if α ∈ defA(t), then there exists a value v such

that tΣ −→ev
v
v and [[t]]v

α � v.

Proof

The proof is by induction on the term t. We consider the case, where t is of the

form LFP (ϕ = λx r). Assume that α(x) � xΣ for each x ∈ FV(t). Let f0 ÷ ∅,
fn+1 ÷ [[λx r]]v

α
fn
ϕ

and f ÷
⊔
n∈N fn. By definition, we have f = [[LFP (ϕ = λx r)]]v

α.

Since tΣ is a value, we have tΣ −→ev
v

tΣ and it remains to show that f � tΣ. By

Lemma 6.3, it follows that it is sufficient to show that fn � tΣ for each n ∈ N.

For n = 0 it is certainly true, since dom (f0) = ∅. Assume that fn � tΣ. Assume

that a ∈ dom (fn+1) and a � u. We have to show that there exists a value v such that

tΣ u −→ap
v
v and fn+1(a) � v. We can assume that the variables ϕ and x are not touched

by Σ and do not appear in Σ. By definition, αfn
ϕ
a
x
∈ def (r) and fn+1(a) = [[r]]v

α
fn
ϕ

a
x

.

We can apply the induction hypothesis to the term r and obtain a value v such that

r(Σ tΣ
ϕ
u
x
) −→ev

v
v and fn+1(a) � v. But now, we are done, since (rΣ)[tΣ/ϕ, u/x] is the

same as r(Σ tΣ
ϕ
u
x
) and applying the fixed-point rule of call-by-value evaluation we

thus obtain tΣ u −→ap
v
v. Hence, fn+1 � tΣ.

Theorem 6.5

Let t be a closed term of arbitrary type. Then [[t]]v
A is defined iff evalvA(t) is defined.

Proof

Assume that [[t]]v
A is defined. By the computational adequacy of call-by-value eval-

uation, there exists a value v such that t −→ev
v

v and [[t]]v
A � v. Hence evalvA(t) is

defined. For the converse direction assume that evalvA(t) is defined. This means that

there exists a value v such that t −→ev
v
v. By the soundness of call-by-value evaluation,

we obtain that [[t]]v
A is defined.
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Theorem 6.6

Let t be a closed term of basic type ι and let a ∈ Aι. Then [[t]]v
A = a iff evalvA(t) = ca.

Proof

Assume that [[t]]v
A is defined and [[t]]v

A = a. By the computational adequacy of

call-by-value evaluation, it follows that there exists a value v such that t −→ev
v
v and

a �ι v. By definition of the relation �ι, this means that v = ca. Hence evalvA(t) = ca.

For the converse direction assume that t −→ev
v
ca. By the soundness of call-by-value

evaluation, it follows that [[t]]v
A is defined and [[t]]v

A = [[ca]]
v
A = a.

6.2 Non-strict evaluation and the structures An
τ

As in the strict case, one direction is easy. If evalnA(t) = v, i.e. if t −→ev
n
v is derivable

according to Table 2, then t and v have the same denotation in An
τ .

Lemma 6.7 (Soundness of call-by-name evaluation)

(a) If t −→ev
n
v then [[t]]n

α = [[v]]n
α for all assignments α ∈ In

A.

(b) If u t −→ap
n
v then [[u t]]n

α = [[v]]n
α for all assignments α ∈ In

A.

For the other direction we need relations a �τ v between elements a ∈ An
τ and

values v of type τ and relations a �w
τ t between elements a ∈ An

τ different from ⊥
and terms t of type τ. The relation a �τ v is defined by induction on τ. It can be read

as: a is an approximation for the value v. The relation a �w
τ t is an abbreviation.

It means: If a is different from the bottom element, then t evaluates to a value

approximated by a.

Definition 6.8

(6.8) a �w
τ t :⇐⇒ a = ⊥τ or ∃v (t −→ev

n
v & a �τ v).

(6.9) a �ι v :⇐⇒ v = ca.

(6.10) f �ρ→σ u :⇐⇒ ∀a ∈ An
ρ ∀tρ (a �w

ρ t =⇒ f(a) �w
σ u t).

(6.11) 〈a, b〉 �ρ×σ 〈s, t〉 :⇐⇒ a �w
ρ s & b �w

σ t.

In the following lemma Σ is a substitution [t1/x1, . . . , tn/xn] of terms for variables.

Lemma 6.9 (Adequacy of the call-by-name evaluation)

If α(x) �w xΣ for all variables x ∈ FV(t), then [[t]]n
α �w tΣ.

Proof

The proof is by induction on t. We consider only cases that are essentially different

from the corresponding case in the proof of the adequacy of call-by-value evaluation.

Assume that α(x) �w xΣ for all variables x ∈ FV(t). Since we have to show that

[[t]]n
α �w tΣ, we suppose that [[t]]n

α 6= ⊥ and show in each case that there exists a

value v such that tΣ −→ev
n
v and [[t]]n

α � v.
Case t ≡ f. Since f −→ev

n
f, we have to show that [[f]]n

α � f. Remember that

[[f]]n
α = (fA)⊥. Let a = 〈a1, a2〉 and b÷ (fA)⊥(a). Assume that a �w t. We have to

show that b �w f t. Suppose that b 6= ⊥. By the definition of (fA)⊥, it follows that

a 6= ⊥ and ai 6= ⊥ for i = 1, 2. By the definition of �w, there exists a value v such

that t −→ev
n
v and a � v. The value v must be of the form 〈s1, s2〉 and we have ai �w si
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for i = 1, 2. Since ai 6= ⊥, there exist vi such that si −→ev
n
vi and ai � vi, i.e. vi = cai , for

i = 1, 2. So we obtain that f t −→ev
n
cb and b � cb. Thus, b �w f t.

Case t ≡ 〈r, s〉. Since tΣ ≡ 〈rΣ, sΣ〉 and 〈rΣ, sΣ〉 −→ev
n
〈rΣ, sΣ〉, it remains to show

that [[〈r, s〉]]n
α � 〈rΣ, sΣ〉. By definition this is the same as [[r]]n

α �w rΣ and [[s]]n
α �w sΣ.

This follows from the induction hypothesis.

Case t ≡ πi(r). By the induction hypothesis, we have [[r]]n
α �w r. Since by assump-

tion [[t]]n
α 6= ⊥, we have [[r]]n

α 6= ⊥, too. There exist a1 and a2 such that [[r]]n
α = 〈a1, a2〉

and [[t]]n
α = [[πi(r)]]

n
α = ai. Thus, there exists a value v such that rΣ −→ev

n
v and

[[r]]n
α � v. The value v is of the form 〈s1, s2〉 and, by definition, we have ai �w si.

By assumption, we know that ai 6= ⊥ and therefore there exists a value u such that

si −→ev
n
u and ai � u. Since rΣ −→ev

n
〈s1, s2〉 and si −→ev

n
u, we obtain πi(r)Σ −→ev

n
u and

ai � u.

The following two theorems are special cases of the adequacy of call-by-name

evaluation.

Theorem 6.10

Let t be a closed term of arbitrary type. Then [[t]]n
A 6= ⊥ iff evalnA(t) is defined.

Proof

Assume that [[t]]n
A 6= ⊥. By the adequacy of call-by-name evaluation, it follows that

[[t]]n
A �w t. By the definition of �w this means that there exists a value v such that

t −→ev
n
v and [[t]]n

A � v. Hence evalnA(t) is defined. For the other direction assume that

evalnA(t) is defined. This means that there exists a value v such that t −→ev
n
v. By the

soundness of call-by-name evaluation, we obtain that [[t]]n
A = [[v]]n

A 6= ⊥.

Theorem 6.11

Let t be a closed term of basic type ι and a ∈ Aι. Then [[t]]n
A = a iff evalnA(t) = ca.

Proof

Assume that [[t]]n
A = a. By the adequacy of call-by-name evaluation, it follows that

a �w
ι t. Since a 6= ⊥, there exists a value v such that t −→ev

n
v and a �ι v. By definition

of the relation �ι, this means that v = ca. Hence evalnA(t) = ca. For the converse

direction assume that t −→ev
n

ca. By the soundness of call-by-name evaluation, it

follows that [[t]]n
A = [[ca]]

n
A = a.

As an application of the adequacy results we mention the following well-known

inclusion of call-by-value into call-by-name evaluation.

(6.12) Let tτ be a closed term of arbitrary type.

If evalvA(t) is defined, then evalnA(t) is defined.

(6.13) Let tι be closed term of basic type and a ∈ Aι.
If evalvA(t) = ca, then evalnA(t) = ca.

These two inclusions follow easily from the previous two theorems, if we observe

that call-by-value evaluation is also sound with respect to the denotation [[·]]n, i.e. if

t −→ev
v
v, then [[t]]n

α = [[v]]n
α for all α ∈ In

A.
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Table 3. Call-by-Value Truth Definition

[[s = t]]v
α ÷

{
true, if α ∈ defA(s) ∩ defA(t) and [[s]]v

α = [[t]]v
α;

false, otherwise.

[[t↓]]v
α ÷

{
true, if α ∈ defA(t);
false, otherwise.

[[¬A]]v
α ÷

{
true, if [[A]]v

α = false;
false, otherwise.

[[A ∧ B]]v
α ÷

{
true, if [[A]]v

α = true and [[B]]v
α = true;

false, otherwise.

[[A ∨ B]]v
α ÷

{
true, if [[A]]v

α = true or [[B]]v
α = true;

false, otherwise.

[[A→ B]]v
α ÷

{
true, if [[A]]v

α = false or [[B]]v
α = true;

false, otherwise.

[[∀xτA]]v
α ÷

{
true, if [[A]]v

α ax
= true for all a ∈ Av

τ;

false, otherwise.

[[∃xτA]]v
α ÷

{
true, if there is an a ∈ Av

τ with [[A]]v
α ax

= true;

false, otherwise.

7 The basic logic of partial terms

Let A be a partial first-order structure. The syntax of the basic logic of partial terms

for A, BPT (A), is that of many-sorted first-order predicate calculus with equality,

extended by a definedness predicate. The atomic formulas of BPT (A) are t↓ and

sτ = tτ. The formulas of BPT (A) are generated from the atomic formulas by applying

the logical connectives and quantifiers and are of the form ¬A, A∧B, A∨B, A→ B,

∀xτA and ∃xτA. The result of substituting a term t of type τ for a variable x of the

same type in A is indicated as A[t/x], or A(t) when A is written as A(x).

The truth value [[A]]v
α of a formula A in the structure A is defined in Table 3.

In the call-by-value truth definition [[·]]v, variables of type τ range over Av
τ . The

truth value [[A]]n
α is defined in a similar way in Table 4. In the call-by-name truth

definition [[·]]n, variables of type τ range over An
τ and include the element ⊥τ.

The language of BPT has equality (=) and definedness (↓) as basic predicate

symbols. The partial equality ' and the predicates vτ are defined symbols. For each

type τ formulas sτ ' tτ and sτ vτ tτ are defined. The intuitive meaning of s ' t

is that (i) s is defined iff t is defined and (ii) if they are both defined, then they

are equal. The meaning of s v t is that s is less defined than t. In the following

definition, the notion A :≡B means that A is a syntactic abbreviation for B.

Definition 7.1

(7.1) s ' t :≡ s↓ ∨ t↓ → s = t.

(7.2) s vι t :≡ s↓ → s = t.

(7.3) s vρ→σ t :≡ s↓ → t↓ ∧ ∀xρ(s x vσ t x), where x /∈ FV(s) ∪ FV(t).

(7.4) s vρ×σ t :≡ s↓ → t↓ ∧ π1(s) vρ π1(t) ∧ π2(s) vσ π2(t).

The partial equality ' has the property that [[s ' t]]v
α = true iff

(7.5) α /∈ defA(s) and α /∈ defA(t), or

https://doi.org/10.1017/S0956796898002974 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898002974


114 R. F. Stärk

Table 4. Call-by-Name Truth Definition

[[s = t]]n
α ÷

{
true, if [[s]]n

α 6= ⊥ and [[s]]n
α = [[t]]n

α;
false, otherwise.

[[t↓]]n
α ÷

{
true, if [[t]]n

α 6= ⊥;
false, otherwise.

[[∀xτA]]n
α ÷

{
true, if [[A]]n

α ax
= true for all a ∈ An

τ ;

false, otherwise.

[[∃xτA]]n
α ÷

{
true, if there is an a ∈ An

τ with [[A]]n
α ax

= true;

false, otherwise.

(7.6) α ∈ defA(s) ∩ defA(t) and [[s]]v
α = [[t]]v

α.

The relations vτ are defined in such a way that [[s vτ t]]v
α = true iff

(7.7) α /∈ defA(s), or

(7.8) α ∈ defA(s) ∩ defA(t) and [[s]]v
α vτ [[t]]v

α in the space Av
τ .

For the call-by-name truth definition we have

(7.9) [[s ' t]]n
α = true iff [[s]]n

α = [[t]]n
α ,

(7.10) [[s vτ t]]n
α = true iff [[s]]n

α vτ [[t]]n
α in the space An

τ .

An alternative to this treatment would be to take ' and vτ as basic predicates for

each type τ and the laws of Definition 7.1 as basic axioms. Moreover, we could

define ↓ in terms of equality, since [[t↓]]v
α = [[t = t]]v

α and [[t↓]]n
α = [[t = t]]n

α .

The Substitution Lemma 5.1 implies that, if α ∈ defA(t) and β = α
[[t]]v

α

x
, then

[[A[t/x]]]v
α = [[A]]v

β . Lemma 5.2 implies that [[A[t/x]]]n
α = [[A]]n

β , where β = α
[[t]]n

α

x
.

7.1 Axioms and rules of the basic logic of partial terms BPT (A)

The axioms and rules of the basic logic of partial terms are sound with respect to

both truth definitions, [[·]]v and [[·]]n. It is important to note that most of the axioms

below are actually axiom schemes and r, s, t range over arbitrary terms. Several

axioms of are restricted to syntactic values. By that we mean terms generated as

follows:

u, v ::= x | c | f | 〈u, v〉 | λx t | LFP (ϕ = λx t).

Note, that variables are syntactic values. The idea to instantiate quantified variables

by syntactic values only is from (Stärk, 1997).

I. Propositional axioms: All propositional tautologies.

II. Quantifier axioms: For syntactic values v of type τ:

(7.11) ∀xτA(x)→ A(v)

(7.12) A(v)→ ∃xτA(x)
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III. Rules of inference:

A A→ B

B

A(yτ)→ B

∃xτA(x)→ B
(∗) B → A(yτ)

B → ∀xτA(x)
(∗)

(∗) if the variable y does not appear free in the conclusion.

IV. Definedness axioms:

(7.13) t↓ → ∃x (t = x), for x /∈ FV(t).

(7.14) c↓, f ↓, 〈u, v〉↓, (λx t)↓, LFP (ϕ = λx t)↓

V. Equality axioms:

(7.15) t↓ → t = t

(7.16) t1 = t2 → t2 = t1
(7.17) t1 = t2 ∧ t2 = t3 → t1 = t3
(7.18) t1 = t2 → t1 ↓ ∧ t2 ↓

VI. Application and abstraction:

(7.19) s1 ' s2 ∧ t1 ' t2 → s1 t1 ' s2 t2
(7.20) (s t)↓ → s↓ ∧ ∃y (t ' y), for y /∈ FV(t).

(7.21) (λx t) v ' t[v/x], for syntactic values v.

VII. Pairs and projections:

(7.22) s1 ' s2 ∧ t1 ' t2 → 〈s1, t1〉 ' 〈s2, t2〉
(7.23) 〈s1, t1〉 = 〈s2, t2〉 → s1 ' s2 ∧ t1 ' t2
(7.24) t↓ → t = 〈π1(t), π2(t)〉
(7.25) 〈s, t〉↓ → ∃x (s ' x) ∧ ∃y (t ' y), for x /∈ FV(s) and y /∈ FV(t).

(7.26) πi(t)↓ → t↓

VIII. If-then-else:

(7.27) r = tt→ (r ? s : t) ' s
(7.28) r = ff→ (r ? s : t) ' t
(7.29) (r ? s : t)↓ → r↓
(7.30) r↓ → r = tt ∨ r = ff, if r is of type bool .

(7.31) tt 6= ff

IX. Extensionality:

(7.32) s↓ ∧ t↓ ∧ ∀x (s x ' t x)→ s = t, for x /∈ FV(s) ∪ FV(t).

X. Monotonicity:

(7.33) s1 v s2 ∧ t1 v t2 → 〈s1, t2〉 v 〈s2, t2〉
(7.34) s1 v s2 ∧ t1 v t2 → s1 t1 v s2 t2

XI. Least fixed points:

(7.35) (λx t)[LFP (ϕ = λx t)/ϕ] v LFP (ϕ = λx t)

(7.36) (λx t)[v/ϕ] v v → LFP (ϕ = λx t) v v, for syntactic values v.
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XII. Computational induction: Let F :≡LFP (ϕ = λx t), where ϕ is of type σ → ι and

ι is a basic type. Assume that ϕ does not occur free in the formula A(x, y). Then the

computational induction scheme is:

(7.37) ∀ϕ
[
∀x
(
ϕx↓ → A(x, ϕ x)

)
→ ∀x

(
t↓ → A(x, t)

)]
→ ∀x

(
F x↓ → A(x, F x)

)
XIII. Axioms for A: True axioms for the structure A. For instance, structural

induction on natural numbers or lists. The equation f 〈ca1
, . . . , can〉 = cb must be

provable, if fA(a1, . . . , an) ' b.

Remark 7.2

(a) The β-axiom (7.21) can be formulated equivalently as (λx t) x ' t. The more

general version (7.21) can then be derived using the quantifier rules and axioms.

Note, however, that the axiom x = y → y = x, for example, is weaker than the

corresponding axiom scheme (7.16) for arbitrary terms s and t.

(b) Instead of the extensionality axiom (7.32) we could use the following η- and

ξ-axioms:

(7.38) t↓ → λx (t x) = t, for x /∈ FV(t),

(7.39) ∀x (s ' t)→ λx s = λx t.

(c) The minimality principle (7.36) is sometimes called Park’s induction rule (Park,

1969). We will show below, that in the closure axiom (7.35) one could use equality

instead of v as well [see (7.58)].

(d) The scheme of computational induction (7.37) is Shankar’s version of the de

Bakker-Scott induction principle (Shankar, 1989). The formula

B(ϕ) :≡∀x
(
ϕ x↓ → A(x, ϕ x)

)
is admissible in the following sense: B(∅) is obviously true, and if B(fn) is true for

every fn of an increasing sequence of functions then also B(
⊔
n∈N fn) is true. Manna

(1974) calls the last property chain complete. The premise of the principle (7.37)

corresponds to the induction step from B(fn) to B(fn+1), if (fn)n∈N is the sequence

of functions that approximate the least fixed point of the equation ϕ = λx t.

(e) One could add to BPT a scheme of comprehension for monotonic functions. For

a formula A(xσ, yτ) let mon(xσ, yτ, A) be an abbreviation for the following formula

which expresses that A is the graph of a monotonic function:

∀x∃y A(x, y) ∧ ∀x1, x2, y1, y2

(
A(x1, y1) ∧ A(x2, y2) ∧ x1 v x2 → y1 v y2

)
By the comprehension scheme for monotonic functions we mean all formulas of the

form

mon(xσ, yτ, A)→ ∃ϕσ→τ∀x, y
(
ϕ x ' y ↔ A(x, y)

)
, for ϕ /∈ FV(A).

In order to validate this scheme one has to use monotonic (non-continuous) functions

in the constructions of Av
σ→τ and An

σ→τ. The comprehension scheme for monotonic

functions would increase the proof-theoretic strength dramatically. We would obtain

a system similar to Farmer’s partial function version of Church’s simple theory of

types (Farmer, 1990) or, even more stronger, Kuper’s Zermelo-Fraenkel theory for

partial functions (Kuper, 1994).
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Lemma 7.3 (Soundness of BPT )

If BPT (A) ` A, then [[A]]v
α = true for all α ∈ Iv

A and [[A]]n
α = true for all α ∈ In

A.

Proof

We only show that the scheme of computational induction is valid under [[·]]v. The

rest of the proof is routine. Let F :≡LFP (ϕ = λx t). Assume that ϕ does not occur

free in A and that F is of type σ → ι, where ι is a basic type. Assume that

[[∀ϕ [∀x (ϕ x↓ → A[ϕ x/y])→ ∀x (t↓ → A[t/y])]]]v
α = true. (∗)

Let f0 ÷ ∅, fn+1 ÷ [[λx t)]]v
α
fn
ϕ

and f ÷
⊔
n∈N fn. Then f = [[F]]v

α. We show by

induction on n that

[[∀x (ϕ x↓ → A[ϕ x/y])]]v
α
fn
ϕ

= true. (∗∗)

For n = 0 this is the case, since dom (f0) = ∅. Assume now that (∗∗) is true for n.

By the assumption (∗), we obtain that [[∀x (t↓ → A[t/y])]]v
α
fn
ϕ

= true. Assume that

a ∈ Av
σ and [[ϕ x↓]]v

α
fn+1
ϕ

a
x

= true. This implies that a ∈ dom (fn+1). Since

[[ϕ x]]v

α
fn+1
ϕ

a
x

= fn+1(a) = [[λx t]]v
α
fn
ϕ

(a) = [[t]]v
α
fn
ϕ

a
x

,

we obtain that

[[A[ϕ x/y]]]v

α
fn+1
ϕ

a
x

= [[A]]v

α
fn
ϕ

a
x

fn+1(a)

y

= [[A[t/y]]]v
α
fn
ϕ

a
x

= true.

Thus, (∗∗) holds for n+ 1.

By definition, we have that a ∈ dom (f) and f(a) = b iff there exists an n ∈ N
such that a ∈ dom (fn) and fn(a) = b. Here we use the fact that ι is a basic type.

Hence we obtain

[[∀x (ϕ x↓ → A[ϕ x/y])]]v
α
f
ϕ

= true.

Since f = [[F]]v
α, this implies that [[∀x (F x↓ → A[F x/y])]]v

α = true.

7.2 Elementary properties of the basic logic of partial terms

It is easy to see that the partial equality ' is an equivalence relation. The following

formulas are derivable in BPT:

(7.40) t ' t
(7.41) s ' t→ t ' s
(7.42) t1 ' t2 ∧ t2 ' t3 → t1 ' t3

The axioms for pairs and projections imply the following additional laws:

(7.43) s ' t→ πi(s) ' πi(t)
(7.44) 〈s, t〉↓ → π1(〈s, t〉) ' s ∧ π2(〈s, t〉) ' t

Using the abbreviations of Definition 7.1 one can derive in BPT the following

principles for the relations vτ by induction on the type τ:

(7.45) t v t
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(7.46) t1 v t2 ∧ t2 v t3 → t1 v t3
(7.47) s1 ' s2 ∧ t1 ' t2 ∧ s1 v t1 → s2 v t2
(7.48) s ' t↔ (s v t ∧ t v s)
(7.49) s v t ∧ s↓ → t↓
(7.50) ¬s↓ → s v t

In axioms (7.33) and (7.34) we postulate that pairing and application are monotonic

with respect to v. The monotonicity of projections, conditionals, abstraction and

least-fixed point recursion is derivable in BPT (A):

(7.51) s v t→ πi(s) v πi(t)
(7.52) r1 v r2 ∧ s1 v s2 ∧ t1 v t2 → (r1 ? s1 : t1) v (r2 ? s2 : t2)

(7.53) ∀x (s v t)→ λx s v λx t
(7.54) ∀ϕ, x (s v t)→ LFP (ϕ = λx s) v LFP (ϕ = λx t)

Proof

[of (7.54)] Assume that ∀ϕ, x (s v t). From (7.53) we obtain that ∀ϕ(λx s v λx t) is

derivable as well. Using the abbreviation F :≡LFP (ϕ = λx t) we obtain that

(λx s)[F/ϕ] v (λx, t)[F/ϕ].

By the closure axiom (7.35) and the transitivity property (7.46) it follows that

(λx s)[F/ϕ] v F . Hence we can apply the minimality axiom (7.36) and obtain that

LFP (ϕ = λx s) v F .

For the following context lemma remember that a context C[∗] is a typed term

with one ore several occurrences of a typed hole. The lemma is proved by induction

on the length of the context C[∗].

Lemma 7.4 (Context)

Let C[∗] be a context and s and t be terms. Assume that the list ~x contains all

the free variables of s or t that are bound by the context in C[s] or C[t]. Then

BPT (A) ` ∀~x (s v t)→ C[s] v C[t].

As a consequence of the context lemma and the anti-symmetry (7.48), we obtain the

following substitution properties for terms r and formulas A:

(7.55) s v t→ r[s/x] v r[t/x]

(7.56) s ' t→ r[s/x] ' r[t/x]

(7.57) s ' t ∧ A[s/x]→ A[t/x]

Another consequence of the context lemma is the fixed point property:

(7.58) (λx t)[LFP (ϕ = λx t)/ϕ] = LFP (ϕ = λx t)

Proof

Let F :≡LFP (ϕ = λx t). The closure axiom (7.35) says that (λx t)[F/ϕ] v F . From

the monotonicity of terms (7.55), we obtain that

(λx t)[(λx t)[F/ϕ]/ϕ] v (λx t)[F/ϕ].

Now we can apply the minimality principle (7.36) and obtain F v (λx t)[F/ϕ]. The

anti-symmetry property (7.48) yields F = (λx t)[F/ϕ].
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An interesting consequence of the substitution principle (7.57) and the definedness

axiom (7.13) are the following rules for quantifiers:

(7.59) ∀xA ∧ t↓ → A[t/x], A[t/x] ∧ t↓ → ∃xA

Remember that in BPT (A) we are allowed to instantiate quantified variables by

syntactic values only. Now we can instantiate them with defined terms, too. For

example, we obtain the following principles:

(7.60) s↓ → (λx t) s ' t[s/x]

(7.61) s↓ ∧ t↓ → 〈s, t〉↓
(7.62) t↓ → π1(〈s, t〉) ' s, s↓ → π2(〈s, t〉) ' t

Instead of the least-fixed point constructs LFP (ϕ = λx t) most authors use constants

FIXτ of type (τ→ τ)→ τ with the property

FIXτ ψ ' ψ (FIXτ ψ). (+)

It τ is a basic type then this equation cannot be solved in most cases. For functional

types τ = ρ→ σ, however, we can define FIXτ as a program in the following way:

FIXτ :≡ λψτ→τLFP (ϕτ = λxρ((ψ ϕ) x)).

Let F :≡LFP (ϕ = λx((ψ ϕ) x)). Then we can derive in BPT:

(FIXτ ψ) x ' F x [Axioms (7.19) and (7.21)]

' λx ((ψ F) x) x [(7.58) and Axiom (7.19)]

' (ψ F) x [Axiom (7.21)]

' (ψ (FIXτ ψ)) x [Axioms (7.19) and (7.21)]

Thus we have (FIXτ ψ) x ' (ψ (FIXτ ψ)) x. Using the extensionality axiom (7.32)

we obtain

ψ (FIXτ ψ)↓ → FIXτ ψ = ψ (FIXτ ψ).

More interesting examples of principles, that can be derived in BPT (A) and are

therefore true under call-by-value as well as call-by-name, can be found in the

appendix.

Our interest now turns to two extensions of the basic logic of partial terms. The

first one is obtained by adding more strictness axioms. It is adequate for call-by-

value evaluation. In the second extension, it is allowed to instantiate variables by

arbitrary (possibly undefined) terms. The second extension is adequate for call-by-

name evaluation.

8 The logic of partial terms for call-by-value

The logic of partial terms for call-by-value, VPT (A), contains in addition to the

axioms and rules of the basic logic of partial terms the axiom xτ ↓ which says that

variables are defined for each type τ:

VPT (A)÷BPT (A) + xτ ↓.
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A consequence of the definedness of variables is that ∃x (t ' x) is equivalent to t↓.
Therefore we obtain that application and pairs are strict in VPT (A). The following

principles are derivable in VPT (A):

(8.1) s t↓ → t↓
(8.2) 〈s, t〉↓ → s↓ ∧ t↓

Since [[x↓]]v
α = true for arbitrary assignments α ∈ Iv

A, the logic VPT (A) is sound

with respect to the truth-definition [[·]]v of Table 3.

Lemma 8.1 (Soundness of VPT )

If VPT (A) ` A then [[A]]v
α = true for all assignments α ∈ Iv

A.

Call-by-value evaluation can be interpreted in VPT. In fact, it can even be interpreted

in BPT.

Lemma 8.2 (Interpretation of call-by-value evaluation in VPT )

(a) If t −→ev
v
v, then VPT (A) ` t = v.

(b) If u v −→ap
v
w, then VPT (A) ` u v = w.

Proof

By induction on the definition of −→ev
v

and −→ap
v

. Let us consider the call-by-value rule

for the application of least fixed points:

t[F/ϕ, u/x] −→ev
v
v

F u −→ap
v
v

, where F :≡LFP (ϕ = λx t).

Then we can derive in VPT:

F u ' (λx t)[F/ϕ] u [Fixed point property (7.58) and Axiom (7.19)]

' t[F/ϕ, u/x] [Axiom (7.21)]

= v [Induction hypothesis]

So the equation F u = v is provable in VPT.

The following theorems say that VPT is adequate for call-by-value evaluation.

They follow directly from what we have shown so far. The main ingredients in their

proofs are the adequacy results of section 6.

Theorem 8.3 (Adequacy of VPT with respect to termination)

Let t be a closed term of arbitrary type. Then the strict evaluation of t terminates

iff the formula t↓ is provable in VPT (A).

Theorem 8.4 (Adequacy of VPT with respect to strict evaluation)

Let t be a closed term of basic type ι and a ∈ Aι. Then the strict evaluation of t

terminates with result ca iff the equation t = ca is provable in VPT (A).

Theorem 8.5 (Soundness of VPT with respect to contexts and basic observations)

Assume that the formula s v t is provable in VPT (A). Then we have for all contexts

C[∗] of basic type such that C[s] and C[t] are closed: if the strict evaluation of C[s]

terminates with value ca, then the strict evaluation of C[t] terminates with value ca,

too.

https://doi.org/10.1017/S0956796898002974 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796898002974


Why the constant ‘undefined’? 121

Proof

Assume that s v t is provable in VPT (A) and that C[s] −→ev
v

ca. By the Context

Lemma 7.4, it follows that C[s] v C[t] is derivable, too. Since the context C[∗] is

of basic type, the formula C[s] v C[t] is an abbreviation for C[s]↓ → C[s] = C[t].

By Lemma 8.2, it follows that C[s] = ca is provable. Hence C[s]↓ and C[t] = ca are

derivable in VPT (A). By Lemma 8.1 it follows that [[C[t]]]v
A = a. Theorem 6.6 yields

that C[t] −→ev
v
ca.

As an application of the last theorem and property (7.48) we obtain that, if

an equation s ' t is provable in VPT (A), then the two programs s and t are

observationally equivalent for contexts of basic type.

9 The logic of partial terms for call-by-name

The logic or partial terms for call-by-name, NPT (A), is obtained from the basic

logic of partial terms by adding the axioms ∃xτ¬x↓ for each type τ which says that

there exist undefined objects for each type τ.

NPT (A)÷BPT (A) + ∃xτ¬x↓.

Since [[∃xτ¬x↓]]n
α = true, for arbitrary assigenments α ∈ In

A, the logic NPT (A) is

sound with respect to the truth-definition [[·]]n of Table 4.

Lemma 9.1 (Soundness of NPT )

If NPT (A) ` A then [[A]]n
α = true for all assignments α ∈ In

A.

The following prinicples are derivable in NPT (A):

(9.1) ∃x (t ' x), for x /∈ FV(t).

(9.2) ∀xA(x)→ A(t), A(t)→ ∃xA(x)

(9.3) (λx t)s ' t[s/x]

(9.4) 〈s, t〉↓
(9.5) π1(〈s, t〉) ' s, π2(〈s, t〉) ' t

These principles are used for the interpretation of call-by-name evaluation in NPT.

Lemma 9.2 (Interpretation of call-by-name evaluation in NPT )

(a) If t −→ev
n
v then NPT (A) ` t = v.

(b) If u t −→ap
n
v then NPT (A) ` u t = v.

Proof

By induction on the definition of −→ev
n

and −→ap
n

. Let us consider the rule for the lazy

application of least fixed points:

t[F/ϕ, s/x] −→ev
v
v

F s −→ap
v
v

, where F :≡LFP (ϕ = λx t).

Then we can derive in NPT:

F s ' (λx t)[F/ϕ] s [Fixed point property (7.58) and Axiom (7.19)]

' t[F/ϕ, s/x] [Unrestricted β-axiom (9.3)]

= v [Induction hypothesis]
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So the equation F s = v is provable in NPT.

The main theorems which relate NPT to non-strict evaluation are the same as in

the strict case. They follow directly from the previous results using computational

adequacy of section 6.

Theorem 9.3 (Adequacy of NPT with respect to termination)

Let t be a closed term of arbitrary type. Then the non-strict evaluation of t terminates

iff the formula t↓ is provable in NPT (A).

Theorem 9.4 (Adequacy of NPT with respect to strict evaluation)

Let t be a closed term of basic type ι and a ∈ Aι. Then the non-strict evaluation of t

terminates with result ca iff the equation t = ca is provable in NPT (A).

Theorem 9.5 (Soundness of NPT with respect to contexts and basic observations)

Assume that the formula s v t is provable in NPT (A). Then we have for all contexts

C[∗] of basic type such that C[s] and C[t] are closed: if the non-strict evaluation of

C[s] terminates with value ca, then the non-strict evaluation of C[t] terminates with

value ca, too.

A comparison of VPT and NPT

The main difference between NPT and VPT is that in NPT quantifiers range over

possibly undefined objects, whereas in VPT they range over defined objects only. So

NPT is no longer a logic of definedness (Feferman, 1995) and the question is, whether

this could be changed. We do not think so. How could the axiom of extensionality

(7.32) for call-by-name be formulated without letting quantifiers range over the

object ‘undefined’? Under call-by-name two functions are equal, only if they agree

on undefined arguments, too. For example, the functions

λxbool (x ? tt : tt) and λxbool tt

agree on defined arguments, but not on the argument ‘undefined’. Under call-by-

name they are not considered as equal. Also in the definition of the ‘less defined’

relation (v) quantifiers have to range over the object ‘undefined’ in the case of

call-by-name (see Definition 7.1). Therefore we believe that a logic of definedness

for call-by-name does not exist.

A Appendix: Simultaneous least fixed points, Moschovakis’ formal language of

recursion (FLR) and program transformation

Moschovakis (1989) introduces the Formal Language of Recursion (FLR), a formal

language of terms with two semantics, a denotational semantics and an intensional

semantics. He studies a calculus of reductions and equivalence for terms, formalizing

compilation of terms into unique normal forms. He considers side effects and therefore

the order of the evaluation of the arguments of a function is relevant.

In this appendix, we show how BPT can be used to prove the soundness of

Moschovakis’ reduction calculus. We refer the reader to Moschovakis (1989) for the
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exact definition of the reduction calculus. We only consider the two most important

reductions here, namely the reduction of nested recursion to simultaneous recursion.

This appendix can be understood as an illustration of how the logic BPT can be

used to prove the correctness of program transformations both with respect to strict

and non-strict evaluation.

First we have to extend the language of programs. We add new simultaneous

least fixed point constructs. We extend the definition of programs by the following

clause: if ti are terms of type σi for i = 1, . . . , n then

SLFPi(ϕ
ρ1→σ1

1 = λx
ρ1

1 t
σ1

1 , . . . , ϕ
ρn→σn
n = λxρnn t

σn
n )

is a term of type ρi → σi for i = 1, . . . , n. The variables ϕi are all bound. For example,

the variable ϕ2 is considered bound in the term t1.

Recursors can now be defined using simultaneous least fixed points. The following

letrec expression is therefore not considered as a basic construct of the programming

language but as a defined notion. We define

(letrec ϕ1 = λx1 t1 & . . . & ϕn = λxn tn in t0)

to be an abbreviation for the term t0[s1/ϕ1, . . . , sn/ϕn], where

si :≡ SLFPi(ϕ1 = λx1 t1, . . . , ϕn = λxn tn) for i = 1, . . . , n.

Moschovakis uses the notion

rec(x1, ϕ1, . . . , xn, ϕn)[t0, t1, . . . , tn]

for this kind of recursion. His notation has the advantage that it indicates more

clearly that the variables ϕ1, . . . , ϕn are bound in the terms t0, t1, . . . , tn.

In modern terminology, an expression SLFP (ϕ1 = λx1 t1, . . . , ϕn = λxn tn) is called

an object and the term SLFPi(ϕ1 = λx1 t1, . . . , ϕn = λxn tn) can be understood as the

invocation of the method ϕi.

We extend the evaluation calculi for strict and non-strict evaluation in the obvious

way. Using the abbreviation

si :≡ SLFPi(ϕ1 = λx1 t1, . . . , ϕn = λxn tn) for i = 1, . . . , n,

we add the following n rules to call-by-value evaluation:

ti[u/xi, s1/ϕ1, . . . , sn/ϕn] −→ev
v
v

si u −→ap
v
v

The rules for call-by-name evaluation are almost the same:

ti[r/xi, s1/ϕ1, . . . , sn/ϕn] −→ev
n
v

si r −→ap
n
v

In the second case, the argument r of si may not be a value but an arbitrary

unevaluated term.

The denotations [[si]]
v
α of the single components of a simultaneous recursion are

given by the least simultaneous fixed points of the operators Γi
α defined by

Γi
α(f1, . . . , fn)÷ [[λxi ti]]

v

α
f1
ϕ1
...
fn
ϕn

for i = 1, . . . , n.
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This means that ([[s1]]v
α, . . . , [[sn]]

v
α) is the least n-tuple of functions (f1, . . . , fn) such

that fi = Γi
α(f1, . . . , fn) for i = 1, . . . , n. The denotations [[si]]

n
α in the type structures

An
τ are defined in the same way.

Finally, we can formulate the axioms for SLFP in the basic logic of partial terms.

We do not include computational induction, since we do not need it in this appendix.

We only add the fixed point property (FIX) and the minimality property (MIN) to

BPT. These principles are:

si = (λxi ti)[s1/ϕ1, . . . , sn/ϕn] (FIX)

∀ϕ1, . . . , ϕn

(
n∧∧
i=1

λxi ti v ϕi →
n∧∧
i=1

si v ϕi

)
(MIN)

where si stands for the term SLFPi(ϕ1 = λx1 t1, . . . , ϕn = λxn tn) for i = 1, . . . , n.

In the rest of this appendix we will show the soundness of two of Moschovakis’

reduction rules with respect to BPT. The first theorem is Moschovakis’ rule R4. It

is the reduction of nested recursion to simultaneous recursion.

Theorem A.1

If ψ does not occur free in the program r, then we can derive in BPT the following

equation:

(letrec ϕ = λx r in (letrec ψ = λy s in t)) ' (letrec ϕ = λx r & ψ = λy s in t).

Proof

We use the following abbreviations:

a1 :≡LFP (ϕ = λx r), a2 :≡LFP (ψ = (λy s)[a1/ϕ]),

bi :≡ SLFPi(ϕ = λx r, ψ = λy s), for i = 1, 2.

By definition, we have

(letrec ϕ = λx r in (letrec ψ = λy s in t)) ≡ t[a1/ϕ, a2/ψ].

We also have

(letrec ϕ = λx r & ψ = λy s in t) ≡ t[b1/ϕ, b2/ψ]

Thus, if we can derive a1 = b1 and a2 = b2 we are done, since BPT proves

a1 = b1 ∧ a2 = b2 → t[a1/ϕ, a2/ψ] ' t[b1/ϕ, b2/ψ].

First we show that we can derive b1 v a1 and b2 v a2. By the closure axiom (7.35)

for LFP (ϕ = λx r), we have (λx r)[a1/ϕ] v a1. Since ψ is not free in r, the term

(λx r)[a1/ϕ] is the same as (λx r)[a1/ϕ, a2/ψ] and we thus obtain

(λx r)[a1/ϕ, a2/ψ] v a1.

Again by the closure axiom (7.35) but this time for LFP (ψ = (λy s)[a1/ϕ]), we

obtain (λy s)[a1/ϕ][a2/ψ] v a2. Since ψ does not occur free in a1, we have

(λy s)[a1/ϕ, a2/ψ] v a2.

Now, we can apply (MIN) and obtain that b1 v a1 and b2 v a2.
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For the converse inequalities, we use (FIX) and obtain (λx r)[b1/ϕ, b2/ψ] v b1.

Since ψ is not free in r, we have (λx r)[b1/ϕ] v b1 and, by the minimization

axiom (7.36), we obtain a1 v b1, and by antisymmetry (7.48), a1 = b1.

Again by (FIX) it follows that (λy s)[b1/ϕ, b2/ψ] v b2. By the substitution prop-

erty (7.56), we can derive

(λy s)[b1/ϕ, b2/ψ] = (λy s)[a1/ϕ, b2/ψ].

Since ψ is not free in a1 the term (λy s)[a1/ϕ, b2/ψ] is the same as (λy s)[a1/ϕ][b2/ψ]

and, by property (7.47), we obtain (λy s)[a1/ϕ][b2/ψ] v b2. By the minimization

axiom (7.36), we obtain a2 v b2, and by antisymmetry, a2 = b2.

The second theorem corresponds to rule R5 of Moschovakis. It is called the

Bekivc-Scott principle. It is the reduction of iterated to simultaneous least fixed

point recursion.

Theorem A.2

If χ does not occur free in r, s or t, then we can derive in BPT the following equation:

(letrec ϕ = λx (letrec ψ = λy r in s) in t)

'
(letrec ϕ = λx s[χ x/ψ] & χ = λx λy r[χ x/ψ] in t)

Proof

We use the following abbreviations:

a2 :≡LFP (ψ = λy r), a1 :≡LFP (ϕ = λx (s[a2/ψ])),

bi :≡ SLFPi(ϕ = λx s[χ x/ψ], χ = λx λy r[χ x/ψ]), for i = 1, 2.

Note, that x and ϕ may appear free in a2. They are, however, not free in a1. Since

(letrec ψ = λy r in s) is an abbreviation for s[a2/ψ], we have by definition that

(letrec ϕ = λx (letrec ψ = λy r in s) in t) ≡ t[a1/ϕ].

Also by definition, we have

(letrec ϕ = λx s[χ x/ψ] & χ = λx λy r[χ x/ψ] in t) ≡ t[b1/ϕ].

Since BPT proves

a1 = b1 → t[a1/ϕ] ' t[b1/ϕ],

it is sufficient to show that a1 = b1 is derivable in BPT. It turns out, that in order

to do this, we have to show that λx a2[a1/ϕ] = b2 is derivable in BPT, too.

We first show the inequalities b1 v a1 and b2 v λx a2[a1/ϕ]. We have

(λx s[χ x/ψ])[a1/ϕ, λx a2[a1/ϕ]/χ] ≡ (λx s[χ x/ψ])[λx a2/χ][a1/ϕ]

≡ (λx s[(λx a2) x/ψ])[a1/ϕ]

[Context Lemma 7.4] = (λx s[a2/ψ])[a1/ϕ]

[Axiom (7.35)] v a1.
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In a similar way we obtain

(λy r[χ x/ψ])[a1/ϕ, λx a2[a1/ϕ]/χ] ≡ (λy r[χ x/ψ])[λx a2/χ][a1/ϕ]

≡ (λy r[(λx a2) x/ψ])[a1/ϕ]

[Context Lemma 7.4] = (λy r[a2/ψ])[a1/ϕ]

[Axiom (7.35)] v a2[a1/ϕ].

Using the monotonicity property (7.53) we obtain

(λx λy r[χ x/ψ])[a1/ϕ, λx a2[a1/ϕ]/χ] v λx a2[a1/ϕ].

Hence we can apply (MIN) and obtain b1 v a1 and b2 v λx a2[a1/ϕ].

For the converse inequalities a1 v b1 and λx a2[a1/ϕ] v b2, we use (FIX). We

have

(λx λy r[χ x/ψ])[b1/ϕ, b2/χ] v b2

and, by the definition of v, we obtain (λy r[b2 x/ψ])[b1/ϕ] v b2 x and (b2 x)↓. By

the minimality principle (7.36), it follows that a2[b1/ϕ] v b2 x. Using this inequation,

we derive

(λx s[a2/ψ])[b1/ϕ] ≡ (λx s[a2[b1/ϕ]/ψ])[b1/ϕ]

[Context Lemma 7.4] v (λx s[b2 x/ψ])[b1/ϕ]

≡ (λx s[χ x/ψ])[b1/ϕ, b2/χ]

[(FIX)] v b1.

By the minimality principle (7.36), we obtain a1 v b1. For the sake of completeness

we mention that we now have a2[a1/ϕ] v a2[b1/ϕ] v b2 x and λx a2[a1/ϕ] v b2.

Concluding remarks

The main goal of this article was to explain two different operational interpretations

of the same programs by different logics. We have started with a class of simply

typed programs that contain least fixed-point recursion and ended up with two

logics. The first logic, VPT, is adequate for call-by-value evaluation, whereas the

second one, NPT, is adequate for call-by-name evaluation. This is shown using

methods from denotational semantics, mainly adequacy theorems which relate the

(given) operational semantics with the denotational semantics. Neither the programs

nor the logics contain the constant ‘undefined’.

It is possible to prove the adequacy of VPT and NPT directly without using

denotational semantics. The proof, however, is tedious, since it needs term models

and a direct proof of the so-called Context Lemma for call-by-value and for call-

by-name evaluation.

The systems VPT and NPT are obtained both as extensions of a system which

we call the basic logic of partial terms (BPT). The basic logic of partial terms is

useful, since its theorems are valid under call-by-value as well as under call-by-name

interpretation. It is, however, not clear what the exact semantics of BPT is. It also
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not clear how complete BPT is, i.e. whether it proves all theorems that are common

to VPT and NPT.

All logics are formulated ‘locally’ for a fixed structure A and so the question is:

how complete are these logics when we interpret them over the class of all structures

of a given signature? Is there a restricted completeness theorem?

To formulate the results of this article in the same context, the partial functions of

the given first-order structure are strict. For the call-by-name interpretation, it would

be more natural to allow non-strict functions, too. The call-by-name evaluation rules

for such functions, however, are rather awkward, because if we want to apply a

built-in function f to a term t then it is not clear, whether the term t has to be

evaluated and if so, which components of the result (which is a lazy pair) have to

be evaluated before f is called.

The programs studied in this article are pure without side effects. In the presence

of side effects the standard notion of definedness splits into a myriad of notions

(always evaluating to a value, being operationally equivalent to a value, being a

value, etc.) The question is therefore whether this work could be carried out for

programs that contain side effects, and if so, whether this helps clarify the different

notions of definedness.

If we fix a set of axioms T for the structure A, then several proof-theoretic

questions arise. What is the proof-theoretic strength of BPT (T )? What are the

fragments of BPT (T ) obtained by restricting the scheme for computational induc-

tions to certain classes of formulas? In the case of natural numbers N and Peano

Arithmetic PA it can be shown that VPT (PA) as well as NPT (PA) have the same

strength as PA, since it is possible to interpret them in PA by formalizing suitable

term models. This shows that VPT and NPT are first-order logics, although their

terms are higher-order.

Note added in proof

I am grateful to Reinhard Kahle for the following observation: The disjunctions

(∀xτ1

1 x1 ↓ ∧ . . . ∧ ∀xτnn xn ↓) ∨ (∃xτ1

1 ¬x1 ↓ ∧ . . . ∧ ∃xτnn ¬xn ↓)

are in general not provable in BPT although they are provable in VPT as well as in

NPT. If we add the disjunctions to BPT, then we can prove all theorems common

to VPT and NPT. Assume that VPT ` A and NPT ` A. By the deduction theorem,

it follows that there exist types τ1, . . . , τn such that the formulas

(∀xτ1

1 x1 ↓ ∧ . . . ∧ ∀xτnn xn ↓)→ A and (∃xτ1

1 ¬x1 ↓ ∧ . . . ∧ ∃xτnn ¬xn ↓)→ A

are provable in BPT.
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