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WEIGHTED RESTRICTION FOR CURVES 

JOSEPH D. LAKEY 

ABSTRACT. We prove weighted norm inequalities for the Fourier transform of the 
form 

V/ G S(Rd), (f_s \fm))\qdt) ~q < c(fRd \f(x)fv(x)dxY, 

where v is a nonnegative weight function on Rd and I/J: [— 1,1 ] —• Rd is a nondegenerate 
curve. Our results generalize unweighted (i.e. v = 1) restriction theorems of M. Christ, 
and two-dimensional weighted restriction theorems of C. Carton-Lebrun and H. Heinig. 

1. Introduction. Restriction theorems for curves may be viewed as generalizations 
of Zygmund's two-dimensional spherical restriction theorem, which states that if 1 < 
p < 4 /3 and 1 < q < p'/3, then 

(1.1) V/ G If(R2\ ( ^ \f{0)\*d<TM)' < C[JR2 \f(x)\Pdx)\ 

Here Zi denotes the unit circle and cr\ is arclength measure. 
Extensions of Zygmund's result, where a\ is replaced by (affine) arclength measure 

on general plane curves, including degenerate curves, were proved by Sjôlin [Sj]. More 
recently, Carton-Lebrun and Heinig have cleverly adapted Sjôlin's techniques to obtain 
weighted restriction theorems for plane curves, where the LP norm on the right hand side 
of (1.1) is replaced by a weighted LP norm. 

In another direction restriction to curves in ^/-dimensions has been investigated by 
Prestini [PI; P2] and Christ [Chr]. Prestini's main contribution was the reduction of 
the restriction problem (for nondegenerate curves) to estimating the (fractional) Van-
dermonde form/ i—-> nf= i / te) Ili</<^<^ |*/ — Xj\~v- Sharp "LP estimates" for the Van-
dermonde form were obtained by Christ [Chr], who also proved restriction theorems for 
certain degenerate curves with Euclidean arclength measure. 

Our goal is to prove weighted restriction theorems of the form 

(1.2) V/ G S(Rd), (fjf(m)\qdt)~q < c[JRd \f{x)\pv{x)dx)\ 

where ^ is a nondegenerate curve in Rd and v is a nonnegative weight function. We 
prove weighted extensions of Christ's d-dimensional restriction theorem with weights 

This work comprises part of the author's Ph.D. dissertation. The author is grateful for support received 
through the University of Maryland Department of Mathematics Dissertation Fellowship. 

Received by the editors October 10, 1991 . 
AMS subject classification: 42B10. 
Key words and phrases: Fourier transform, restriction theorems, weighted norm inequalities. 
© Canadian Mathematical Society 1993. 

87 

https://doi.org/10.4153/CMB-1993-013-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-013-5


88 JOSEPH D. LAKEY 

satisfying conditions similar to those of Carton-Lebrun and Heinig. We also establish 
weighted restriction theorems where weights lie in certain Wiener amalgam spaces, and 
are especially adapted to restriction for compact curves. In particular we prove a new 
weighted extension of Zygmund's theorem. Our theorems are only proven for nondegen-
erate curves, although our techniques also work for curves of finite type as considered in 
[Chr]. Our "reference measure" is Euclidean arclength measure, as opposed to affine ar-
clength measure. Our techniques are therefore not easily adaptable for proving weighted 
extensions of the deep work of Drury and Marshall concerning restriction to degenerate 
curves in higher dimensions. 

The author wishes to acknowledge his indebtedness to his thesis advisor, Profes
sor John Benedetto, for his boundless patience and encouragement. 

2. Notation and background. Rd denotes the Euclidean space of d-tuples 
(JCI, . . . ,xd) of real numbers. For a nonnegative measurable function v on Rd, and 1 < 
p < oo, we consider the weighted LP spaces 

£ ? = { / : Il/1l£ = lw \f(x)\pv(x)dx < oo}. 

Given/ G Ll(Rd), the Fourier transform off is 

f(y) = JRde-2^f(x)dx, 

where (x,y) = EjLi Xj-yj. 
A (compact) curve in Rd is a continuous map 1/;: [—1,1] —• Rd> For our purposes, ijj 

will be assumed to be smooth (or at the very least Cd where d is the dimension). We say 
that ip is nondegenerate at t e (—1,1) if the vectors ip'(t), i/j"(t),..., ^d\t) are linearly 
independent. We need a few additional definitions and lemmas for what follows. 

In Section 4 we shall study restriction with weights satisfying certain local and global 
integrability conditions. Given exponents 1 < p, q < oo, we define the Wiener amalgam 
spaces, 

W(If9F) = {/: \\f\\ww) = ( E (JQn [f(x)\pdxfy < ex)}. 

Here Zd is the integer lattice (ti\,..., nd) where rij G TJ = 1 , . . . , d, and Qn = rc + [0, l)d. 
Similarly, we define 

W(Z/,/°°) = {/ : WfWwiif,^ = sup \{fXQn\y < oo} 
nezd 

and 

W(L°°,P) = { / : WfWwL-n = | { | [ f xeJk»} | ; , < oo}. 

We shall use the following Hausdorff-Young theorem for Wiener amalgam spaces, see, 
e.g., [FS] 
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THEOREM 2.1. Whenever 1 < /?, q < 2 one has 

(2.1) V/ G W(V,P), \\f\\W(Lq'y) < CpjWfWwwM, 

with constant CPjq independent off. 

The following lemma concerns rearrangement weighted norm inequalities for the 

Fourier transform, e.g., [BH; JS; Mu]. 

LEMMA 2.2. Given nonnegative functions u, w on Rd and exponents 1 < (3 < oc < 

oo satisfying 

(2.2) sup(jfu*(f)diy [Jo\w-l)\tf-1 at}* < oo. 

One has 

(2.3) VFeL1 n i £ ( R d ) , (J\F(y)\au(y)dyy < c ( j f , | F ( * ) | V * ) ^ ) ' . 

Here w* denotes the decreasing rearrangement of u (see, e.g., [StW, Chapter V]). 

The following two lemmas are due to M. Christ. 

LEMMA 2.3 ( [CHR; LEMMA 2.1]). Let V>: [ -1 ,1] —• Rd be nondegenerate at t = 0. 

Then there is a 6 > 0 ûwd C > 0 such that in the region E = {x \ 0 < x\ < Xd < • • • < 

•*</ < <$}> we have the Jacobian estimate 

(2.4) | | > c n (xj-x,) 
0X1 l<i<j<d 

where y — Yfj=\ ÎK*/) is a nonsingular change of variables on E. 

LEMMA 2.4 [CHR; PROPOSITION 2.2]. For 0 < 77, one has 

d 
(2.5) V/ > 0, / n / ( * y ) I l \*i -Xj^dxx -"dxd< C\\f\\ 

J 7=1 K/ 

if and only if 

(2.6) , < * ^ 1 + 2 ^ 1 ) = 1. 
d /? 2 
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3. Restriction with weights. Our first result is 

THEOREM 3.1. Given a smooth curve i/;: [— 1,1] —> Rd for which X/J is non-degen
erate at t — 0. For some 6 > 0 fixed, andf G C°°(— 6,0), set 

(3.1) Af(l) = f_b ^xV(-2m(^(t),l))f(t)dt. 

Suppose that 

,„ ^ d + 2 , ^ d(d+\)q 
(3.2) — — - < q < o o , \<p< H 

d+\ H ' ^ - (d + l ) ( d - 1 ) ^ + 2' 

and v G L/QÇ, +(Rrf) satisfies 

(3.3) sup 
5>C 

< CO 5~3fe Av1 _ p /)*(0*] 

/br some c > 0. 77ien //"<$ is sufficiently small and C > 0 is large enough one has 

(3.4) VfeC»(-6,6), Wv-AfWi/M < C\\f\\ 

PROOF . First we wish to obtain an expression involving Af which looks like a 
Fourier transform. Since ^ is nondegenerate at t — 0, we may choose 6 > 0 such that 
after a nonsingular change of coordinates (on Rd and [—6,8]), i/> has the form V>(0 = 
(f, -02(0, • • •, W ) ) where ^ ( 0 = ^'(l + 0(f)) as r —> 0, c/, [Chr]. For simplicity (that 
is, in order to apply Lemma 2.4) we shall prove the result for/x[0,<$)> since the estimate 
for/x(-<§,0] is essentially the same. 

Now we decompose [0,<5)̂ . For a G 5 j (the symmetric group on d letters), let Ea = 
{x G Rd : 0 < jCcr(i) < • • • < xa{d) < 5}. Then [0,6)d = UaesdEa almost everywhere. 
Furthermore, the ^ ' s are pairwise disjoint, since for x G [0,6)d satisfying JC,- ^ x, for all 
/ ^ y, arranging the JC/'S in increasing order determines a unique element r G 5^. 

Notice that for a G S</ fixed, 

(3.5) (A/(7))d - rf! ! exp(-27T/(7, £ V(*/)>) I l / t a ) d ^ ' " d^ 
JE° v Ï = I J t=\ 

lib is small enough (depending on ip), then by Lemma 2.4 the change of variables v7 = 
£f=i fyixi) is admissible on £a . Thus we may rewrite 

r d 

(3.6) (A/(7)) = d ! l I / t e ) X D 
4=1 

l A 
(7) 

where Z) is the image of E = Eid under the change of variables x —+ y above (here 

integration is with respect to the y variable). Since y — (E T/>I fe),..., £ V^C*/)) we have 

|y| <M = d3/2-supfÇ[0(Ç) |t/>(f)|- We now argue as in [C-L,H] in order to apply Lemma 2.2, 

where F(7) = (AfCyjf/dl, u = v1^' , a - p'/rf, and w(y) - w(|y|) = (x ro^M))" 1 . 
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Let Q</(Af) be the volume of a ball of radius M in Rd. Since w~l(y) = X[0M](\y\)>one 

has 

( w - r ( 0 ^ i n f { , > 0 : | { , e ^ : | w - ' | > 4 | < 4 = { ? ; 0 < ? < ^ ( M ) ' 

Thus if we take c = (flt^(M)) , condition (2.2) of Lemma 2.2 is equivalent to 

(3.7) sup(V~^ f\vl-p'T(t)dt) < oo. 

Suppose for now that (3.7) holds. By Lemma 2.2 one then gets the Fourier transform 
norm inequality 

/ d i 

(3.8) [J\F{lpvx-P\l)dlY < c[j\Fiy)fw(y)dy)\ 
provided (3 <p'/d. "Unchanging" variables y t—•» x and applying Lemma 2.3 we get 

||v-?A/||^ < C[JE | n / f e ) | 1^1 Ai • ••<**)' 
( 3 . 9 ) ff'"-1 * , 

<c([ g(xi)U(xj-xi)
l-Pdxl.--dxd)\ 

where \f(xi)\P = gfo). 
Finally applying Lemma 2.4 gives 

(3.10) Wv-ÎAfWïs < C\\g\i = C|[/ | |^ = C|i^||^, 

provided 

G 9 - 1 X - , and 

an) i + o?-iy-i) = 1-
r 2 

Here we have defined qf = /?r. It remains to show that (3.2) and (3.3) imply (3.11), (3.7), 
and the condition (3 < p' jd used in obtaining (3.8). 

To say that (3.2) implies (3.11), what we mean, precisely, is that if/3 and r are defined 
in terms of each other as in (3.11), then (3 — 1 < \. The relationships between q, (3, and 
r yield q' = (3r = 2/3/(2 - (f3 - \){d - 1)). This is equivalent to q = 2p'/(d + 1), or 

rd+l\\'__ q{d+\) 

M«(^>) 2 H q(d+l)-2 

Now the restriction on q in (3.2) implies (3 < (d + 2)/J, which gives (3.11). Next we 
show that (3 < p'/d, or/? < ((3d)'. By (3.2), 

d(d+l)q d{d+\)q 
1 <p< 

((</ + l)(d- l)q + 2) d(d+ \)q-((d+\)q-2) 

d(fqY 
d+l. diSf-qt fh-«^)'h^ 
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Finally, since q = 2f3' /(d + 1), the supremum in (3.3) is essentially the same as the one 
in (3.7). This completes the proof. • 

COROLLARY 3.2. Under the hypotheses of Theorem 3.1, 

(3.12) Vg e S(Ûd), (fjê(m)\"dt)'' < C\\g\\u. 

PROOF. We use a simple duality argument. First take, say, g G J>(R ) and / € 
C(—6,6). Then by Fubini, Holder, and the theorem, one has 

/ / ( ' ) ( ! ° m) dt = jRd gOW(l) dl 

<l|glkll(4f)v^||^<C||g|| 
Lp

v\{f\\^'(-è,8y 
Dividing by l l /H / / ^^ and taking the supremum over/ gives the result. • 

REMARK 3.3. Checking the exponents in the theorem shows that we are reduced to 
the nondegenerate case of the theorem of Carton-Lebrun and Heinig when d = 2 and to 
the nondegenerate case of Christ's theorem when v = 1. 

4. Weights in Wiener amalgam spaces. In this section we present a result sim
ilar to Corollary 3.2. Our theorem involves a different class of weights, although the 
techniques are more or less the same. The weight condition is membership in a Wiener 
amalgam space, and in particular, the condition does not involve rearrangements. The 
conditions on the exponents arise from applications of the Hausdorff-Young theorem for 
Wiener amalgam spaces, along with Lemmas 2.3 and 2.4. 

THEOREM 4.1. Let V̂: [—1,1 ] —•> Rd be a C°° curve which is nondegenerate at t = 0. 
Let v G Lloc,+(Rd) and let p, qy r, sy a, /3 be exponents satisfying the following: 

(4.1) vl~p' G W(Z/,f'), 1 < r, s < oo, 

(4.2) (^~y>2and(^-)s>2, 

(4.3) ^ ( ( £ ) * ) ' . 

(4.4) j_ (3-i)(d-i) _ , 

and 

(4.5) q' = (ia. 

Then for C> 0 large enough and 6 > 0 small enough, 

(4-6) VgGj(Rd), (f\ê{Wyj)\")' <C\\g\\ Le-
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PROOF. The theorem will follow in the same manner that Corollary 3.2 follows from 
Theorem 3.1 once we show that 

Vf G C(-6,8), Wv-'AfWi/w < C\{f\\^'(--è,sy 

where Af is as in (3.1). As in the proof of Theorem 3.1 we establish the formula (3.6), 
then look for conditions which imply 

/ d l 

(4.7) (jk \F(lpvl~P\l)dl)7 < c(fRd \F(ytxD(y)dyy. 

Subsequent change of variables gives the result. To show how the Wiener amalgam space 
conditions give (4.7) we proceed as follows. 

Let V = vx~p' and suppose that V G W(Z/, Is). We'll argue for the case where 1 < 
r, s < oo, and the other cases will follow by similar arguments. We have 

< 
nezd 

(4.8) 

TJU0\hi)fi)'UoyJ{i)di)' 
iezd ^n ^n 

Now set / = p'r/d and u — p's/d. That is, s/r = u/t and s = ud/p1. Then the right 
hand side of (4.8) is 

W(Lr',ls') 

II. 

E ( / 0 1^7)1')')" ^IIVll^.^HFllI^ 

Applying Theorem 2.1, it follows that the left hand side of (4.7) is bounded by 

IMIHU'V) • \\F O / ) . pr°vided (4-2> h° i d s-B u t 

iiii^/, = (ç(/fl,ii"')Y 

< Cn\\F\ D\\r\\iji 

The first inequality follows from Holder and (4.3), and the second follows from the fact 
that F is actually supported in D. Thus (4.7) holds as long as (4.1)-(4.3) hold. 
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The remainder of the argument is the same as in the proof of Theorem 3.1. That is, 
we unchange variables and apply Lemmas 2.4 and 2.5, which give (4.6) provided (4.4) 
and (4.5) hold (in Lemma 2.4, we take a — p, (3 — 1 = 77, and q' — (3a). This proves the 
theorem. • 

It appears to be a rather gruesome task to check all of the conditions of Theorem 4.1. 

The following example gives a generalization of Zygmund's restriction theorem when 

d = 2. 

EXAMPLE 4.2. Let V = vl~p' e W(L\ Z°°) (the theorem still applies to such V). In 
view of (4.1), we have / = 1 and s' = 00. Now (4.4) implies a — 2 / (3 - /3 ) where 
1 < (3 < 2. But for (3 < 2, condition (4.3) implies 

»'* (£)'-£;• 2 - / 7 

so that 1 < p < 4 /3 . Notice then that (4.2) is automatically satisfied. In view of (4.5) 
the corresponding condition on q is 

' = /?„= _M_ > 2 ( ^ }
 = ?p_ 

3 - / 3 " 3 - ( 5 ^ ) 3{2-p)-p 3 - 2 / 

That is, 4 < (2p/(3 - 2/?)) = p'/3. Thus we have 

COROLLARY 4.3. Let 1 < /? < 4/3 anJ g < pf/3, and v > 0 ŵc/z f t o vl~p' e 

W(L{,1°°) be given. Then for S > 0 sufficiently small, 

c i 1 

\/g e S(R2l [j6 |g(cosu sinr)|* * ) * < c(jf2 U(*)|'v(*) Jx) P~. 

REMARK 4.4. This corollary shows that existence of restrictions of elements of 
weighted LP to the unit circle depends only in a weak manner on the local behavior of 
the weight. In fact, this result extends the known class of functions whose Fourier trans
forms have well-defined restrictions to the unit circle. For example, consider the weight 
v(*i,*2) = |(sinxi)|a, and the function/(x) = £ ^ |*i - n\~* X[n,n+n^](x\) • X[-i,i]fe). 
For appropriate choices of a and 7, one can get / £ LP(R2) for any 1 < p < 4 /3 but 

vi-p' £ ^(L1, /°°) and/ <E L£(IR2) for some such/?, so that the Fourier transform of/ will 
restrict to the unit circle. 
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