The results in this addendum extend [1, Theorems 1.1 and 8.7].

Let \(h > 0 \) be an integer. We characterize algebraic number fields possessing class number \(h \) in terms of the sequence of rational primes.

Using the notation of [1], let \(k \) be an algebraic number field, let \([k : \mathbb{Q}] = f\), and let \(h(k) \) denote the class number of \(k \). Let \(\mathcal{E} \) be the ring of algebraic integers in \(k \). Then \(\mathcal{E} \) is a ring whose additive group \(\mathcal{E}, + \) is a free Abelian group of finite rank \(f \). For each rational prime \(p \) let \(E(p) = \mathbb{Z} + p\mathcal{E} \). Let \(G(p) \) be a reduced torsion-free rank-\(f \) Abelian group such that End\((G(p)) \cong E(p)\). These groups exist by Butler’s theorem [3, Theorem 1.2.6]. There is a torsion-free reduced group \(\overline{G}(p) \) of rank \(f \) such that \(\overline{G}(p)/G(p) \) is finite, and End\((G(p)) = \mathcal{E}\).

Let \(L(p) = \text{card}(u(\mathcal{E})/u(E(p))) \) where \(u(R) \) is the group of units in the ring \(R \). For an Abelian group \(H \) let \(h(H) \) be the number of isomorphism classes of groups \(L \) that are locally isomorphic to \(H \). (See [3].) Sequences \(s_n \) and \(t_n \) are asymptotically equal if \(\lim_{n \to \infty} s_n/t_n = 1 \).

The main theorem of this paper follows.

Theorem 1. Let \(k \) be an algebraic number field, let \([k : \mathbb{Q}] = f\), and let \(h(k) = h \). Then \(\{L(p)h(G(p)) \mid \text{rational primes } p\} \) is asymptotically equal to the sequence \(\{hp^{f-1} \mid \text{rational primes } p\} \).

Proof. In addition to the the stated notation we let:

1. \(\hat{m}_p = \text{card}(u(\mathcal{E}/p\mathcal{E})) \);
2. \(\hat{n}_p = \text{card}(u(E(p)/p\mathcal{E})) \);
3. \(L(p) = \text{card}(u(\mathcal{E})/u(E(p))) \).

\(\copyright \) 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 $16.00
There are at most finitely many rational primes that ramify in \(k \), so let us avoid those primes. By [2, Theorem 8.4],

\[
L(p)h(G(p)) \frac{\hat{n}_p}{m_p} = h(\overline{G}(p)).
\]

(1)

Because \(\text{End}(\overline{G}(p)) = \overline{E} \), [2, Corollary 3.2] implies that \(h(\overline{G}(p)) = h(\overline{E}) = h(k) = h \).

Hence

\[
L(p)h(G(p)) \frac{\hat{n}_p}{m_p} = h.
\]

(2)

Since \(p \) does not ramify in \(k \), there are distinct prime ideals \(I_1, \ldots, I_g \) in \(\overline{E} \) and integers \(f_1, \ldots, f_g \) such that \(\sum_{i=1}^{g} f_i = f \),

\[
p\overline{E} = I_1 \cap \cdots \cap I_g,
\]

and \([\overline{E}/I_i : \mathbb{Z}/p\mathbb{Z}] = f_i \) for each \(i = 1, \ldots, g \). Then

\[
\overline{E}/p\overline{E} = \overline{E} / I_1 \times \cdots \times \overline{E} / I_g
\]

so that

\[
u(\overline{E}/p\overline{E}) = \nu \left(\frac{\overline{E}}{I_1} \right) \times \cdots \times \nu \left(\frac{\overline{E}}{I_g} \right).
\]

Since \(\overline{E}/I_i \) is a finite field of characteristic \(p \),

\[
\hat{m}_p = (p^{f_1} - 1) \cdots (p^{f_g} - 1).
\]

(3)

Since \(E(p)/p\overline{E} \cong \mathbb{Z}/p\mathbb{Z}, \hat{n}_p = p - 1. \)

Form the polynomial of degree \(f - 1 \),

\[
x^{f-1} + Q_p(x) = \frac{(x^{f_1} - 1) \cdots (x^{f_g} - 1)}{x - 1}.
\]

(4)

The coefficients of \((x^{f_2} - 1) \cdots (x^{f_g} - 1) \) are multinomial coefficients \(\binom{f-1}{r_1, \ldots, r_t} \) for some partitions \(r_1, \ldots, r_t \) of \(f - 1 \). These coefficients are bounded above by \((f - 1)! \). The coefficients of \(Q_p(x) \) in (4) are then bounded above by \(f! \). Thus \(Q_p(x) \) has degree \(\leq f - 2 \), and the coefficients of \(Q_p(x) \) are bounded above by \(f! \). Hence

\[
\lim_p \frac{p^{f-1} + Q_p(p)}{p^{f-1}} = 1 + \lim_p \frac{Q_p(p)}{p^{f-1}} = 1.
\]

(5)

Now, \(p^{f-1} + Q_p(p) = \hat{m}_p/\hat{n}_p \) when \(p \) replaces \(x \) in (4), so by (2),

\[
\frac{L(p)h(G(p))}{p^{f-1} + Q_p(p)} = L(p)h(G(p)) \frac{\hat{n}_p}{\hat{m}_p} = h.
\]

(6)
Furthermore,

\[
\frac{L(p)h(G(p))}{p^{f-1}} = \frac{(L(p)h(G(p))/p^{f-1})}{(L(p)h(G(p))/p^{f-1} + Q_p(p))} \cdot \frac{L(p)h(G(p))}{p^{f-1} + Q_p(p)} = \frac{p^{f-1} + Q_p(p)}{p^{f-1}} \cdot h
\]

by (6). Using the limit in (5) we see that

\[
\lim_{p} \frac{L(p)h(G(p))}{hp^{f-1}} = 1.
\]

Therefore, \(\{L(p)h(G(p)) \mid \text{rational primes } p\}\) is asymptotically equal to \(\{hp^{f-1} \mid \text{rational primes } p\}\).

\[\square\]

Corollary 2. Let \(k\) be a quadratic number field, and let \(h(k) = h\). Then \(\{L(p)h(G(p)) \mid \text{rational primes } p\}\) is asymptotically equal to the sequence \(\{hp \mid \text{rational primes } p\}\).

Theorem 3. Let \(k\) be an algebraic number field and let \(h > 0\) be an integer. The following are equivalent.

1. \(h(k) = h\).
2. The sequence \(\{L(p)h(G(p)) \mid \text{rational primes } p\}\) is asymptotically equal to the sequence \(\{hp^{f-1} \mid \text{rational primes } p\}\).

Proof. \(1 \Rightarrow 2\). This is Theorem 1.

\(2 \Rightarrow 1\). The sequence \(\{L(p)h(G(p)) \mid \text{rational primes } p\}\) is asymptotically equal to the sequence \(\{hp^{f-1} \mid \text{rational primes } p\}\) for some integer \(h > 0\). Then by Theorem 1 and part 2,

\[
\lim_{p} \frac{L(p)h(G(p))}{h(k)p^{f-1}} = 1 = \lim_{p} \frac{L(p)h(G(p))}{hp^{f-1}}.
\]

Hence \(h(k) = h\) which completes the proof. \[\square\]

Corollary 4. Let \(k\) be a quadratic number field and let \(h > 0\) be an integer. The following are equivalent.

1. \(h(k) = h\).
2. The sequence \(\{L(p)h(G(p)) \mid \text{rational primes } p\}\) is asymptotically equal to the sequence \(\{hp \mid \text{rational primes } p\}\).

References

https://doi.org/10.1017/50004972709000173 Published online by Cambridge University Press