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Universal Power Series in C
N

Raphaël Clouâtre

Abstract. We establish the existence of power series in C
N with the property that the subsequences

of the sequence of partial sums uniformly approach any holomorphic function on any well chosen

compact subset outside the set of convergence of the series. We also show that, in a certain sense, most

series enjoy this property.

1 Introduction

This paper is separated into two main sections. The first one deals with the existence

of universal power series in several complex variables that converge on a given set,

and are universal away from it. Our result is inspired by the following theorem, stated

here in its improved form due to Nestoridis (see [5]), but first proved independently

by Chui and Parnes (see [1]) and Luh (see [4]). Denote by D the unit disc in C and,

given a subset E ⊂ C, denote by A(E) the set of functions that are holomorphic on

the interior of E and continuous on the boundary of E.

Theorem 1.1 There exists a power series S with center at the origin and radius of

convergence one with the property that for every compact subset K ⊂ (C \D) with con-

nected complement and every function f ∈ A(K), there is a subsequence of the sequence

of partial sums of S that converges to f uniformly on K.

The second section investigates the size of the set of universal series. To this end,

we use abstract characterizations of universality.

2 Existence of Universal Power Series

First recall that a set of the form {z ∈ C
N : |p1(z)| ≤ 1, . . . , |pm(z)| ≤ 1}, where

all the pi are polynomials, is called a polynomial polyhedron. It is trivial to check

that polynomial polyhedra are polynomially convex. The next lemma will allow us to

restrict our attention to polynomial polyhedra most of the time that we are dealing

with polynomially convex compact subsets of C
N . See [3].

Lemma 2.1 Let K ⊂ C
N be a polynomially convex compact subset and U ⊂ C

N ,

an open neighbourhood of K. Then, there exist polynomials p1, . . . , pm with rational

coefficients (rational real and imaginary parts) such that

K ⊂ {z ∈ C
N : |p1(z)| ≤ 1, . . . , |pm(z)| ≤ 1} ⊂ U .
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In the same vein, a subset X ⊂ C
N such that there exist polynomials p1, . . . , p J

with the property that X = {z ∈ C
N : p j(z) = 0 ∀ j = 1, . . . , J} is said to be an

algebraic set. We shall use the term algebraic hypersurface to distinguish the case where

X is the zero set of a single polynomial. Note that every algebraic set can be written as

a finite intersection of algebraic hypersurfaces: X =

⋂ J
j=1 H j . The following lemma

is the basic tool of this section.

Lemma 2.2 Let K ⊂ C
N be a polynomially convex compact subset such that there

exists an algebraic hypersurface H containing the origin that is disjoint from K. Then,

given k ∈ N and f ∈ O(K), one can find a polynomial r(z) with the following properties:

• the monomial of lowest degree in r(z) is of degree at least k;
• r(z) vanishes on H;
• supK |r(z) − f (z)| < 2−(k+1).

Proof Set H = {z ∈ C
N : p(z) = 0}. Since K is disjoint from H, we have that for

every c ∈ C,

f (z) − c(p(z))k

(p(z))k+1
∈ O(K).

Set M = supK |p(z)| > 0. Then, by the Oka–Weil Theorem, there exists a polynomial

q such that

sup
K

∣

∣

∣
q(z) −

f (z) − c(p(z))k

(p(z))k+1

∣

∣

∣
≤

1

(2M)k+1
.

Define r(z) = c(p(z))k + (p(z))k+1q(z), which obviously vanishes on H and also

satisfies the first property, since p has zero constant coefficient. Finally, we have

sup
K

|r(z) − f (z)| = sup
K

|c(p(z))k + (p(z))k+1q(z) − f (z)|

≤ sup
K

∣

∣ (p(z))k+1
∣

∣

1

(2M)k+1
≤

1

2k+1
.

With this lemma at our disposal, it is possible to construct universal power series

that converge on prescribed algebraic sets. We shall denote N∪{0} by N0 and, given

a multi-index ν ∈ N
N
0 , let |ν| = ν1 + · · · + νN be its length.

Theorem 2.3 Let X =

⋂ J
j=1 H j ⊂ C

N be an algebraic set containing the origin. Then

there exists a series
∑

ν∈N
N
0

aνzν converging on X with the property that given a polyno-

mially convex compact subset K ⊂ C
N disjoint from at least one of the H j and given

a function f ∈ O(K), there exists a sequence {ds}s ⊂ N such that
∑

|ν|≤ds
aνzν → f

uniformly on K as s → ∞.

Proof Consider {K
j

m}m an enumeration of the polynomial polyhedra that are dis-

joint from H j and defined by polynomials with rational coefficients, along with

{θi} an enumeration of the polynomials with rational coefficients. Then, choose

{(gn, Ln)}n an enumeration of the pairs (θi , K
j

m), where j = 1, . . . , J and i, m ∈ N,

and such that each pair appears infinitely many times. Set

σ1(z) = g1(z) =

∑

|ν|≤d1

aνzν ,
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which is trivially such that supL1
|σ1 − g1| < 1. By choosing k = d1 + 1 in Lemma 2.2,

we get

σ2(z) =

∑

d1+1≤|ν|≤d2

aνzν

vanishing on X such that supL2
|σ2 − (g2 − σ1)| < 1/2. Similarly, one can find

σn(z) =

∑

dn−1+1≤|ν|≤dn

aνzν

vanishing on X such that supLn
|σn − (gn − σ1 − · · · − σn−1)| < 1/n.

We shall show that the series
∑∞

n=1 σn(z) has all the required properties. First

notice that for n ≥ 2, every σn vanishes on X, hence the series converges every-

where on X. In order to show the approximation property, let K ⊂ C
N \H j0

be a

polynomially convex compact subset and f ∈ O(K). By the Oka–Weil Theorem,

there exists a sequence of polynomials {qr} such that supK | f − qr| < 1/r. More-

over, there exists a subsequence {θir
} such that supK |θir

− qr| < 1/r. On the other

hand, since f ∈ O(K), there exists an open set U such that K ⊂ U ⊂ C
N \H j0

and f ∈ O(U ). By Lemma 2.1, there is m0 ∈ N such that K ⊂ K
j0

m0 ⊂ U and so

f ∈ O(K
j0

m0 ). Now, the pair (θir
, K

j0
m0 ) appears infinitely many times in {(gn, Ln)},

therefore gn1
= · · · = gns

= · · · = θir
and Ln1

= · · · = Lns
= · · · = K

j0
m0 . Hence, we

have that

sup
K

j0
m0

∣

∣

∣

∣

ns
∑

n=1

σn − θir

∣

∣

∣

∣

= sup
Lns

∣

∣

∣

∣

ns
∑

n=1

σn − gns

∣

∣

∣

∣

≤ 1/ns

and as such,

sup
K

∣

∣

∣

∣

ns
∑

n=1

σn − f

∣

∣

∣

∣

≤ sup
K

∣

∣

∣

∣

ns
∑

n=1

σn − θir

∣

∣

∣

∣

+ sup
K

|θir
− qr| + sup

K

|qr − f |

≤ sup
K

j0
m0

∣

∣

∣

∣

ns
∑

n=1

σn − θir

∣

∣

∣

∣

+ 1/r + 1/r ≤ 1/ns + 2/r → 0

as s, r → ∞.

It is now clear that
∑∞

n=1 σn(z) diverges outside of X. Indeed, if z /∈ X, there exists

1 ≤ j0 ≤ J such that {z} ⊂ C
N \H j0

. Since {z} is a polynomially convex compact

set, there exist two subsequences of the sequence of partial sums of
∑∞

n=1 σn(z) that

do not have the same limit on {z}.

Before moving on to prove the other important result of this section, we need a

property of polynomially convex compact subsets of C
N .

Lemma 2.4 Let K ⊂ C
N \{0} be a polynomially convex compact subset. Then there

exists an algebraic hypersurface HK = {z ∈ C
N : q(z) = 0} containing the origin and

disjoint from K, where q is a polynomial with rational coefficients.
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Proof Since 0 /∈ K and K is polynomially convex, there is a polynomial p such that

|p(0)| > supK |p|. Set ǫ = |p(0)| − supK |p| > 0 and L = K ∪ {0}. Now it is easy

to find a polynomial p1 with rational coefficients such that supL |p1 − p| < ǫ/2. But

then we have that |p1(0)| > supK |p1| by the choice of ǫ. Write p1(z) = p1(0) + q(z)

with q(0) = 0 and set HK := {z ∈ C
N : q(z) = 0}. Notice that p1|HK

= p1(0) and so

the previous inequality shows that HK is disjoint from K. It is clear that 0 ∈ HK , and

the proof is complete.

The next theorem is very similar to a theorem of Seleznev that covers the case

where the radius of convergence is zero in Theorem 1.1 (see [7]). Its proof is almost

identical to that of Theorem 2.3, so we shorten it quite a bit.

Theorem 2.5 There exists a series
∑

ν∈N
N
0

aνzν with the property that given a poly-

nomially convex compact subset K ⊂ C
N that is disjoint from the origin and given a

function f ∈ O(K), there exists a sequence {ds}s ⊂ N such that
∑

|ν|≤ds
aνzν → f

uniformly on K as s → ∞.

Proof Consider {Al}l an enumeration of the algebraic hypersurfaces in C
N contain-

ing the origin that are zero sets of polynomials with rational coefficients. Also con-

sider {K l
k}k an enumeration of the polynomial polyhedra that are disjoint from Al

and defined by polynomials with rational coefficients, and finally consider {θi} an

enumeration of the polynomials with rational coefficients. Choose {(gn, Ln)}n an

enumeration of the pairs (θi , K l
k), where i, k, l ∈ N and such that each pair appears

infinitely many times. As before, we obtain σn(z) =

∑

dn−1≤|ν|≤dn
aνzν such that

supLn
|σn − (gn − σ1 − · · · − σn−1)| < 1/n and σn(0) = 0 for n ≥ 2.

Now, consider the series
∑∞

n=1 σn(z) that converges at z = 0. In order to show

the approximation property, let K ⊂ C
N be a polynomially convex compact subset

disjoint from the origin and f ∈ O(K). Using Lemma 2.4, one finds Al0 such that

K ⊂ C
N \Al0 and then proceeds as in the proof of Theorem 2.3 to show that

sup
K

∣

∣

∣

∣

ns
∑

n=1

σn − f

∣

∣

∣

∣

→ 0

as s → ∞.

If z 6= 0, then the singleton {z} is a polynomially convex compact subset of C
N

disjoint from the origin, and there exist two subsequences of the sequence of partial

sums of
∑∞

n=1 σn(z) that do not have the same limit on {z}. Thus, the series diverges

outside the origin.

Note that aside from establishing the existence of universal power series, the proofs

of the preceding theorems give us relative control over which powers of z1, . . . , zN

appear in such series.

3 How Many Such Series are There?

It is now natural to ask ourselves just how large the set of universal series is. As is often

the case with such phenomena, the answer is: very large! We shall now proceed to
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show this in two different settings: first by considering series as sequences of complex

numbers, and then by identifying them with families of complex numbers indexed

by multi-indices.

Let X be a complex vector space endowed with a metric that is compatible with

the vector space operations and invariant under translation. Given a sequence x =

{xk}k ⊂ X, define U (x) to be the set of sequences of complex numbers {ak}k such

that the set of partial sums {
∑n

k=1 akxk, n ∈ N} is dense in X. Endow C
N, the set of

all complex sequences, with the product topology. We shall first present an abstract

characterization of universality (see [2, Proposition 7] along with [6, Theorem 1.2]).

Theorem 3.1 The following assertions are equivalent:

• U (x) 6= ∅;
• span{xn, xn+1, . . . } is dense in X for all n ∈ N;
• U (x) is a dense Gδ set in C

N and contains a dense subspace of C
N, except for the zero

sequence.

Our strategy here is to cautiously choose the vector space X to which we apply this

theorem. To this end, first note that the series of Theorems 2.3 and 2.5 are completely

and uniquely determined by the choice of the numbers {aν}. Now, in order to use

Theorem 3.1, pick an enumeration {νλ}λ of the set of multi-indices ν ∈ N
N
0 with the

following property: for all d ∈ N0, there exists d ′ ∈ N such that {ν : |ν| ≤ d} =

{νλ}
d ′

λ=1. Such an enumeration is easily seen to exist.

Let U be the set of sequences {aλ}λ with the property that given a polynomially

convex compact subset K ⊂ C
N disjoint from the origin and given a function f ∈

O(K), there exists a sequence {ds} ⊂ N such that
∑ds

λ=1 aλzνλ → f uniformly on K

as s → ∞. Note that for every sequence {aλ} ∈ U , the associated series
∑∞

λ=1 aλzνλ

obviously converges at the origin.

Theorem 3.2 U is a dense Gδ in C
N.

Proof As in the proof of Theorem 2.5, let {Al}l be an enumeration of the algebraic

hypersurfaces in C
N containing the origin and that are zero sets of polynomials with

rational coefficients, and let {K l
k}k be an enumeration of the polynomial polyhedra

that are disjoint from Al and defined by polynomials with rational coefficients. Define

Ul,k to be the subset of C
N of sequences {bλ}λ such that {

∑n
λ=1 bλzνλ : n ∈ N} is

dense in O(K l
k). By Theorem 3.1 applied to X = O(K l

k) and x = {zνλ}λ, we get that

Ul,k is a dense Gδ set in C
N, since it is non-empty by Theorem 2.5 and by the choice

of the enumeration {νλ}. The result will thus follow from the fact that U =

⋂

l,k Ul,k,

since C
N is a Baire space.

Let {aλ}λ ∈
⋂

l,k Ul,k and consider a polynomially convex compact subset K ⊂

C
N \{0}, along with f ∈ O(K). Just like we did in the proof of Theorem 2.5, we

invoke Lemmas 2.1 and 2.4 to find K l
k such that K ⊂ K l

k and f ∈ O(K l
k). But then we

know that there exists a sequence {ds} in N such that

sup
K

∣

∣

∣

∣

ds
∑

λ=1

aλzνλ − f

∣

∣

∣

∣

≤ sup
K l

k

∣

∣

∣

∣

ds
∑

λ=1

aλzνλ − f

∣

∣

∣

∣

→ 0
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as s → ∞. Hence, {aλ}λ ∈ U and the proof is complete, since the reverse inclusion

is obvious.

Although this is all well and good, we notice that unlike the series obtained in

Theorems 2.3 and 2.5, we currently have no control regarding the length of the multi-

indices that appear in the series associated with the sequences of U . This arises be-

cause the correspondence between series of the form
∑

|ν|≤d bνzν and those of the

form
∑d ′

λ=1aλzνλ is not a bijection. To recover this control, it is necessary to use a

slightly modified version of Theorem 3.1, which is better suited for our needs.

Consider the vector space
∏

ν∈N
N
0

Cν = {{aν}ν∈N
N
0

: aν ∈ C∀ν}, which may be

endowed with the metric

ρ(a, b) =

∞
∑

j=0

1

N j2 j

∑

|ν|= j

|aν − bν |

1 + |aν − bν |
,

where N j is the number of multi-indices of length j. We obtain a complete vector

space, and thus a Baire space. If X is a vector space equipped with a translation

invariant metric which is compatible with the operations and if x = {xν} ∈
∏

ν Xν ,

define Ũ (x) to be the set of families of complex numbers {aν} ∈
∏

ν Cν such that

{
∑

|ν|≤n aνxν , n ∈ N} is dense in X. By using essentially the same arguments as in

the proof of [6, Theorem 1.2], one obtains the following.

Theorem 3.3 Ũ (x) 6= ∅ if and only if Ũ (x) is a dense Gδ set in
∏

ν Cν .

It is now an easy matter to apply this to our case and obtain the desired re-

sult. Let Ũ be the set of families of complex numbers {aν}ν with the property that

given a polynomially convex compact subset K ⊂ C
N that is disjoint from the ori-

gin and given a function f ∈ O(K), there exists a sequence {ds} ⊂ N such that
∑

|ν|≤ds
aνzν → f uniformly on K as s → ∞. By adapting the proof of Theorem 3.2

and by using the aforementioned theorem, we get the following.

Theorem 3.4 Ũ is a dense Gδ set in
∏

ν Cν .

As a closing remark, let us mention that it may seem as if we only did half of the

job. Indeed, we showed that most series share the universal property of Theorem

2.5, but what about the series with properties of Theorem 2.3? However, one must

take into consideration the fact that the approach used here is not very convergence-

friendly. When forming the set U or Ũ , one cannot ensure convergence anywhere

except at the origin.

Hope may lie in the following direction. By setting

A =

{

{aλ} ∈ C
N :

∞
∑

λ=1

aλzνλ converges on X
}

,

one could try to apply a variant of Theorem 3.1 (in fact, this is the original statement

of [6, Theorem 1.2]) to this vector subspace. In order to do so though, one needs to

find a metric with respect to which A is complete. Unfortunately, the natural metric

induced by that of C
N does not work.
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