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Abstract

In this paper we present a general framework for the modelling of the process of corrective
and condition-based preventive maintenance actions for complex repairable systems. A
new class of models is proposed, the generalized virtual age models. On the one hand,
these models generalize Kijima’s virtual age models to the case where both preventive
and corrective maintenances are present. On the other hand, they generalize the usual
competing risks models to imperfect maintenance actions which do not renew the system.
A generalized virtual age model is defined by both a sequence of effective ages which
characterizes the effects of both types of maintenance according to a classical virtual age
model, and a usual competing risks model which characterizes the dependency between
the two types of maintenance. Several particular cases of the general model are derived.
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1. Introduction

The dependability of complex repairable systems depends strongly on the efficiency of
preventive and corrective maintenance actions. Corrective maintenance (CM), also called
repair, is carried out after a failure and is intended to put the system into a state in which it
can perform its function again. Preventive maintenance (PM) is carried out when the system is
operating and is intended to slow down the wear process and reduce the frequency of occurrence
of system failures. Planned PM occurs at predetermined times. Condition-based PM occurs at
times which are determined according to the results of inspections and degradation or operation
controls. In this study, we focus on condition-based PM. Then CM and PM times are both
random and the sequence of maintenance times is a random point process.

The basic assumptions on maintenance efficiency are known as minimal repair or ‘as bad
as old’ (ABAO) and perfect repair or ‘as good as new’ (AGAN). In the ABAO case, each
maintenance leaves the system in the state it was in before maintenance. In the AGAN case,
each maintenance is perfect and leaves the system as if it were new. Obviously, reality is
between these two extreme cases: standard maintenance reduces failure intensity but does not
leave the system as good as new. This is known as imperfect maintenance.

Several models incorporating this type of assumption have already been proposed (see, for
example, the review [17]). Most of them, known as repair models, consider only the effect of
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826 L. DOYEN AND O. GAUDOIN

CM. For example, the Brown–Proschan model [4] assumes that CM isAGAN with probability p

andABAO with probability 1−p, and the virtual age models of [12] assume that the system after
CM is ‘younger’ than it is before failure. Other models consider only the effect of PM. However,
the same kinds of assumption are made for CM or PM, so similar models can be considered to
study the effect of both kinds of maintenance. When only one type of maintenance is taken into
account, these models are completely defined by the intensity of the maintenance process. The
ABAO case corresponds to nonhomogeneous Poisson processes and the AGAN case involves
renewal processes.

When both kinds of maintenance are considered, it is necessary to add information about
the dependence between PM and CM. The usual competing risks framework provides this
information, but it assumes that the PM and CM efficiencies are both perfect. A first attempt to
overcome this restrictive assumption was made by Langseth and Lindqvist [14], who applied a
competing risks model with maintenance efficiency of the Brown–Proschan type.

In this paper, we present a general framework for modelling the PM–CM process with
imperfect maintenance. We define a new class of models, the generalized virtual age (GVA)
models, which generalize both the virtual age models for CM only and the usual competing risks
models. A GVA model is defined by a sequence of effective ages which characterizes the effects
of both types of maintenance according to a classical virtual age model, and a usual competing
risks model which characterizes the dependency between the two types of maintenance.

The paper is organized as follows. The general framework for modelling the PM–CM
process is developed in Section 2. In Section 3 we present the usual competing risks model in
the PM–CM context. Generalized competing risks models and generalized virtual age models
are respectively defined in Sections 4 and 5. In Sections 6 and 7 we present several particular
GVA models based on basic assumptions on the virtual ages and the dependency between PM
and CM. Finally, in Section 8 we introduce the idea of nonsymmetrical maintenance effects.

2. General framework for modelling the PM–CM process

2.1. Notation and assumptions

The PM–CM process is the sequence of PM times and CM times. Maintenance durations
are assumed to be negligible or not taken into account. The observations are then composed of
three point processes, for which we introduce the following notation.

For the global maintenance process (PM and CM), we introduce the processes

• {Ci}i≥1, the maintenance times (C0 = 0);

• {Wi}i≥1, the times between maintenances, with Wi = Ci − Ci−1;

• K = {Kt }t≥0, the maintenance counting process, with Kt = ∑∞
i=1 1{Ci≤t}; and

• {Ui}i≥1, the indicators of maintenance types, with

Ui =
{

0 if the ith maintenance is a CM,

1 if the ith maintenance is a PM.

For the failure, or CM, process, we introduce the processes

• {Ti}i≥1, the CM times (T0 = 0);

• {Xi}i≥1, the times between CMs, with Xi = Ti − Ti−1; and

• N = {Nt }t≥0, the CM counting process, with Nt = ∑∞
i=1 1{Ti≤t}.
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Figure 1: A trajectory of the PM–CM process.

Finally, for the PM process, we introduce the processes

• {τi}i≥1, the PM times (τ0 = 0);

• {χi}i≥1, the times between PMs, with χi = τi − τi−1; and

• M = {Mt }t≥0, the PM counting process, with Mt = ∑∞
i=1 1{τi≤t}.

In Figure 1 we present an example of a trajectory of the PM–CM process.
In the following, bold characters denote vectors: for example, Tn = (T1, . . . , Tn).
There are two equivalent representations of the PM–CM process. First, it can be written as

a bivariate counting process, {Nt, Mt }t≥0. Second, it can be written as a coloured or marked
counting process, {Kt, UKt }t≥0. The colour associated with an event of the global maintenance
process specifies whether the maintenance is preventive or corrective. The representations are
strictly equivalent:

Nt =
Kt∑
i=1

(1 − Ui) and Mt =
Kt∑
i=1

Ui, while

Kt = Nt + Mt and Uk = MCk
− MCk−1 .

In order to use the framework of the theory of point processes as in [1], we need to define
a filtration. In this paper, Ht , t ≥ 0, will be the natural filtration generated by the pasts of
the processes N and M at time t . It can be equivalently written Ht = σ({Ns, Ms}0≤s≤t ) =
σ({Ks, UKs }0≤s≤t ). Furthermore, we do not take into account the case where maintenance
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828 L. DOYEN AND O. GAUDOIN

efficiency can depend on external variables, such as in the Brown–Proschan model (this case
was studied in [9]).

For a counting process, for example N , Nt− represents the left-hand limit of Nt . For the
filtration, Ht− = ⋃

s<t Hs .
Finally, it is assumed that there cannot be more than one maintenance at the same time:

P(Kt+�t − Kt− > 1 | Ht−) = o(�t) for all t ≥ 0 and all �t > 0.

2.2. Characterization of the PM–CM process

In order to characterize the PM–CM process, let us define three intensities, relative to the
whole maintenance history [1, pp. 74–75]. The CM intensity is

λN
t = lim

�t→0

1

�t
P(Nt+�t − Nt− = 1 | Ht−).

The PM intensity is

λM
t = lim

�t→0

1

�t
P(Mt+�t − Mt− = 1 | Ht−).

The (global) maintenance intensity is

λK
t = lim

�t→0

1

�t
P(Kt+�t − Kt− = 1 | Ht−).

Note that the global maintenance intensity is simply the sum of the PM and CM intensities [1,
pp. 74–75]:

λK
t = λN

t + λM
t .

In the remainder of the paper, we find it more convenient to write (Wk, Uk) instead of HCk

in conditional probabilities.
The PM and CM intensities completely characterize the PM–CM process. For instance, the

joint and marginal conditional distributions of times between maintenances and maintenance
indicators are given as functions of the intensities by Jacod’s formulae [1, p. 96]:

P(Wk+1 > w, Uk+1 = 0 | Wk, Uk) =
∫ ∞

w

λN
Ck+u exp

(
−

∫ u

0
λK

Ck+s ds

)
du,

P(Wk+1 > w, Uk+1 = 1 | Wk, Uk) =
∫ ∞

w

λM
Ck+u exp

(
−

∫ u

0
λK

Ck+s ds

)
du,

P(Wk+1 > w | Wk, Uk) = exp

(
−

∫ w

0
λK

Ck+s ds

)
,

P(Uk+1 = 0 | Wk, Uk) =
∫ ∞

0
λN

Ck+u exp

(
−

∫ u

0
λK

Ck+s ds

)
du.

Conversely, the PM and CM intensities are functions of the joint conditional distributions
of times between maintenances and maintenance indicators:

λN
t = −(d/dt) P(WKt−+1 > t − CKt− , UKt−+1 = 0 | WKt− , UKt− )

P(WKt−+1 > t − CKt− | WKt− , UKt− )
, (1)

λM
t = −(d/dt) P(WKt−+1 > t − CKt− , UKt−+1 = 1 | WKt− , UKt− )

P(WKt−+1 > t − CKt− | WKt− , UKt− )
. (2)
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Finally, in a parametric approach, the (vector of) parameters, θ , of the PM and CM intensities
can be estimated by the maximum likelihood method. The likelihood function associated with
a single observation of the PM–CM process on [0, t] (t can be a maintenance time but need not
be) is [1, p. 102]

Lt(θ) =
[ Kt∏

i=1

(λN
Ci

)1−Ui (λM
Ci

)Ui

]
exp

(
−

Kt−+1∑
j=1

∫ Cj

Cj−1

λK
s ds

)
. (3)

Now the problem is to define models which can take into account various kinds of assumption
about the efficiency and dependence of each type of maintenance.

3. Usual competing risks models

A simple way of modelling the PM–CM process is the competing risks approach, developed
in the context of maintenance in [5] and [6].

After the kth maintenance, the latent time to the next failure (or the next CM) is a random
variable Zk+1. However, the failure can be avoided by a potential PM that can take place at a
random time, Yk+1, after the kth maintenance. Then the real time until the next maintenance is
Wk+1 = min(Yk+1, Zk+1) and the maintenance indicator is Uk+1 = 1{Yk+1≤Zk+1}. The random
variables Yk+1 and Zk+1 are called the risk variables.

In this paper, by the usual competing risks approach we mean the classical situation where
the couples {(Yk, Zk)}k≥1 are independent and identically distributed, so the {(Wk, Uk)}k≥1 are
also independent and identically distributed. This means that the effect of every PM and CM
is supposed to be perfect. In this situation, the models can be easily studied without using the
point process framework developed in the previous section.

The dependency between each type of maintenance is expressed by the joint distribution of
(Y1, Z1), characterized by the joint survival function,

S1(y, z) = P(Y1 > y, Z1 > z).

The partial derivatives (∂/∂y)S1(y, z), (∂/∂z)S1(y, z), and (∂2/∂y∂z)S1(y, z) are assumed to
exist.

The main problem of the usual competing risks models is that the joint distribution of Y1
and Z1 is not identifiable [18]. In fact, the distribution of the observations {(Wk, Uk)}k≥1
depends only on the subsurvival functions [8, p. 4],

S∗
Z1

(z) = P(Z1 > z, Z1 < Y1) = P(W1 > z, U1 = 0),

S∗
Y1

(y) = P(Y1 > y, Y1 ≤ Z1) = P(W1 > y, U1 = 1),

or, equivalently, the subhazard rates [8, p. 10],

λc(w) = lim
�w→0

1

�w
P(w < Z1 ≤ w + �w, Z1 < Y1 | W1 > w)

= lim
�w→0

1

�w
P(w < W1 ≤ w + �w, U1 = 0 | W1 > w), (4)

λp(w) = lim
�w→0

1

�w
P(w < Y1 ≤ w + �w, Y1 ≤ Z1 | W1 > w)

= lim
�w→0

1

�w
P(w < W1 ≤ w + �w, U1 = 1 | W1 > w), (5)
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which can be understood as the hazard rates of the first maintenance time when it is corrective
and, respectively, preventive.

Since the marginal survival function of the first time to maintenance satisfies

SW1(w) = P(W1 > w) = S1(w, w) = S∗
Y1

(w) + S∗
Z1

(w),

the joint survival function and the subhazard rates are linked by the following equations, where
a prime denotes (ordinary) differentiation:

λc(w) = −S∗
Z1

′(w)

S∗
Y1

(w) + S∗
Z1

(w)
= −[(∂/∂z)S1(y, z)](w,w)

S1(w, w)
, (6)

λp(w) = −S∗
Y1

′(w)

S∗
Y1

(w) + S∗
Z1

(w)
= −[(∂/∂y)S1(y, z)](w,w)

S1(w, w)
. (7)

It is obvious that λc(t) + λp(t) = λW1(t), the hazard rate of W1. Moreover, by Tsiatis’s
theorem of [18],

S∗
Z1

(z) =
∫ ∞

z

[
− ∂

∂z
S1(y, z)

]
(s,s)

ds, (8)

S∗
Y1

(y) =
∫ ∞

y

[
− ∂

∂y
S1(y, z)

]
(s,s)

ds. (9)

Thus, the distribution of the observations depends on the joint survival function only through
its values for y = z, which illustrates the identifiability problem mentioned above.

The most usual dependency assumptions for competing risks models related to failure and
maintenance are the independent risk assumption and the random sign assumption [6]. The
corresponding models will be presented in Section 7.

Regarding our problem, the drawback of competing risks models is that all PMs and CMs
are assumed to be AGAN. In the following, we propose to generalize the usual competing risks
models, in order to take into account any kind of imperfect maintenance effect.

4. Generalized competing risks models

By a generalized competing risks (GCR) model we will mean a competing risks model for
which the couples {(Yk, Zk)}k≥1 are not assumed to be independent and identically distributed.
The couples {(Wk, Uk)}k≥1 are therefore also not independent and identically distributed. Thus,
the effect of every PM and CM can be imperfect. The usual competing risks objects are naturally
generalized by introducing a conditioning on the past of the PM–CM process.

Definition 1. The (generalized) joint survival functions of the risk variables are

Sk+1(y, z; Wk, Uk) = P(Yk+1 > y, Zk+1 > z | Wk, Uk), k ≥ 1.

The (generalized) subsurvival functions are

S∗
Zk+1

(z; Wk, Uk) = P(Zk+1 > z, Zk+1 < Yk+1 | Wk, Uk),

S∗
Yk+1

(y; Wk, Uk) = P(Yk+1 > y, Yk+1 ≤ Zk+1 | Wk, Uk).
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The (generalized) marginal survival functions of the risk variables are

SZk+1(z; Wk, Uk) = P(Zk+1 > z | Wk, Uk),

SYk+1(y; Wk, Uk) = P(Yk+1 > y | Wk, Uk).

The partial derivatives of the joint survival functions,(
∂

∂y

)
Sk+1(y, z; ·, ·),

(
∂

∂z

)
Sk+1(y, z; ·, ·), and

(
∂2

∂y∂z

)
Sk+1(y, z; ·, ·),

are assumed to exist for all k. Relations similar to (8) and (9) then hold between the subsurvival
functions and joint survival functions:

S∗
Zk+1

(z, Wk, Uk) =
∫ ∞

z

[
− ∂

∂z
Sk+1(y, z; Wk, Uk)

]
(s,s)

ds,

S∗
Yk+1

(y; Wk, Uk) =
∫ ∞

y

[
− ∂

∂y
Sk+1(y, z; Wk, Uk)

]
(s,s)

ds.

This generalized competing risks approach is easily linked with the coloured point process
approach, as follows:

Sk+1(w, w; Wk, Uk) = P(Wk+1 > w | Wk, Uk),

S∗
Zk+1

(w; Wk, Uk) = P(Wk+1 > w, Uk+1 = 0 | Wk, Uk),

S∗
Yk+1

(w; Wk, Uk) = P(Wk+1 > w, Uk+1 = 1 | Wk, Uk).

The CM, PM, and global intensities can be written in terms of the PM–CM survival functions:

λN
t = [−(∂/∂z)SKt−+1(y − CKt− , z − CKt− ; WKt− , UKt− )](t,t)

SKt−+1(t − CKt− , t − CKt− ; WKt− , UKt− )
, (10)

λM
t = [−(∂/∂y)SKt−+1(y − CKt− , z − CKt− ; WKt− , UKt− )](t,t)

SKt−+1(t − CKt− , t − CKt− ; WKt− , UKt− )
, (11)

λK
t = − d

dt
ln SKt−+1(t − CKt− , t − CKt− ; WKt− , UKt− ). (12)

Finally, the likelihood (3) can be rewritten:

Lt(θ) = SKt−+1(t − CKt− , t − CKt− ; WKt− , UKt− )

×
[ Kt∏

i=1

[
− ∂

∂y
Si(y, z; Wi−1, Ui−1)

]Ui

(Wi,Wi)

[
− ∂

∂z
Si(y, z; Wi−1, Ui−1)

]1−Ui

(Wi,Wi)

]
.

It can be seen that the PM–CM intensities and the likelihood depend only on the values of
the PM–CM survival functions for y = z. Therefore, we will here have the same identifiability
problem as in the usual competing risks models. To illustrate this problem, let us introduce the
notion of conditional independence.

Definition 2. Risk variables {(Yk, Zk)}k≥1 are said to be conditionally independent if and only
if they are independent conditionally on the past of the PM–CM process, i.e.

Sk+1(y, z; Wk, Uk) = SYk+1(y; Wk, Uk)SZk+1(z; Wk, Uk)

for all k ≥ 0, all y ≥ 0, and all z ≥ 0. The corresponding GCR model will be called the
conditionally independent generalized competing risks (CIGCR) model.
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For GCR models, the following proposition is equivalent to Theorem 1 of [7].

Proposition 1. (i) Two CIGCR models with the same PM and CM intensities have the same
generalized joint survival functions.

(ii) For every GCR model, there exists a CIGCR model with the same PM and CM intensities.

Proof. The proof of (i) is obvious. To prove (ii), let {(Yk, Zk)}k≥1 be a GCR model and let
{(Ỹk, Z̃k)}k≥1 be a CIGCR model. Since Ỹk and Z̃k are conditionally independent, (10) implies
that

λÑ
t =

−(d/dt)S
Z̃K

t− +1
(t − CKt− ; WKt− , UKt− )

S
Z̃K

t− +1
(t − CKt− ; WKt− , UKt− )

.

Therefore,

S
Z̃k+1

(z; Wk, Uk) = exp

(
−

∫ z

0
λÑ

Ck+v dv

)
,

so conditionally independent risk variables such that

S
Z̃k+1

(z; Wk, Uk) = exp

(
−

∫ z

0
λN

Ck+v dv

)
,

S
Ỹk+1

(y; Wk, Uk) = exp

(
−

∫ y

0
λM

Ck+v dv

)
,

imply that λÑ
t = λN

t and λM̃
t = λM

t . This proves (ii).

Part (i) of the proposition proves that, for a CIGCR model, Sk+1 is identifiable for all k.
Part (ii) proves that this is not true for all GCR models.

5. Generalized virtual age models

Virtual age models have been introduced by Kijima [12] for systems subject only to CM.
The idea of these models is to assume that there exists a sequence of random variables {Ak}k≥1,
with A0 = 0, called effective ages, such that after the kth CM the system behaves like a new
one that has survived without failure until Ak , i.e.

P(Xk+1 > x | Ak, Xk) = P(X > Ak + x | X > Ak, Ak) for all x ≥ 0,

where X is a random variable independent of Ak and with the same distribution as X1. In
the coloured point process approach, this model can naturally be generalized to describe the
PM–CM process by assuming that

P(Wk+1 > w, Uk+1 = u | Wk, Uk)

= P(W > Ak + w, U = u | W > Ak, Ak) for all w ≥ 0 and all u ∈ {0, 1},
where (W, U) is a random couple with the same distribution as (W1, U1) and Ak is a determin-
istic function of (Wk, Uk) independent of (W, U). Using (1), (2), (4), and (5), the PM and CM
intensities can be derived and the model can be defined as follows.

Definition 3. Let A0 = 0 and, for all k ≥ 1, let Ak be a deterministic function of (Wk, Uk).
A generalized virtual age (GVA) model is a PM–CM process where the PM, CM, and global
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intensities are defined as

λN
t = λc(AKt− + t − Ckt− ), λM

t = λp(AKt− + t − CKt− ), (13)

and λK
t = λW1(AKt− + t − CKt− ), (14)

where λc and λp are the subhazard rates of the first latent PM and CM times, defined in (4)
and (5). We call AKt− + t − CKt− the virtual age of the system at time t , while Ak , the virtual
age of the system just after the kth maintenance, is called the effective age at kth maintenance.

The model is then completely characterized by the effective ages and the distribution of
(W1, U1).

It is also possible to build the GVA models using a generalized competing risks approach.
With the same sequence {Ak}k≥0, let us assume that after the kth maintenance the risk variables
Yk+1 and Zk+1 behave like the risk variables of a new system, never maintained before Ak .
Then

P(Yk+1 > y, Zk+1 > z | Wk, Uk) = P(Y > Ak + y, Z > Ak + z | Y > Ak, Z > Ak, Ak),

where (Y, Z) is a random couple with the same distribution as (Y1, Z1) and Ak is a deterministic
function of (Wk, Uk) independent of (Y, Z). Note that here the effect of maintenance is
symmetrical since the same effective age, Ak , influences both risk Yk+1 and risk Zk+1. It
is possible to define nonsymmetrical effects, as we will see in Section 8.

The PM–CM survival function is then

Sk+1(y, z; Wk, Uk) = S1(Ak + y, Ak + z)

S1(Ak, Ak)
(15)

and, using (10), (11), (12), and (15), we obtain the CM, PM, and global maintenance intensities
of the GVA model as in (13) and (14).

The generalized competing risks approach is more complete than the coloured point process
approach since it provides an explanation for the distribution of the observations based on
modelling considerations on potential times to PM and CM. Unfortunately, the identifiability
problem prevents us from validating these additional modelling assumptions using the obser-
vations.

The generalized subsurvival functions are

S∗
Zk+1

(z; Wk, Uk) =
∫ ∞

z

λc(Ak + s) exp

(
−

∫ s

0
λW1(Ak + u) du

)
ds,

S∗
Yk+1

(y; Wk, Uk) =
∫ ∞

y

λp(Ak + s) exp

(
−

∫ s

0
λW1(Ak + u) du

)
ds.

Finally, to build a GVA model we must make two more steps.

1. Characterize both PM and CM effects by defining the effective ages {Ak}k≥1 according
to a classical virtual age model.

2. Characterize the dependency between PM and CM by defining the joint survival function
S1 according to a usual competing risks model. Then derive the subhazard rates λc and
λp from S1 using (6) and (7).

In Sections 6 and 7 we present several particular cases of the general model based on basic
assumptions on the effects of, and the dependency between, PM and CM.
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6. Assumptions on the PM and CM effects

6.1. Perfect PM and CM

Here each maintenance is assumed to beAGAN, i.e. it perfectly repairs the system and leaves
it as if it were brand new. The effective ages are then equal to 0. The maintenance process K

is a renewal process but the failure process is, in general, not:

λN
t = λc(t − CKt− ) and λK

t = λW1(t − CKt− ).

This model corresponds to the usual competing risks model.

6.2. Minimal PM and CM

Here each maintenance is assumed to be ABAO, i.e. it restores the system to the state it was
in just before the maintenance action. The effective ages are thus equal to the last maintenance
times, i.e. Ak = Ck , and, so, the CM, PM, and global maintenance intensities are simply
functions of time:

λN
t = λc(t).

The CM, PM, and global maintenance processes are nonhomogeneous Poisson processes.

6.3. ARA∞ model for PM and CM

The idea of the model proposed for CM only by Brown et al. [3], also known as the ARA∞
model [10], is to assume that the effect of maintenance is to reduce the virtual age by an amount
proportional to its value just before the maintenance. When both PM and CM are present and
when their effects are assumed to be similar, this assumption leads to the expression

Ak = (1 − ρ)(Ak−1 + Wk).

The model can be generalized to different PM and CM effects by assuming that there are two
different reduction factors: one, ρp, corresponding to PM and one, ρc, corresponding to CM.
Then

Ak =
{

(1 − ρp)[Ak−1 + Wk] if Uk = 1,

(1 − ρc)[Ak−1 + Wk] if Uk = 0.

For 1 ≤ j ≤ Kt , between Cj−1 and t there are Mt − MCj−1 PMs and Nt − NCj−1 CMs. The
failure intensity is thus

λN
t = λc

(
t − CKt− +

Kt−∑
j=1

(1 − ρp)
Mt−−MCj−1 (1 − ρc)

Nt−−NCj−1 Wj

)
.

For ρp = ρc = ρ, this reads

λN
t = λc

(
t − ρ

Kt−−1∑
j=0

(1 − ρ)jCKt−−j

)
,

which is similar to the intensity of the basic ARA∞ model [10]. The cases ρp = 1, ρc = 1,
ρp = 0, and ρc = 0 correspond respectively to AGAN PM, AGAN CM, ABAO PM, and ABAO
CM.
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6.4. ARA1 model for PM and CM

The idea of the proportional age reduction model [13], also known as the ARA1 model [10]
for CM only, is to assume that maintenance does not reduce the global virtual age but only the
supplement of age gained since the last maintenance. When both PM and CM are present and
when their effects are assumed to be similar, this assumption leads to the expression

Ak = Ak−1 + (1 − ρ)Wk = (1 − ρ)Ck. (16)

We then have
λN

t = λc(t − ρCKt− ). (17)

6.4.1. First model. A first way to generalize the ARA1 model to different PM and CM effects
is to make an assumption similar to (16) with different maintenance efficiency parameters ρp
and ρc, namely

Ak =
{

Ak−1 + (1 − ρp)Wk if Uk = 1,

Ak−1 + (1 − ρc)Wk if Uk = 0.

Then the effective age is

Ak =
k∑

i=1

(1 − ρp)
Ui (1 − ρc)

1−Ui Wi = Ck −
k∑

i=1

ρUi
p ρ1−Ui

c Wi

and the CM intensity is

λN
t = λc

(
t −

Kt−∑
i=0

ρ
Ui+1
p ρ

1−Ui+1
c Wi+1

)
.

For ρp = ρc = ρ, the CM intensity is (17). Having ρc = 0 and ρp = 0 respectively imply
having ABAO CM and ABAO PM. However, having ρp = 1 corresponds to having PM that is
not AGAN but, rather, as good as previous: PM restores the system to the state it was in just
after the previous CM (Ak equals AKTNCk

rather than 0). Thus, PM cannot prevent the ageing

due to CM. Similarly, having ρc = 1 does not correspond to having AGAN CM.

6.4.2. Second model. Another generalization of the ARA1 model is to assume that the virtual
age after a PM is equal to the virtual age just after the previous PM plus (1 −ρp) times the time
elapsed between these two PMs. The effect of CM is the same as in the previous model. Here
the effective ages satisfy

Ak =
{

AKτMCk
−1

+ (1 − ρp)χMCk
if Uk = 1,

Ak−1 + (1 − ρc)Wk if Uk = 0.

It can be proved recursively that if Uk = 1 then

Ak = (1 − ρp)Ck,

and that if Uk = 0 then

Ak = AKτMCk

+ (1 − ρc)[Ck − τMCk
].
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Both of these expressions imply, for all values of Uk , that

Ak = (1 − ρc)[Ck − τMCk
] + (1 − ρp)τMCk

.

The CM intensity is simply

λN
t = λc(t − ρc(CKt− − τMt− ) − ρpτMt− ).

In this model, CM is less efficient than PM, since CM influences failure intensity (and, thus,
failure probability) only up to the next PM. This is rather realistic.

Having ρc = 1 still does not correspond to having AGAN CM, but here having ρp = 1 does
correspond to having AGAN PM. Having ρc = 0 and ρp = 0 respectively imply having ABAO
CM and ABAO PM.

6.5. Jack model for PM and CM

The maintenance efficiency assumptions proposed by Jack [11] in the case of PM planned
at deterministic times can also be used in the case of condition-based PM. These assumptions
are very similar to that of the previous model. The virtual age after a PM is assumed to be equal
to the virtual age just after the previous PM plus (1 − ρp) times the virtual age gained (instead
of the time elapsed, as in the previous model) between these two PMs. The effect of CM is the
same as in the previous model. If Ck is a PM time, the virtual age gained since the last PM is

Wk + Ak−1 − AKτMCk
−1

.

The effective ages thus satisfy

Ak =
⎧⎨
⎩

Ak−1 + (1 − ρc)Wk if Uk = 0,

AKτMCk
−1

+ (1 − ρp)
[
Wk + Ak−1 − AKτMCk

−1

]
if Uk = 1.

It can be proved [9] that the CM intensity of this model is

λN
t = λc

(
t − ρcCKt− + (ρc − ρp)τMt− − (1 − ρp)ρc

MCK
t−

−1∑
j=0

[CKτj+1−1 − τj ]
)

.

By taking ρp = ρc = ρ we do not obtain (16). Since the effect of CM is the same as that in
the previous model, having ρc = 1 still does not correspond to having AGAN CM. However,
having ρp = 1 corresponds to having AGAN PM, and having ρc = 0 and ρp = 0 respectively
imply having ABAO CM and ABAO PM.

7. Assumptions on the dependency between PM and CM

7.1. Independent risks model

The most basic assumption in the usual competing risks models is to consider Z1 and Y1 to
be independent. Such a model is completely defined by the marginal distributions of Y1 and Z1,
and λc and λp are then respectively equal to the hazard rates of Z1 and Y1:

λc(t) = −S′
Z1

(t)

SZ1(t)
and λp(t) = −S′

Y1
(t)

SY1(t)
.
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In a parametric approach, it is possible to choose, for example, a Weibull distribution for Y1
and Z1, in which case λc(t) = αcβct

βc−1 and λp(t) = αpβpt
βp−1 with αc > 0, αp > 0, βc ≥ 1,

and βp ≥ 1.
The assumption of independence between the risk variables is not realistic for condition-

based PM, because potential PM times and latent CM times both depend on the degradation
of the system. However, using (15), it is clear that the risk variables of a GVA model are
conditionally independent if and only if Z1 and Y1 are independent. Thus, for any GVA model,
there exists an equivalent GVA model with independent risks. Even if the assumption of
independence is not realistic, the corresponding GVA model can be useful.

7.2. The repair alert model

For dependent competing risks, the most usual assumption is the random sign assumption [7],
namely that the sign of Y1 − Z1 is independent of Z1. This is equivalent to saying that U1 and
Z1 are independent. Hence, the type of the next maintenance does not depend on the next latent
failure time. Another assumption on Y1 is needed to completely define the model. For instance,
in the repair alert model [16] it is assumed that there exists a nondecreasing function G(t),
with G(0) = 0, such that

P(Y1 ≤ y | Z1 = z, Y1 ≤ Z1) = G(y)

G(z)
.

The function G characterizes how the maintenance team manages to optimize PM, i.e. it
measures the nearness between PM and latent failure times.

Lindqvist et al. [16] proved that

S∗
Z1

(t) = (1 − q)SZ1(t) and S∗
Y1

(t) = q[SZ1(t) − G(t)K(t)],
where q = P(U1 = 1),

K(t) =
∫ ∞

t

fZ1(x)

G(x)
dx,

and fZ1 is the density of Z1. Let g denote the derivative of G. Then

S∗
Z1

′
(t) = −(1 − q)fZ1(t), S∗

Y1

′
(t) = −qg(t)K(t),

S1(t, t) = SZ1(t) − qG(t)K(t),

and, finally,

λc(t) = (1 − q)fZ1(t)

SZ1(t) − qG(t)K(t)
,

λp(t) = qg(t)K(t)

SZ1(t) − qG(t)K(t)
.

In a parametric approach, the first time to latent failure can have a Weibull distribution
(λZ1(t) = αβtβ−1 with α > 0 and β ≥ 1) and G(t) = tb with b > 0. If b is small, PM is
likely to be done very early relative to the latent failure time, which is not desirable. If b is
large enough, PM is likely to be done just before the latent failure time, so PM is ideal with
regards to maintenance costs. As in the independent risks model, four parameters have to be
estimated.
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In the intensity proportional repair alert model [14], [15], G(t) = 
Z1(t), the cumulative
hazard rate of Z1. In this case, there is one fewer parameter to estimate and K(t) = Ie(
Z1(t)),
where Ie(t) = ∫ ∞

t
[exp(−s)/s] ds. Langseth and Lindqvist [14] have applied this model with

virtual ages of the Brown–Proschan type. This model involves external variables, so the
likelihood (3) cannot be used.

7.3. The proportional hazards model

Let us assume that maintenance type U1 is independent of maintenance time W1. This
assumption is quite similar to the random sign assumption. Let q = P(U1 = 1) denote the
probability that the first maintenance is preventive. The subsurvival functions are then

S∗
Y1

(y) = qS1(y, y) and S∗
Z1

(z) = (1 − q)S1(y, y),

and the subhazard rates are

λc(t) = (1 − q)λW1(t) and λp(t) = qλW1(t).

This is known as the proportional hazards model [8, p. 12]. With a Weibull model for the first
maintenance time (λW1(t) = αβtβ−1 with α > 0 and β ≥ 1), there is one fewer parameter to
estimate than in the independent risks model.

8. Nonsymmetrical maintenance effect on the risk variables

In the GVA model described above, we have assumed that the effect on the risk variables
is symmetrical. However, it is possible to define more general models by assuming that there
exist two sequences, {Ap

k}k≥0 and {Ac
k}k≥0 with A

p
0 = Ac

0 = 0, such that

P(Yk+1 > y, Zk+1 > z | Wk, Uk)

= P(Y > A
p
k + y, Z > Ac

k + z | Y > A
p
k, Z > Ac

k, A
p
k, Ac

k),

where (Y, Z) is a random couple with the same distribution as (Y1, Z1) and A
p
k and Ac

k are
deterministic functions of (Wk, Uk) independent of (Y, Z). The idea is to consider maintenances
that have different effects on the potential times to the next PM and CM.

Similarly to in Section 5, the PM, CM, and global intensities can be derived as

λN
t =

−[(∂/∂z)S1(A
p
Kt−

+ y − CKt− , Ac
Kt−

+ z − CKt− )](t,t)
S1(A

p
Kt−

+ t − CKt− , Ac
Kt−

+ t − CKt− )
, (18)

λM
t =

−[(∂/∂y)S1(A
p
Kt−

+ y − CKt− , Ac
Kt−

+ z − CKt− )](t,t)
S1(A

p
Kt−

+ t − CKt− , Ac
Kt−

+ t − CKt− )
, (19)

λK
t = − d

dt
ln S1(A

p
Kt−

+ t − CKt− , Ac
Kt− + t − CKt− ).

Note that A
p
Kt−

+ t − CKt− is not necessarily equal to Ac
Kt−

+ t − CKt− . Thus, in this general
virtual age model, it is probable that S1 will be identifiable.

In a different context, Bedford and Lindqvist [2] have proposed a model that can be consid-
ered similar to a particular case of this general model. Their idea is equivalent to assuming that
each type of maintenance renews (AGAN) its own risk process and leaves the other one in the
same state (ABAO), whence

A
p
k = Ck − τMCk

and Ac
k = Ck − TNCk

.
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Here A
p
k represents the time elapsed since the last PM and Ac

k the time elapsed since the last
CM. The CM and PM intensities are

λN
t = −[(∂/∂z)S1(y − τMt− , z − TNt− )](t,t)

S1(t − τMt− , t − TNt− )
,

λM
t = −[(∂/∂y)S1(y − τMt− , z − TNt− )](t,t)

S1(t − τMt− , t − TNt− )
.

In [2] Bedford and Lindqvist proved that, under sensible assumptions, S1 is completely iden-
tifiable in this model. Their proof is equivalent to proving that (t − τMt− , t − TNt− ) has some
chance of exploring the whole R

2+ space for all t ≥ 0. The distribution of the PM–CM process
will thus depend on the values of S1(y, z) for all (y, z) ∈ R

2. A similar method can probably
be used to prove the identifiability of the general model defined in (18) and (19).
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