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FURTHER RESULTS ON RECURSIVE EVALUATION
OF COMPOUND DISTRIBUTIONS*

BJ0RN SUNDT and WILLIAM S. JEWELL

A recent result by Panjer provides a recursive algorithm for the compound
distribution of aggregate claims when the counting law belongs to a special recur-
sive family. In the present paper we first give a characterization of this recursive
family, then describe some generalizations of Panjer's result.

1. INTRODUCTION

Let (i. be the Lebesgue or the counting measure on (o, 00), and let Xi, x2, . . .
be independent, identically distributed random variables (the independent
severities) with cumulative distribution F and generalized density / :

F{x) = J f(y) cLAj)-
<»,«]

Let n be a random variable (the claim number), independent of the x^s,
defined on the non-negative integers with probabilities:

Then the generalized density g of the random sum (the aggregate claims)
n

s = S Xi

(we tacitly assume s is zero if n is)

has an atom
I1-1) g[o) = po

at zero, and for s > o the form

(1-2) g(s) = i pnfn*(s),
n - 1

where/"* denotes the «-th convolution of/. This formula is extremely difficult
to compute because of the high-order convolutions; only a few closed-form
solutions are known.

* This research was supported by the Norwegian Research Council for Science and
the Humanities, the Association of Norwegian Insurance Companies, and the Forschungs-
institut fiir Mathematik, ETH Zurich.
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28 SUNDT AND JEWELL

PANJER (1981) has shown that, if there exist constants a and b such that

(1.3) pn = pn-i («+-)- ( n = i , 2 , . . . )

then

f / *\(M) g(?) = pif{s) +' la + &-)/(*)g(s-*)rf|A(*).
(0..)

(S>0)

The importance of this result is that, when/is discrete, the successive values
of g can be recursively calculated. We now consider various aspects of the
relation between the recursions (1.3) and (1.4), and then provide a variety of
generalizations.

2. CHARACTERIZATION OF THE COUNTING DISTRIBUTION

The following theorem characterizes the class of counting densities pn sat-
isfying (1.3); it is essentially given in JOHNSON & KOTZ (1969).

Theorem 1

Assume that (1.3) holds. Then we must have one of the four cases:

, o (n = o)

1 (n > 0)

X"
(2.2) p n = —{ e~* (X > o)

(2.3) pn = C * 4 " " 1 ) ^ ! -/>)a (a > O, 0 < p < l)

(2.4) p n = [n) Pn{* — p)N~n (O < p < 1, N = 1, 2, . . .)

Proof

To avoid negative probabilities we must have a + b > 0. For a + b = 0 we
get the degenerate case (2.1). For the rest of the proof we assume a + b > 0.
If a = 0, we get the Poisson density (2.2) with X = b. For a > o we introduce
a = (a+ b)ja and get from (1.3)

In order that 2 pn < 1, we must have a < 1. Then we get the negative

binomial (Pascal) density (2.3) with p = a.
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Finally, assume a < 0. Then, to avoid negative probabilities, there must
exist a positive integer N such that a + b/(N +1) = 0 , that is, N = — (a + b)\a.
With p = — a/(i — a) we get the binomial density (2.4).

We have now proved the theorem.
Q.E.D.

The allowed regions for (a, b) are illustrated in figure 1, which is inspired by
JOHNSON & KOTZ (1969, p. 42).

Remark

For the case a < o JOHNSON & KOTZ (1969, p. 41) also develop a distribution
for the case when — (a + b)ja is not an integer, by letting pn = o when a +
(bin) < 0. However, that distribution does not satisfy (1.4) as we then must
have that (1.3) holds for all n > 0. A modified version of (1.4) allowing such
"generalized binomial" distributions will be given in Section 5. However, this
version seems in most cases to be more complicated than direct computation
of (1.2). For the binomial distribution we have that Pr(n > N) = 0, but as
(^) = 0 for n > N we can let pn be defined by (2.4) for all the non-negative
integers.

3. GENERALIZATIONS

W e first in t roduce some n o t a t i o n : if zi, 22, . . . are given quant i t ies , then we let

n

= S Zi

denote the sum of the first n elements.

Assume there exists a function h : {(%, s) : 0 < x < s} —*• ]R, satisfying the
condition that

, . @(A(xi,s) | x B S = s) = mn = 2
v ; are independent of s. > 3 < - - - i

Then we have the following generalization of Panjer's result:

Theorem 2

(3.2) pn = pn-lWn, ( w = 2 , 3 , . . . )

with the sequence {nin} satisfying (3.1), then

(3-3) g{s) = pxf(s) + J h(x,s)f(x)g(s-x)d[i(x) • (s > 0)
( )
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Proof

We have for s > o

g(s) = S pnfn*(s) =

pif(s) + £ /»«-i«tn/»*(s) =
n - a

CO

. - J ( o . . )

M(s) + J M*. «)/(*)[ S ^«/«*(s-*)]i(i(*) =

-/>- f (c\ _J_ f h(y s\ f (Y\ f?fc -v̂  //ri ^T\
Jr*-J\f J llr\A'y ^) J x™J s \ } M-(j[ '\Ay •

Q.E.D.

It is clear that if the functions hi and hi both satisfy (3.1), then for all
constants c\ and c2 the function ci hi + cz A2 satisfies (3.1).

For all constants a and b we clearly have

/ xi \ b
(3.4) g f l + i - I x n L = sl = a+ - (n = 2,3, . . . )

independent of s. Hence the kernel in (1.3)1

x
h(x, s) = a + b - ,

s

is a special case of (3.1) with

6
(3.5) 7»n = «+ - . (n = 2, 3, . . .)

The following example gives a distribution satisfying (3.1) with mn sat-
isfying (3.5), but not covered by Panjer's result.

Example 1

Consider the logarithmic" counting density

pn = 0 (11 = o)

(3.6) (o < p < 1)
1 pn

\ l n ( l - p ) I I T ( " = 1 > 2 > • • • ) -

https://doi.org/10.1017/S0515036100006802 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006802


COMPOUND DISTRIBUTIONS 31

Then we have

I Pn= Pn-l[l--J, ( « = 2 , 3, . . . )

that is, mn = 1 — (i/«); a = l; b = — 1, and for s > o we obtain

g(s) = Pif{s) + J (1 - j) f{x)g(s-x) dy.(x).
(•. •)

The difference from Panjer's result is that (1.3) does not hold for n = 1.

Theorem 3

Assume that (3.1) is satisfied for the distributions given by

Pr{Xi= 1) = 1 - Pr(Xi = 2) = p. (o «c p ^ 1)

77JCM iAere must exist constants a and b such that (3.5) is satisfied.

Proof

For p = 1 and p = 0 we get

(3.7) w B = h{\,n)

(3.8) mB = A(2, 2n)

respectivel}'.

Assume /> e (0, 1); u = 2, 3, . . . ; n = u, u + 1, . . . , 211. Then

n— 1
2U — y — n + l

— «

{y = 1,2)

By using (3.7), (3.8), and (3.9) in
/(l) /<n-D* (2 M_ j)

m « " ysr^j *(1'2")

/(2) /(»-D* (2M-2)
A(2, 2M)

we obtain

n

with

au = 2ni2U — w s , &M =
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As

bu+i bu

= au + ~M+ 1

Wttt+2 — #14+1 "I" — #M "I" '

U+2 M+ 2

we must have a,,+i = au and bu+i. = 6U for all «, that is, there exist constants
a and 6 such that (3.5) is satisfied.

Q.E.D.

Theorem 3 says that if (3.1) is to hold for a class of two-point distributions
F, the sequence {mv} must satisfy (3.5). This result clearly implies that if
(3.1) is to hold for all distributions on (o, oo), the sequence {mu} must satisfy
(3.5). Because of this fact we restate Theorem 2 for this particular class of
counting distributions.

Theorem 2

If
I b\

(3-io) pn = pn-i\a+-j, ( n = 2 , 3 , . . . )

then for all severity distributions F we have

(3.11) g(s) = p,f(s) + J (a+bf) f(x) g{s-x) d^x). (s > 0)
(«••)

We close this section by comparing the class of counting distributions
defined by (1.3) (that is, the class given in Theorem 1) to the class defined by
(3.10). Clearly the latter class contains the former one. As in the latter class
the recursion may start at one, the restriction a + b ^ 0 may for a > 0 be
replaced by the weaker condition a + b\z > 0. Hence, the permitted para-
meter space is now increased by the dotted region of figure 1.

As po may now be chosen (relatively) freely, the counting distribution is no
longer uniquely determined by (a, b). For {a, b) being in the permitted region
for recursion (1.3), excluding the line a + b = 0, the permitted class consists
of the distributions given by

I p + ( I - P ) T I O (n = 0)

(3-12) pn = <
( ( l - p ) 7 t » , (« = 1 , 2 , . . . )

where {nn} is a counting distribution satisfying (1.3), and p is chosen such that
p < 1 and po ^ 0. pn clearly satisfies (3.10) with the same (a, b) as for izn.
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Fig l Permitted (a, b) parameter space for recursion (i 3) (The dotted area, denotes the
increase obtained by recursion (3 10) )

In the discrete case (311) may under the piesent conditions be wntten as

g(s) = (« + &) pF(s) + 2 (« + & j ) /(*) g(s -x) (« > 0)

For a + b = 0 the peimitted class of counting distributions is given by
(3 12), with the obvious lestnctions on p, and pn given by (3 6)

A counting distribution {/>«} of the form (3 12) may be intci pictcd as a weight-
ed (in a general sense, as p may be negative) distribution of the distribution {nn}
and a distribution concentiated at zero Then the aggregate claims distribution
must be the analogous weighted distribution of aggregate claims distributions,
and if the aggiegate claims distilbution gn conesponding to nn is known, we
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may find the aggregate claims distribution gv corresponding to pn by

P + (l - P) gn(0) {S = O)

(l — p) grt(s). (s > 0)

4. RESULTS ON SPECIFIC SEVERITY DISTRIBUTIONS

From (3.4) and Theorem 3 we see that if (3.1) is going to be satisfied for all F,
then the sequence {mn} must satisfy (3.5). However, for specific classes of F
there may exist other mn.

The following obvious result is interesting in this connection.

Theorem 4

Let v be a function such that v{xi, xnz) is independent of x , j for all 11. Then
(3.1) holds for any h that can be written h(x, s) = k(y (x, s)) with ($(/; (xi, xnj;))
existing for n = 2, 3

Example 2

Assume that Xi, X2, . . . are gamma-distributed with parameters (a, v). Then
Xi/xnL is independent of xnz and beta-distributed with parameters (v, (n — l)v).
Hence, by Theorem 4, all h(x, s) — U[x\s) with (£,(k (xi/xBi;)) existing for all n
satisfy (3.1). In particular, if

k(z) = 2"(i -z)v.

we get

I>v) r(v + w) r ( ( n - i ) v + v)
»»n = r ( ( n - 1) v) r(v) r(nv + « + wj

For v = o and u positive integer this gives

n v + i ^ a*
. = / .

nv + 1 *—i nv + i
0 i0

for some a0, . . ., «M_i independent of n. Hence, for any positive integer u
there exist constants ci, . . ., c«+i such that

k[z) = S* Cizi
1 - 1

gives

nv +
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i
Example 3

I Assume that the counting density is hypergeometric
m\ (M — m

N-n

TV

where the positive integer parameters (m, M, TV) satisfy TV < M; in ^ M — TV.
For n > o we have

(in- n+ 1) (TV — 11 + 1)

which may be

with

Pn =

written

Pn =

a =

;.
0 =

C =

P" 1 n(M - m - N + 11)

I b c
Pn-i [a + - +

\ 11 11 + M — v

1,

(m+ 1) (TV + 1)

~ TV -M + m

(M-m+ 1) (N-M- 1)
N - M + m

Now, assume that the x ŝ are gamma-distributed with parameters (a, v),
where v is a positive integer. As we may write

c cv

n + M — m — N «v + (M — m — A7)v

by Example 2 we can find a function h such that Theorem 2 is satisfied.

The extension to the eccentric hypergeometric distribution (sec SVERDRUP

(1976), with counting density

. Pn X",
P ( X > 0 )

where pn is given by (4.1)' ' s obvious.

Similar approaches are possible for the following counting distributions,
described in JOHNSON & KOTZ (1969): the displaced Poisson distribution
(p. 113); and the Yule distribution with generalizations (pp. 244-251).
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5. RECURSION ON A LIMITED RANGE

In the previous cases we have assumed that the pn can be computed recur-
sively for n > 1. The following Theorem 5 extends this to the case when the
recursion holds only for n > K with K ^ 1.

Let

gn(s) = £ Pnfn* (s).
n-K

Then

g{s) = V pnfn* (s) + gK(s).
n — 0

Theorem 5

Assume that

Pn = pn-i*nn. (n = K+ 1, K+2, . ..)

with mn given as in (3.1). Then

(5-1) gK(s) = pKfK*(s) + J h(x,s)f(x)gK(s-x)dv.(x).
(». •)

(The proof goes as in Theorem 2 and is omitted.)

The difference from the underlying assumptions of Theorem 2 is that (3.1)
and (3.2) do not need to hold for n < K. If (3.1) holds for all n ^ 2, insertion of

8K{S) = g(5) - "S" Pnfn*(s) (S > 0)
n - 1

in (5.1) gives the final recursion:

(5-2) g(s)=plf(s)+ S (pn-pn-imn)f**{s)

+ J h{x,s)f{x)g{s~x)dlL(x). (s > 0)
(°, •)

(The summation is zero if K = 1.) Compared to (3.3) we have now got the
summation as a correction term, since this would be zero if pn — pn-i mn = o
for n — 2, . . ., K.

For the special case of Theorem 5 with Po = pi = . . . = pn-\ = 0 (trun-
cation from below) gK{s) = g(s), and (5.1) gives

(5-3) g{s) = pi<fK*(s) + J h(x,s)f(x)g(s-x)dli(x).
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We shall now see what happens if the counting distribution is truncated
from above. Assume

Then

(54)

for s

Pn =

=

=

> o we get

g(s) =

+

0

Pn-l

0

pic/1

J i

111 n

** (s) -pi

i(r <;\ f(v\ i

[11 = 0,

(n = K

{n = L

iWL+1/(i+»*

j(s-*)i|i(«).

+ i,

+ i,

(s)

K- - i )

).

Unfortunately, in this formula we need high-order convolutions of /. These
can be rather complicated to compute, except for some cases where we have
simple closed-form expressions (gamma, Poisson, binomial, negative binomial
distributions). In some cases the factor PLI^L+I makes the correction term
negligible. Another possibility is for large L to approximate/'L+1>* by a (pos-
sibly discretized) normal density. Otherwise it is probably more efficient to
compute g from the basic definition (l.i).

6. EXTENSION TO NON-POSITIVE DISCRETE VALUES

We now leave the assumption that the x̂ s are distributed on (o, oo) and as-
sume that they are distributed on the set of all integers:

f(x) = Pr{x = x). {x = . . . - 2 , - i , o , 1,2, . . .)

Then (1.1) m u s t be replaced b y

(6-1) g(0) =Po+ £ pnf** (0).

We further assume that the counting distribution satisfies the recursion
(1.3), and analogously to Theorem 2 we obtain

(6.2) sg(s)= X (as + bx)f{x)g{s-x).

If x̂  only takes on zero plus positive values, so does s; then/n*(o) = [/(o)]n,
and the sum in (6.1) can be carried out explicitly (see the probability generating
function for the counting distribution in JOHNSON & KOTZ (1969)). We then
get the recursive system
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- f l /(O)l'

(a = o)

(6.3)

(S > 1)

The case where the x\ can take on negative values is difficult because one
cannot, in general, find suitable starting values for s in (6.2).

However, in the case where pv is Poisson with parameter ). (2.2), the density
g can be computed by two applications of (0.3) plus a convolution. Let

x,* = max (o, Xi)
( 0 4 ) (« = 1 , 2 , . . . )

Xj" = m a x (0, — Xj),

and we have
n n

s * = 2 Xj1 ; s" = 2 x r ;

(6-5)
s = s+ — s".

Andrd Dubcy has pointed out to us that when n is Poisson distributed, then
s+ and s~ are independent. Let xf* and x[ have densities/* and/", respectively,
and s+ and s ' have densities g* and g~, respectively. Then g* and g~ are
computed independently, using (6.3), with a = o, b = X, and the corre-
sponding/* or/". Then g for the total sum is computed by the convolution

(6.6) g(s) = £ g+{x)g-{x-s).
x ~ max (0, 1)

(6.2) can, in principle, also be solved for pn binomial, if f(x) is defined over
(— K, — K + 1, . . . ) , for in that case there is a largest negative value of the
sum, s = — _VA', and (6.2) can be rearranged into a true recursive form.

Remembering that p = — aj{\ — a) and N = — {a + b)\a, we get the recur-
sive system:

(6.7) g(s) = o (s<-NK)

= [pf{-K)}» ' (s = -NK)

(1 -p-y) {s - K) g{s - A) + '+_T [{N +1) x- NK - s] / ( * - K) g{s - x)
= _ _ _ _ _ _ _ _ _ _
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Of course, if K is very large, there are obvious problems with round-off error
accumulation, especially if /(— K) and the nearby values are very small. We
remind the reader that this problem can occur with any recursive scheme
described in this paper where the range of discrete severities is large.

There remains the case of pn negative binomial (2.3) for which it does not
seem possible to give a simple procedure for negative xjs. Of course, in this and
in the other cases, one can think of various iterative schemes for (6.2) which
would converge to the correct density.
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