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SPECIAL TIGHT CLOSURE

CRAIG HUNEKE and ADELA VRACIU

Abstract. We study the notion of special tight closure of an ideal and show
that it can be used as a tool for tight closure computations.

§1. Introduction

Since the inception of tight closure theory, the problem of how to com-

pute and analyze the tight closure of an ideal has been of paramount im-

portance. The prevailing sense of how the tight closure of ideal I compares

to I is that the extra elements needed to obtain the tight closure of I are

much ‘deeper’ in the ring than the generators of I. The first result of this

type is due to K.E. Smith [Sm]: she proved that if R is a normal graded

finitely generated algebra over a perfect field of positive characteristic, I is

a homogeneous ideal generated by forms of degrees at least δ then every

x in the tight closure of I but not in I must have degree at least δ + 1.

The second author of this paper was able to extend this result to non-

homogeneous ideals (still in a graded normal ring as above). This was done

via a canonical decomposition of the tight closure in terms of the ideal plus

another piece called the special tight closure. The purpose of this paper

is to prove that the tight closure of an arbitrary ideal in a normal ring of

positive characteristic with perfect residue field can be computed as the

sum between the ideal and its special tight closure. Thus, the special tight

closure can be envisioned as a technique for computing tight closure, or

rather for imposing strong restrictions on the set of elements that can be in

the tight closure. As an application, we prove that if (R,m) is an excellent

normal local ring with perfect residue field and gr
m

R is reduced, then for

every ideal I ⊆ m
k, I∗ ⊆ I + m

k+1, a direct generalization of Smith’s result

to the local case. A consequence is that every ideal that lies between m
k

and m
k+1 is tightly closed.
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One would like even more precise results. For example a special case

of a theorem due independently to N. Hara [H] and Mehta and Srinivas

[MS] states that for large characteristic, if R is a Cohen-Macaulay graded

ring with an isolated singularity and x1, ..., xn are a homogeneous system

of parameters of R of degrees d1, ..., dn, then

(x1, ..., xn)∗ = (x1, ..., xn) + R≥D

where D = d1 + ... + dn and where R≥D is the ideal generated by all

forms of degree at least D. (See [HS] for some background information

concerning this theorem.) What the best possible theorem might be remains

a mystery. We begin by introducing the relevant definitions and giving some

background.

Definition 1.1. Let (R,m) be a local Noetherian ring of character-
istic p, p prime, and let I be an ideal. We say that an element x ∈ R is
in the special tight closure of I if there exists c ∈ R0 and a fixed power of
p, q0, such that cxq ∈ m

[q/q0]I [q] for all q ≥ q0, or equivalently such that
xq0 ∈ (mI [q0])∗.

In studying tight closure, it is natural to restrict our attention to a

certain class of ideals, namely those ideals that are minimal among ideals

having the same tight closure.

Definition 1.2. Let (R,m) be local characteristic p ring. An ideal I
of R is ∗–independent if it can be generated by elements f1, . . . , fn (equiv-
alently, for every minimal system of generators f1, . . . , fn) such that for all
i = 1, . . . , n we have fi /∈ (f1, . . . , fi−1, fi+1, . . . , fn)∗.

We note the following properties of special tight closure:

Proposition 1.3. For a local ring (R,m) and an arbitrary ideal I, the

following hold:

(1) mI ⊂ I∗sp ⊂ I∗.

(2) If I is ∗–independent, I∗sp ∩ I = mI.

Proof. The first inclusion in (1) follows by choosing q0 = 1 in Definition
1.1, while the second inclusion follows from the definitions as well, since
cxq ∈ m[q/q0]I [q] ⇒ cxq ∈ I [q] ⇒ x ∈ I∗. Part (2) is contained in Proposition
4.2 in [Vr].
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It is of considerable interest to identify situations in which I ∗ can be re-

covered from I∗sp. In Theorem 4.4 in [Vr], it was proved that this can

be accomplished if R is the localization of a normal N-graded ring at the

maximal homogeneous ideal.

We now show that the assumption on the grading is unnecessary, thus

the special tight closure technique for computing tight closure is available

in a much larger class of rings.

The following result will be very useful. For a proof, see Proposition

2.4 in [Ab].

Proposition 1.4. Let (R,m) be a excellent, analytically irreducible

local ring of characteristic p, let I be an ideal, and let f ∈ R. Assume

that f /∈ I∗ ; then there exists q0 = pe0 such that for all q ≥ q0 we have

I [q] : f q ⊂ m
[q/q0].

§2. Main result

Theorem 2.1. Let (R,m) be a characteristic p local excellent normal

ring, with perfect residue field. Then I∗ = I + I∗sp for every ideal I. In

particular if I is ∗–independent, we have a direct sum decomposition

I∗

mI
=

I

mI
⊕

I∗sp

mI
.

Note that the second statement of the conclusion follows immediately

from the first statement and the second part of 1.3. Before beginning the

proof we need several lemmas.

Lemma 2.2. Let I = (f1, . . . , fn), and f ∈ I∗. Assume that for all

i = 1, . . . , n there exists an element αi ∈ R such that

fi /∈ (f + αifi, f1, . . . , fi−1, fi+1, . . . , fn)∗.

Then f ∈ I + I∗sp.

Proof. Let f ′ = f + α1f1 + · · · + αnfn; clearly f ′ ∈ I∗. We claim that
for all i = 1, . . . , n, we have

fi /∈ (f ′, f1, . . . , fi−1, fi+1, . . . , fn)∗.

Since

(f ′, f1, . . . , fi−1, fi+1, . . . , fn) = (f + αifi, f1, . . . , fi−1, fi+1, . . . , fn),
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this follows from the hypothesis.

Let c ∈ R0 be such that c(f ′)q ∈ I [q] for all q, and write

c(f ′)q = a1f
q
1 + · · · + anf q

n.

Then there exists fixed q0 = pe0 such that for all i, we have

ai ∈ ((f ′)q, f q
1 , . . . , f q

i−1, f
q
i+1, . . . , f

q
n) : f q

i ⊂ m
[q/q0],

where the last containment follows since we have shown that fi /∈ (f ′,
f1, . . . , fi−1, fi+1, . . . , fn)∗ and can apply Proposition 1.4.

The next lemma is a crucial step needed in the proof of our main

theorem.

Lemma 2.3. Let (R,m) be excellent normal local ring of positive char-

acteristic p, and let I = (f1, . . . , fn) be an arbitrary ideal. If f ∈ I∗, there

exists a test element c and a power q0 of the characteristic such that

cf q ∈ cI [q] + m
q/q0I [q]

for all q ≥ q0.

Proof. There is no loss of generality in assuming that f1, . . . , fn are
∗–independent, because otherwise we can replace them by a ∗–independent
subset, generating the same ideal up to tight closure.

Since the ring is normal, the ideal defining its non-regular locus has
height at least two, and moreover one can choose two elements c, d in this
ideal, forming a regular sequence. Theorem 6.2 in [HH] shows that we
can replace c and d by some powers cn, dm and obtain a regular sequence
consisting of test elements.

Write

cf q = a1f
q
1 + . . . + anf q

n, and df q = b1f
q
1 + . . . + bnf q

n,

with a1, . . . , an, b1, . . . , bn ∈ R. Multiply the first equation by d and the
second one by c, then subtract the second equation from the first; we get:

n
∑

i=1

(dai − cbi)f
q
i = 0.
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Since I is ∗–independent, this implies that there exists a q1 (independent
of q) such that dai − cbi ∈ m

q/q1 ∩ (c, d). By the Artin-Rees lemma it
follows that there exists a q2 ≥ q1, also independent of q, such that dai −
cbi ∈ m

q/q2(c, d), and therefore we can write dai − cbi = cui + dvi, with
ui, vi ∈ m

q/q2 . Because c, d is a regular sequence on R, this implies that we
can write ai = vi+cgi, bi = −ui+dgi. Recalling that cf q =

∑

aif
q
i , we see

that c(f q −
∑

uif
q
i ) ∈ m

q/q0I [q], which shows that cf q ∈ cI [q] +m
q/q0I [q].

We now begin the proof of the theorem.

Proof. Let I = (f1, . . . , fn) and f ∈ I∗. There is no loss of generality in
assuming that I is ∗–independent. We show that one can find α1, . . . , αn ∈
R such that the condition in Lemma 2.2 is satisfied. There is no loss of
generality in working with i = 1. Assume by contradiction that for every
choice of α ∈ R we have f1 ∈ (f + αf1, f2, . . . , fn)∗. Let Jα = (f +
αf1, f2, . . . , fn) and let I0 = (f2, . . . , fn).

Use Lemma 2.3 to write

(1) cf q ≡ cuqf
q
1 mod ( I

[q]
0 ,mq/q0f q

1 )

for some uq ∈ R.
We claim that upq ≡ (uq)

p (mod m) for all q � 0. To prove the claim,
raise Equation 1 to the pth power to obtain

(2) cpfpq ≡ cp(uq)
pfpq

1 mod ( I
[pq]
0 ,mpq/q0fpq

1 ).

Using Equation 1 in which q is replaced by pq, and then multiplying by
cp−1, we get

(3) cpfpq ≡ cpupqf
pq
1 mod ( I

[pq]
0 ,mpq/q0fpq

1 ).

Comparing Equations 2 and 3, we get

[cp(upq − (uq)
p) − M ] fpq

1 ∈ Ipq
0 ,

for all q � 0, where M ∈ m
pq/q0 . We obtain that

cp(upq − (uq)
p) − M ∈ Ipq

0 : fpq
1 ⊆ m

pq/q1

for some fixed q1 and all large q since f1 /∈ I∗0 (using 1.4). Then there exists
a fixed constant k such that

cp(upq − (uq)
p) ∈ m

pq/k
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for all large q. Hence upq − (uq)
p ∈ m

pq/k : cp and the latter ideal is
proper for large enough q since cp has finite order (it cannot be 0). Hence
upq − (uq)

p ∈ m for all q � 0.
Since the residue field R/m is perfect, we can choose α ∈ R such that

αq ≡ −uq (modm) for all q � 0.
Using the assumption that f1 ∈ J∗

α and Lemma 2.3, we get

cf q
1 ∈ ( I

[q]
0 , c(f q + αqf q

1 ),mq/q0f q,mq/q0f q
1 ).

Multiply by c and use Equation 1 to obtain

c2f q
1 ∈ ( I

[q]
0 , c2(uq + αq)f q

1 ,mq/q0f q
1 ),

and therefore we have

f q
1

[

c2 (1 − B(uq + αq)) − C
]

∈ I
[q]
0 ,

for some B ∈ R and C ∈ m
q/q0 .

Note that the element c2 (1 − B(uq + αq))−C (which multiplies f q
1 into

I
[q]
0 ) has bounded order (by the same reasoning as in the above paragraph)

as q � 0 increases, because uq +αq ∈ m by the choice of α. This contradicts
the assumption that I is ∗–independent.

§3. Applications

As an application, we obtain a generalization of one of the main results

in [Sm], showing that there is an explicit lower bound (depending on the

ideal) on the order of any element in the tight closure of an ideal, provided

that (R,m) is complete normal and gr
m

R is reduced.

We wish to thank the referee for suggesting the present form of the

results in this section.

Theorem 3.1. Let (R,m) be an excellent normal domain, with perfect

residue field. Assume that there exists a filtration F = {Fk} consisting of

m-primary ideals, such that the graded ring grF = ⊕Fk/Fk+1 is reduced.

If I is any ideal such that I ⊂ Fk, then I∗ ⊂ I + Fk+1.

In particular every ideal I with the property that Fk+1 ⊂ I ⊂ Fk for

some integer value of k is tightly closed.

Proof. Note that the assumption that grF is reduced implies that
each of the ideals Fk is integrally closed. If u ∈ Fk−1 \Fk, it follows that

https://doi.org/10.1017/S002776300000859X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000859X


SPECIAL TIGHT CLOSURE 181

un /∈ Fn(k−1)+1 for all n ≥ 1. This shows that an equation of the form
un +a1u

n−1 + · · · an−1u+an = 0, with ai ∈ F i
k, is impossible (because then

an−iu
i ∈ F(n−i)kFi(k−1) ⊂ Fnk−i ⊂ Fn(k−1)+1 for all i = 0, . . . , n − 1).

It is sufficient to show that I∗sp ⊂ Fk+1. Assume by contradiction that
there is a u ∈ I∗sp, u /∈ Fk+1. The assumption that grF is reduced implies
that uq0 /∈ Fkq0+1 for every q0.

Choose a fixed c such that there exists a q0 with cuq0q ∈ m
qI [q0q] for

all q � 0. Since the ideals F
[q]
1 are cofinal with mq, one can re-adjust q0 so

that, taking into account the fact that I [q0q] ⊂ (Fkq0
)[q], we have

(4) cuq0q ∈ (F1+kq0
)[q].

Since Fkq0+1 is integrally closed, we can choose v a valuation such that
v(uq0) < v(Fkq0

+ 1). Apply v to Equation 4:

v(c) + qv (uq0) ≥ qv (F1+kq0
) .

Dividing by q and taking limits, we get v (uq0) ≥ v (F1+kq0
), which is a

contradiction.

Note that Theorem 2.2 in [Sm] can be recovered as a particular case of

Proposition 3.1: Smith’s result assumes that R is a graded normal finitely

generated ring over a perfect field, and concludes that every homogeneous

element x in the tight closure of a homogeneous ideal I generated by forms

of degree at least δ, but not in the ideal itself, must have degree at least

δ + 1.

Corollary 3.2. Let (R,m) be an excellent Cohen-Macaulay normal

local domain with minimal multiplicity, i.e. e(R) = edim(R)− dim(R) + 1,
and with perfect infinite residue field. If gr

m
(R) is reduced, then R is F-

rational, i.e. all parameter ideals are tightly closed.

Proof. According to Theorem 4.2 (d) in [HH], it is enough to show
that one parameter ideal is tightly closed. Let a be a parameter ideal which
is a minimal reduction of m. The minimal multiplicity assumption implies
that m

2 = ma, since

e(R) = l

(

R

a

)

= l

(

R

ma

)

− l
(

a

ma

)

≥ 1 + n − d,

where d = dim(R), n = edim(R) = µ(m), with equality if and only if
m

2 = ma. Thus we have m
2 ⊂ a ⊂ m; according to Theorem 3.1, this

implies that a is tightly closed.
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Continuing along the same lines yields the following Proposition, which

may be useful for the study of so-called big ideals (an ideal is big if every

ideal containing it is tightly closed).

Proposition 3.3. Let R, F be as in Theorem 3.1; assume in addition

that grF is a domain. Let I be an ideal of R such that Fn+2 ⊆ I ⊆ Fn for

some n. Let f1, . . . , ft, l1 + g1, . . . , ls + gs be a set of generators for I, with

f1, . . . , ft, g1, . . . , gs ∈ Fn+1, and l1, . . . , ls ∈ Fn \ Fn+1. Let I0 be the ideal

of grF generated by the classes of l0, . . . , ls in Fn/Fn+1.

If I0 is tightly closed in grF , then I is also tightly closed.

Proof. It is enough to show that I∗sp ⊂ I. Let u ∈ I∗sp. By The-
orem 3.1, we may assume that u ∈ Fn+1 \ Fn+2, and as in the proof of
Theorem 3.1, we can choose c ∈ Fα \ Fα+1 and q0 such that cuq ∈ Fq/q0

I [q]

for all q ≥ q0.

In grF , this yields an equation of the form

cuq = β1l1
q
+ · · · + βsls

q

where the overline represents taking the class in Fα+q(n+1)/Fα+q(n+1)+1.

Since I0 is tightly closed, this implies that u ∈ I0, where u represents
the class of u in Fn+1/Fn+2. Thus, u ≡ a1l0 + · · · + asls mod Fn+2, where
a1, . . . , as ∈ F1. Since aili ≡ ai(li + gi)mod Fn+2, it follows that u ∈ I.

Note that this proposition allows us to reduce showing that the non-

homogeneous ideal I is tightly closed to showing that a homogeneous ideal

I0 is tightly closed.

Theorem 3.1 and Proposition 3.3 can be applied in particular for the

case Fk = m
k, with the corresponding assumptions on the graded ring

gr
m

R.

If in Proposition 3.3 one assumes instead that R is graded normal do-

main, with m denoting the maximal homogeneous ideal, and the filtration is

Fk = m
k, the same proof shows that I∗ ⊂ I + I∗sp0 (remove the assumption

that I0 is tightly closed).
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