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If the group G = AB is the product of two abelian subgroups A and B, then G is
metabelian by a well-known result of 1td [8], so that the commutator subgroup G’ of G is
abelian. In the following we are concerned with the following condition:

There exists a normal subgroup N¥1 of G=AB#1 (*)
which is contained in A or B.

Recently, Holt and Howlett in [7] have given an example of a countably infinite
p-group G = AB, which is the product of two elementary abelian subgroups A and B with
Core(A) = Core(B) =1, so that in this group (*) does not hold. Also, Sysak in [13] gives
an example of a product G=AB of two free abelian subgroups A and B with
Core(A)=Core(B)=1.

On the positive side, Itd has already shown in [8] that (*) holds for every finite group
G. Cohn has proved in [§] that (*) holds if A and B are infinite cyclic. If A or B is
artinian, the validity of (*) was shown by Sesekin in [11]). That (*) also is valid if A or B
is noetherian was proved in [1] and [12]. The strongest positive result was obtained by
Zaicev in [15], who showed that (*) holds if A or B has finite sectional rank.

In this note some further sufficient conditions for (*) are added. For instance, (*)
holds if A or B is a torsion group with at least one nontrivial artinian p-component for
some prime p € wR, where R is the Hirsch-Plotkin radical of G. Further, it is sufficient for
(*) that G/G' has finite sectional rank or G’ is a torsion group with artinian primary
components.

Note that, even for a finite p-group G = AB, condition (*) becomes false in general,
for there exist finite p-groups G = AB with Core(A)= Core(B)=1: see [1], [4] or [6].

NOTATION.

G' =commutator subgroup of the group G

Z(G)=center of G

wG =set of all primes p for which there is an element of order p in G

C(X) = centralizer of the subset X in G

N(X) = normalizer of the subgroup X in G
A group is called artinian (noetherian) if its subgroups satisfy the minimum (maximum)
condition. An abelian group G has finite sectional rank if it has finite torsionfree rank and
each primary component of G has finite rank. A soluble group has finite sectional rank if
all its abelian factors (sections) have finite sectional rank. If N is a normal subgroup of the
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factorized group G = AB, the factorizer of N in G=AB is the subgroup X(N)=
AN NBN; it is easy to see that X(N) has the ‘triple factorization’

X(N)=N(ANBN)=N(BNAN)=(ANBN)BNAN).

If the group G = AB is the product of two abelian subgroups A and B with finite
torsionfree ranks, then by Zaicev [15] G is a metabelian group with finite torsionfree
rank. The following lemma gives a condition for the Hirsch-Plotkin radical of such a
group to be ‘factorized’ as a product of a subgroup of A and a subgroup of B.

LemMA. Let the group G = AB be the product of two abelian subgroups A and B with
finite torsionfree ranks. If the Hirsch—Plotkin radical R = R(G) is nilpotent, then R is
factorized.

Proof. By (15, Theorem 3.2], G is a metabelian group with finite torsionfree rank. By
hypothesis R = R(G) is nilpotent. It may be assumed that R# 1 and hence R'< R. The
factorizer X(R) has the triple factorization

X = X(R)= R(ANBR)= R(BNAR)=(A NBR)(BNAR).

By Zaicev [16, Theorem 2], X/R’' is locally nilpotent. Since R is nilpotent, application of
Robinson [9] yields that X is locally nilpotent. Since A and B are abelian, X is normal in
G. Hence X =R is factorized.

The following proposition gives some information about groups G = AB that do not
satisfy (*): see [1, Lemma 4.1].

ProrosITION. If the group G = AB# 1 is the product of two abelian subgroups A and B
and if 1 is the only normal subgroup of G which is contained in A or B, then the following
hold.

(1) ANB=Z(G)=1.

(2) ANC(GY=BNC(GY=1,; in particular ANG'=BNG'=1.

(3) A=N(A) and B=N(B).

(4) No non-identity element of A is conjugate to an element of B.

(5) If X(N)=(ANBN)(BNAN) is the factorizer of the normal subgroup N of G
contained in G', then ANBN and BN AN are isomorphic.

(6) If the normal subgroup N of G contains G', then 1 is the only normal subgroup of
X(N) which is contained in A or B.

(7) G’ is not a minimal normal subgroup of G.

(8) G’ is not contained in the FC-center of G.

(9) G’ is not a torsion group with artinian primary components.

(10) If (ANBG")=(BNAG’) is a w-group for some set of primes m, then X(G') is a
locally finite-nilpotent -group and no nontrivial primary component of (ANBG')=
(BNAG) is artinian.

(11) (ANBG)=(BN AG’) does not have finite sectional rank.

(12) If (ANBG'Y=(BNAG") has finite torsionfree rank, then G’ is not torsionfree.

(13) If G/G' is a w-group for some set of primes m, then G is a w-group.
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(14) G/G’ does not have finite sectional rank.
(15) If G/G' has finite torsionfree rank, then G' is not torsionfree.
(16) G’ is not noetherian.

Proof. (1) Assume that Z(G)# 1. Let z=ab# 1, with a€ A and b € B, be an element
of Z(G). Without loss of generality a# 1. By [4, Lemma 2.1}, Z(G) is factorized, so that
a € Z(G). Hence (a) is a nontrivial normal subgroup of G which is contained in A. This
contradiction shows Z(G) = 1. Since A and B are abelian, A N B is contained in Z(G), so
that aiso ANB=1.

(2) Assume that A NC(G')# 1. The subgroup S = C(A NC(G")) of G contains G’,
so that S is normal in G. Since A is abelian, A is contained in S. Since A NC(G') is
contained in the center of S, it follows that Z(G)# 1. As a characteristic subgroup of the
normal subgroup S of G the center Z(S) is a nontrivial normal subgroup of G. Hence
Z(S) is not contained in A. By the modular law AZ(S)=AZ(S)NAB = A(AZ(S)NB),
and AZ(S)NB < Z(G)=1. It follows that AZ(S)=A and Z(S)< A. This contradiction
shows that A NC(G')=1. Similarly BNC(G’)=1. Then also ANG'=BNG’'=1. Thus
(2) holds. (See Sesekin [10].)

(3) First it is shown that Z(G)=1 implies A =C(A) and B = C(B). Assume that
A < C(A). By the modular law C(A)=C(A)NAB=A(C(A)NB), where C(A)NB# 1.
Now C(BNC(A))=G, so that Z(G)# 1. This contradiction shows that A = C(A).
Similarly B = C(B).

Assume that AcN(A). Let E=N(A)NG'. If E=1, then N(A)=N(A)G'/G' is
abelian. If E# 1, then [A, E]=(ANG’)=1 by (2), so that AE is abelian. In both cases
A c C(A), a contradiction. Hence A = N(A). Similarly B = N(B). This proves (3).

(4) Assume that for some a in A there is a conjugate a®=b which is in B. Let
g =a*b*, where a*€ A and b* € B. Then it follows that a = be A N B = 1. Therefore (4)
holds.

(5) This follows from (2) and [4, Lemma 1.2].

(6) If X=X(N)=ANNBN=1, then G'c Nc X =1, so that G is abelian, a con-
tradiction. Hence X+ 1. Assume there exists a normal subgroup M# 1 of X, which is
contained in A or B. As a subgroup of N and X, the group G’ normalizes M. Without loss
of generality let M be contained in A. Then by (2)

(M, G'le(G'NM)c(G'NA)=1.

Hence G’ is centralized by M, so that by (2)
Mc(ANC(G))=1.

It follows that M =1, a contradiction. This proves (6). (See [1] and also [15].)
Thus the factorizer X = X(G') has a triple factorization with the following properties.

X=G A*=G'B*= A*B* where A*= ANBG' and B*=BNAG’
and by (5) A*=B*. By (6) 1 is the only normal subgroup of X
which is contained in A* or B¥*. By (2) A*NC(X')=B*NC(X")=1.
By (1) Z(X)=1.

(1)
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The examples of Holt and Howlett and Sysak show that in this situation we need
additional conditions to obtain a contradiction.

(7) If G'is a minimal normal subgroup of G, then X = X(G’) is abelian by [1]: see [4,
Remark 3.3(b)]. This contradicts (1), so that (7) is proved.

(8) Assume that G’ is contained in the FC-center F of G. By [4, Lemma 2.1], F is
factorized, so that F= AFNBF=(A NBF)}BNAF). By (6) 1 is the only normal sub-
group of F which is contained in A or B. By (3) ANBF=N(ANBF) and BNAF=
Ne(BNAF), so that ANBF and BNAF are Carter subgroups of F. Since F is an
FC-group, the Carter subgroups of F are locally conjugate by [14, p. 159]. This
contradicts (4). Hence G’ is not contained in F. This proves (8).

(9) If G' is a torsion group with artinian primary components it is covered by finite
normal subgroups of G. Hence G’ is contained in the FC-center of G. This contradicts
(8). Thus G’ is not a torsion group with artinian primary components. This proves (9).

(10) It (ANBG)Y=(BNAG') is a ar-group, by (2, p. 118, Theorem 5.4], X =
X(G")= A*B*, with A*= ANBG' and B*=ANAG, is also a 7-group. By [4, Corol-
lary 2.6], the Hirsch—Plotkin radical R = R(X) is factorized. Since G'< R < X and since X
is the smallest factorized subgroup of G containing G’ it follows that R = X.

By [3, p. 234, Hilfssatz 3.4], for every prime p the p-component X, of the locally
nilpotent group X has the factorization X, = (A*N X, )(B*N X,). Every normal subgroup
of X, is also a normal subgroup of X. Thus, by (f) 1 is the only normal subgroup of X,
contained in A or B. In particular Z(X,)=1. If A*N X, and B*N X, are artinian, by [1)
or [2, p. 112, Corollary 3.3], the normal subgroups of X, = (A*N X, )(B* N X,) satisfy the
minimum condition. This implies that X, is a hypercentral Cernikov group. Assuming that
X,# 1, this implies that Z(X,)# 1. This contradiction shows that no nontrivial primary
component of (A NBG")=(B N AG’) is artinian. This proves (10).

(11) If (ANBG')=(BNAG’) has finite sectional rank, by [15, Theorem 3.5] X =
X(GY=(ANBG)(BNAG") also has finite sectional rank. Since X is also the factorizer
of its Fitting subgroup, X is locally nilpotent by [4, Theorem 2.4]. As a locally nilpotent
group with finite sectional rank, X is hypercentral. Assuming that X# 1 this implies
Z(X)# 1. This contradicts () and proves (11).

(12) If (ANBG')=(BNAG’) has finite torsionfree rank and if G’ is torsionfree,
then by Robinson [10, Theorem 4], X=G'(ANBG)=G'(BNAG)=
(ANBG')YBNAG") is nilpotent (with finite torsionfree rank). Assuming that X# 1 this
implies Z(X)# 1. This contradicts () and proves (12).

(13) By (2) A=AG'/G' and B=BG'/G’'. Hence, if G/G' is a w-group, then A and B
are m-groups. By [2, p. 118, Theorem 5.4], G = AB also is a w-group.

(14) If G/G’ has finite sectional rank, it follows as in the proof of (13) that A and B
have finite sectional rank. This contradicts (11).

(15) If G/G' has finite torsionfree rank, it follows as in the proof of (13) that A and
B have finite torsionfree rank. Hence G’ cannot be torsionfree by (12).

(16) By a well-known theorem of Mal’cev every abelian group of automorphisms of a
noetherian abelian group is noetherian. Hence, if G’ is noetherian, G/C(G") also is
noetherian. By (2) A =AC(G')/C(G’) and B=BC(G")/C(G"). Hence also A and B are
noetherian. This contradicts (11). The proposition is proved.

https://doi.org/10.1017/50017089500005929 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500005929

PRODUCTS OF ABELIAN SUBGROUPS 155

The preceding proposition gives a number of sufficient conditions for the validity of
(*). The most important ones are contained in the following theorem.

THEOREM. If the group G = AB# 1 is the product of two abelian subgroups A and B,
then there exists a nontrivial normal subgroup N of G which is contained in A or B if at least
one of the following conditions holds.

(a) If A* is a subgroup of A and B* is a subgroup of B such that A*=B¥*, then A*
and B* have finite sectional rank.

(b) A or B is a torsion group with at least one nontrivial artinian p-component for some
prime p € mR, where R is the Hirsch—Plotkin radical of G.

(c) A or B has finite torsionfree rank and G' is torsionfree.

(d) G/G' has finite sectional rank.

(e) G/G’ has finite torsionfree rank and G' is torsionfree.

(f) G’ is noetherian or a torsion group with artinian primary components.

REMARKS. (a) Since every normal subgroup of G = AB which is contained in A or B
is also contained in the Hirsch-Plotkin radical of G, the condition pe wR in (b) of the
theorem is also necessary. Using the construction of Holt and Howlett [7] it is also
possible to construct groups G = AB which are the product of an elementary abelian
p-subgroup A and a subgroup B which is the direct product of an elementary abelian
p-subgroup and a finite g-subgroup, such that G does not satisfy (*) (here p# q ¢ 7R).

(b) Examples of Sysak in [13] show that (f) cannot be strengthened to G’ having
finite rank. Is it sufficient in (f) that G’ is a minimax group or has finite sectional rank?
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