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Abstract. The CHIME telescope (the Canadian Hydrogen Intensity Mapping Experiment)
recently built in Penticton, Canada, is currently being commissioned. Originally designed as a
cosmology experiment, it was soon recognized that CHIME has the potential to simultaneously
serve as an incredibly useful radio telescope for pulsar science. CHIME operates across a wide
bandwidth of 400−800 MHz and will have a collecting area and sensitivity comparable to that
of the 100-m class radio telescopes. CHIME has a huge field of view of ∼250 square degrees. It
will be capable of observing 10 pulsars simultaneously, 24-hours per day, every day, while still
accomplishing its missions to study Baryon Acoustic Oscillations and Fast Radio Bursts. It will
carry out daily monitoring of roughly half of all pulsars in the northern hemisphere, including
all NANOGrav pulsars employed in the Pulsar Timing Array project. It will cycle through all
pulsars in the northern hemisphere with a range of cadence of no more than 10 days.
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1. Telescope overview
The Canadian Hydrogen Intensity Mapping Experiment (CHIME†) is a radio telescope

recently constructed at the Dominion Radio Astrophysical Observatory (DRAO) in Pen-
ticton, BC, Canada, and which is currently being commissioned. CHIME is composed
of four cylindrical reflecting surfaces, each 100-m in length North-South (N-S) and 20-m
wide East-West (E-W). This geometry provides an extremely wide effective field-of-view
(FOV) of ∼120◦ in N-S and 1.3−2.5◦ (frequency dependent) in E-W, that is, a primary
beam size of ∼250 square degrees. With no moving parts in the structure of CHIME, it
operates as a transit telescope, surveying the entire overhead sky each day as the earth
rotates. On each of the four focal lines is a linear array of 256 dual polarization antennas.
These antennas are made using printed circuit boards and have a clover-leaf shape that
optimizes for the broad bandwidth of CHIME from 400-800 MHz (Deng et al. 2014).
These antennas are arranged in a regular grid with a mean spacing of 0.3048 m in the
N-S direction and 22 m in E-W. We thus have a total of 2048 analog inputs and these are
each amplified and brought through 50 m-long co-axial cables to a digital F-X correlator.

In the correlator F-engine, 128 custom-made signal processing boards based on field
programmable gate arrays (FPGAs; Bandura et al. 2016a, 2016b) digitize the analog
radio signals collected and channelize the full bandwidth into 1024 frequency bins via a
4-tap polyphase filter bank (PFB), at a 2.56μs cadence (see Table 1). In the X-engine,
spatial correlation is performed in a GPU cluster that consists of 256 processing nodes
each with 4 AMD Fiji GPUs, building on the Pathfinder system described in Recnik et al.
(2015), Denman et al. (2015), and Klages et al. (2015). This GPU cluster also forms 10
dual-polarization tied-array beams, allowing us to track 10 pulsars at different locations

† www.chime-experiment.ca
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Table 1. The specifications of the CHIME/Pulsar project.

CHIME general parameters Pulsar-backend specific parameters

Field of view 120◦ (N-S) ; 1.3-2.5◦ (E-W) = 250 sq degree Number of phase bins 1024
Beam size 0.26◦ at 800 MHz; 0.52◦ at 400 MHz Frequency resolution 390 kHz
System temperature ∼50 K Number of spectral channels 1024
Bandwidth 400-800 MHz Output data bit depth 16 bits
Telescope latitude 49◦19.2 m Number of polarizations 2
Telescope longitude −117◦37.2’ Pulsar data output rate 67 Mbps

Figure 1. A system diagram of CHIME, showing the signal path from the analog system to
the F-engine, X-engine, and the three independent data backends.

Figure 2. Minimum detectability of CHIME (solid line) and the Pathfinder (dashed line) as
determined from the radiometer equation. Pulsars above δ=−20◦ with published psrcat flux
density at 600 MHz are plotted as red dots and the error bars represent 1 σ uncertainties. For
pulsars where only the flux density at another observing frequency is available, we scaled them
to 600 MHz using their respective spectral indices. These pulsars are plotted as magenta points.

simultaneously throughout the primary beam. A 10-node GPU-based pulsar backend will
create folded pulsar archives with coherent dedispersion using the dspsr software (van
Straten et al. 2011). The output data will have 1024 frequency channels and 1024 phase
bins with 4 stokes at a bit depth of 16. We will have a read out cadence of 10 s which
means a total output rate of 67 Mbps. See Figure 1 for a system diagram of CHIME.

2. Telescope sensitivity
CHIME will be able to observe pulsars down to a declination of about −20◦ (see Ta-

ble 1). Because CHIME is a transit telescope, the maximum dwell time on each pulsar is a
function of the source declination (δ). At the equator, this is approximately 10-15 minutes,
while within the circumpolar region a source can be tracked for hours. Figure 2 shows
the minimum detectable flux density of CHIME and the CHIME Pathfinder (Bandura
et al. 2014), with the above factors taken into account. These limits are compared to
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the flux density of known pulsars above δ=−20◦ published in the ATNF Pulsar Cata-
logue† (Manchester et al. 2005). It can be seen that CHIME should be able to detect the
majority of the known pulsars in its visible sky.

3. Science case
Apart from the original science goal of mapping redshifted 21-cm hydrogen emission to

study the Baryon Acoustic Oscillation signal at redshifts 0.8-2.5 (Bandura et al. 2014), as
well as the search of Fast Radio Bursts (FRBs; see, e.g., Ng et al. 2017), a third CHIME
backend is being deployed for high cadence pulsar timing, the focus of this proceeding.

3.1. Pulsar timing for Gravitational wave detection
CHIME plans to observe all visible NANOGrav‡ pulsars daily to aid the effort of Pulsar
Timing Array (PTA) experiments to detect Gravitational waves. Temporal dispersion
measure (DM) and scattering variations will be monitored daily for each NANOGrav
pulsar. The upper part of the CHIME band overlaps with the NANOGrav 820-MHz
observing band at the Green Bank Telescope (GBT). CHIME’s wide bandwidth will pro-
vide a large ‘lever arm’ for measuring the DM as well as scattering time. In principle, the
CHIME-measured, daily DMs could be used to reduce interstellar medium-related noise
in NANOGrav data. Simulations suggest that this could mean an improvement in timing
precision by a factor of at least 2 in at least half of the NANOGrav pulsars. However,
Cordes et al. (2016) argue that DM variations might be effectively a frequency-dependent
phenomenon, and hence the DM observed by CHIME at low frequencies would be distinct
from that relevant at the higher PTA observing frequencies. CHIME will conduct regular
simultaneous observations in conjunction with the GBT and the Arecibo Telescope at
higher radio frequencies, which will help test models of the interstellar medium. CHIME
will be of great use not only for NANOGrav but for all international PTA projects.

3.2. Pulsars with time domain variability
Not all pulsars have the same level of stability as those being employed in PTA experi-
ments. Some pulsars exhibit time domain variability. For example, glitches in pulsars are
discrete changes of the pulsar rotation rate thought to be a probe of the neutron-star
interior. In one study, Espinoza et al. (2011) showed that thus far, 482 glitches have
been observed from 168 pulsars¶, although it is believed that the fraction of glitching
pulsars as well as the frequency of glitch occurrence should be much higher. As another
example, McLaughlin et al. (2006) discovered an entire class of pulsars with intermittent
emission, now known as Rotating Radio Transients (RRATs). Telescope time on sky is
the greatest factor limiting a thorough follow up and complete census of these types of
variable pulsars. These sources will definitely benefit from a high observing cadence with
CHIME.

CHIME also plans to perform daily monitoring of exotic objects such as high mag-
netic field (B>1013 G) pulsars which might one day show magnetar-like outbursts (e.g.
Archibald et al. 2016). Monitoring will also be conducted on X-ray magnetars that are
currently radio quiet and any radio loud magnetar in the CHIME sky. Transitional MSPs
(tMSPs; see, e.g., Archibald et al. 2009) swing between a rotation-powered state (radio
emission) and an accretion-powered state (X-ray emission). CHIME will also be moni-
toring them to try and capture further moments of transition.

† http://www.atnf.csiro.au/people/pulsar/psrcat/
‡ http://nanograv.org/

¶ See the online glitch table at http://www.jb.man.ac.uk/pulsar/glitches.html
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Figure 3. The lower panel shows all pulsars over the CHIME sky and the length of each bar
represents the drift time. Over the course of one day, CHIME will have observed all the gray
bars, i.e., some 700 pulsars. Only along the Galactic plane will we have unobserved pulsars (red
bars), but these sources will be prioritized and observed within the next 10 days. The top panel
shows the number of pulsars within the primary beam of CHIME at any given time.

4. Observing strategy
CHIME will have the ability to observe up to 10 pulsars simultaneously and with full

polarization sensitivity, and is planned to operate 24/7 as pulsars transit overhead. This
is revolutionary and according to simulations (Figure 3), will allow for daily observation
for roughly half of all North-visible pulsars, including all NANOGrav pulsars. CHIME
will cycle through all pulsars in the northern hemisphere with a range of cadence no more
than 10 days. CHIME is in a unique position to provide us with extremely high cadence
pulsar observations and will surely lead to exciting new insights in the field.
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