Effects of short- and long-term feeding of zinc oxide-supplemented diets on the mature, female domestic fowl with special reference to tissue mineral content

BY N. JACKSON^{1, 2}, S. W. GIBSON² AND M. H. STEVENSON^{1, 2}

¹Agricultural and Food Chemistry Research Division, Department of Agriculture for Northern Ireland, and ²The Queen's University of Belfast, Newforge Lane, Belfast BT9 5PX

(Received 12 August 1985 – Accepted 16 September 1985)

1. In Expt 1, the effects on laying hens of diets supplemented with zinc oxide providing up to 20 g added zinc/kg were compared. In Expt 2 the diets contained up to 6 g added Zn/kg.

2. In both experiments, food intake, body-weight, egg number, and liver, oviduct and ovary weights/kg body-weight were significantly reduced by added ZnO; gizzard weight/kg body-weight was significantly increased. In Expt 2, pancreas weight was significantly reduced by added ZnO.

3. Liver, kidney and pancreatic Zn and iron concentrations were significantly elevated in both experiments.

4. In both experiments, liver, kidneys and pancreatic copper concentrations gave quadratic responses to added ZnO.

Zinc toxicity is not normally a problem encountered with domestic animals. It has been established that pigs (Cox & Hale, 1962), rats (Magee & Spahr, 1964), cattle (Miller *et al.* 1965) and sheep (Ott *et al.* 1966*a*) exhibit considerable tolerance to high dietary concentrations of Zn compounds. Several reports have confirmed that the performance of broiler fowl is not adversely affected by the dietary inclusion of zinc oxide to provide up to 1 g Zn/kg diet (Roberson & Schaible, 1960; Johnson *et al.* 1962; Kincaid *et al.* 1976*b*).

Although the supplementation of diets with excessive levels of Zn compounds has been suggested as a method for the induction of a resting phase for laying hens (Creger & Scott, 1977; Shippee *et al.* 1979), there is relatively little information available concerning the effects of offering adult hens diets containing high levels of Zn compounds. In the mature, female domestic fowl, Hermayer *et al.* (1977) and Palafox & Ho-A (1980) demonstrated that the dietary inclusion of Zn compounds, at levels providing up to 10 and 20 g Zn/kg diet respectively, caused a severe depression in food consumption, egg production and body-weight. More recently, Gentle *et al.* (1982) identified a threshold level of ZnO addition at or above 6 g Zn/kg diet which produced a rapid reduction in the food intake of adult hens.

Dietary addition of excessive amounts of Zn compounds to diets being consumed by broiler chicks has been shown to cause a marked increase in liver Zn concentration (Johnson *et al.* 1962; Kincaid *et al.* 1976*b*) and in the pancreatic tissue Zn concentration of cockerels (Eltohamy *et al.* 1980). Studies on the specific effects of high dietary levels of ZnO on the storage of tissue Zn in mature domestic fowl have been very limited and preliminary investigations, both short- and long-term, into the effects of high dietary levels of ZnO on both the performance and tissue mineral accumulation of laying hens were therefore initiated.

MATERIALS AND METHODS

Expt 1

Seventy-two Hisex laying hens (thirty-six white; thirty-six brown), 40 weeks of age, were placed in galvanized iron cages fitted with individual feeder troughs and nipple drinkers.

Composition (g/kg)	
Ground maize		
Ground wheat	74.2	
Soya-bean-meal extract (431 g CP/kg)	187.5	
White fish meal (623 g CP/kg)	26.1	
Dried grass meal (158 g CP/kg)	25.0	
Limestone flour	71.9	
Dicalcium phosphate	9.8	
Sodium chloride	3.0	
Vitamin-mineral supplement*	2.5	
	Total 1000-0	
Analysis as fed (/kg)	
Dry matter (g)	982.0	
Metabolizable energy (MJ) [†]	11.0	
CP (g)	159.9	
Diethyl ether extract (g)	25.1	
Ash (g)	109.0	
Calcium (g)	29.5	
Phosphorus (g)	5.8	
Zinc (mg)	56.0	
Iron (mg)	361-0	
Copper (mg)	6.0	

Table 1. Composition (g/kg) and analysis of the control diet as fed

CP, crude protein (nitrogen $\times 6.25$).

* Provided (/kg diet): 1.76 mg retinol, 35 μ g cholecalciferol, 2.9 mg riboflavin, 4.9 μ g cyanocobalamin, 5.8 mg α -tocopherol, 0.7 mg menadione sodium bisulphite, 10 mg nicotinic acid, 5.8 mg calcium D-pantothenate, 200 mg choline chloride, 1.5 mg potassium iodide, 14.4 mg Fe, 0.1 mg selenium, 2.0 mg cobalt, 7.2 mg manganese, Zn-free and Cu-free.

† Calculated.

The poultry house was unheated, the maximum and minimum temperatures being 14° and 4° respectively. A lighting regimen of 17 h light – 7 h dark was maintained during the experiment. The birds were randomly allocated to one of six treatment groups, each comprising six birds of each hybrid strain. The diets, offered *ad lib*. for 3 weeks, were the control diet (Table 1), and this diet supplemented with 4, 8, 12, 16 and 20 g Zn as finely-powdered ZnO/kg.

The birds were weighed initially and subsequently body-weight and food consumption recorded weekly and egg number daily. The eggs laid on 2 d/week were weighed. The birds given diets with 20 g added Zn/kg were removed from the experiment at 10 d because food intake was severely depressed. After 3 weeks the birds were killed by decapitation.

The gizzard, oviduct and ovary were weighed, and liver, kidneys, pancreas, spleen and adrenals weighed and retained for dry matter, Zn, iron and copper determinations. Tissue mineral concentrations were determined by atomic absorption spectrophotometry subsequent to dry ashing and solution in hydrochloric acid. Liver lipid concentrations were assayed on dried samples (Folch *et al.* 1957).

Before weighing, the gizzards were cut open, washed and the koilin layer examined to determine the gross effects of dietary treatment. Tissue samples were removed from the previously-weighed liver and kidneys of two birds taken at random from the control treatment, and of two birds from the highest dietary Zn treatment. The samples were then preserved in buffered neutral formalin (100 ml/l) and examined histopathologically.

The results were subjected to analysis of variance, log transformations being carried out for those variables which exhibited variance heterogeneity.

Expt 2

Ninety-eight Hisex laying hens (forty-nine white; forty-nine brown), 40 weeks of age, were housed as in Expt 1. The maximum and minimum temperatures were 18° and 2° respectively. They were randomly allocated to one of seven treatment groups each containing seven birds of each hybrid strain. Diets, offered *ad lib*. for five consecutive 28 d periods, consisted of the control diet, as used in Expt 1 (Table 1), and this diet supplemented with 1, 2, 3, 4, 5 and 6 g Zn as ZnO/kg.

Body-weights were determined initially and at the end of each period. Food consumption was measured for each period. Daily records were made of egg production and eggs were weighed on 2 d/week. At the end of the experiment four birds of each strain were randomly selected from each treatment and killed by decapitation.

Specific organs were removed, weighed and analysed for mineral concentrations. Liver lipid concentration was determined as for Expt 1. Liver, kidney and gizzard samples were selected at random from two control birds and from two receiving the highest level of added dietary ZnO. They were preserved in buffered neutral formalin and subsequently given an histopathological examination. Statistical analyses were carried out as for Expt 1.

RESULTS

Expt 1

No birds died during the experiment although this would possibly not have been the case if the birds on the highest level of ZnO supplementation had not been removed from the experiment after 10 d. Feather loss, although not excessive, was apparent for the birds offered diets with 12–20 g added Zn/kg; breed differences were not evident. Damage of the gizzard lining, including erosion and rupture, was observed in approximately 20% of the birds given 16 g supplemental dietary Zn as ZnO/kg.

Mean weekly food and total Zn intakes, initial and final body-weights and weekly egg production are given in Table 2. Mean weekly food intake, body-weights and egg numbers were highly significantly depressed by the dietary inclusion of ZnO. The maximum ZnO intake occurred at the 4 and 8 g/kg level of addition for the brown and white strains respectively.

During weeks 2 and 3 food consumption was significantly lower for the brown than for the white birds. In the final week the food intakes of the white and brown hens offered the diet providing 16 g Zn/kg were reduced to 9 and 2% of their respective controls.

Egg production had ceased by the end of the 1st week for birds on the 12-20 g Zn/kg treatments and by the end of the 2nd week for hens on the 8 g Zn/kg treatment. Even 4 g added Zn/kg diet induced an almost complete pause in lay for both breeds by the 2nd week.

Tissue weights/kg body-weight together with liver lipid values are given in Table 3. The tissues investigated, with the exception of kidneys and pancreas, showed a response to dietary treatment. The liver fresh weight and the oviduct and ovary weights showed decreasing responses, the mean weights for the oviduct and ovary being minimum at the 8 g added Zn/kg diet. Gizzard weight/kg body-weight showed an increasing response to ZnO supplementation. The liver lipid concentrations and total contents were significantly decreased by added ZnO.

Results of the tissue Zn, Fe and Cu analyses are presented in Tables 4–6 respectively. Dietary inclusion of ZnO significantly increased both Zn concentrations and total contents (Table 4) of all the tissues examined except in the case of the adrenal glands.

The liver Fe concentrations and contents (Table 5) were increased up to 400 and 200% respectively of the control group by dietary treatment while for kidneys the Fe concentration

nə	
°is	
14	
Jo.	
est	
m	
do	
ule	
mc	
e, fe	
re,	
itui	
та	
ž	
S.	
<i>per</i>	
m	
пи	
60	
e l	
eights and egg numbers of mature,	
2 5	
ht	
eis	
body-weig	,
ĝ	
$_{bo}$	
25, 1	
aka	,
nte	
0.0	,
zin	
al	
01	
d_{1}	
an	
pq	
weekly food and tot	
2	
ek	
We	
un	
lec	
1	
1	
<i>xbt</i>	
Ð	
5	
le	
ab	
Η	

36		N. Ja	CKSC	on, S	. W. G1	BSON A	ND]	M. H	I. Ste	EVENS	лс	
effect	Breed × diet	NS XS * N	SN * 3	sz×	* * * SN	N N N N N N N N N N N N N N N N N N N	NS NS NS	SZ SZ	*	NS NS NS NS N	s × S	ZZ ZZ ZZ ZZ
cance of	Diet	* * * * *	* * * * * * * * *	* *	* * * * * * * * *	XS NS NS NS NS NS NS NS NS NS NS NS NS NS	* * *	* *	* * * * * * * * *	* * * *	* * * * * *	* * * * * * * * *
Statistical significance of effect	Breed	sz *		•	* * *	* *	*		* *	* 2		SZ
Statistic	Response	Overall Linear Quadratic	Linear Quadratic	Overall Linear Quadratic	Overall Linear Quadratic	Overall Linear Quadratic Overall	Linear Quadratic Overall	Linear Quadratic	Overall Linear Quadratic	Overall Linear Quadratic Overall	Linear Quadratic	Overall Linear Quadratic
SEM	Breed × diet	26.9	38.2	32-1	(0.0693)		I	1	0.034		0.18	
	Diet		1	ļ		0.015	0.020	0-024	1	0·20	ł	0.19
	50	8				1-92	1.55	1	$\widehat{ \ }$	2.9	Î !	I
Land of oddad Zn (otho)	16	41 33	46 18	70 20	2344 (3·370) 1069 (3·029)	1-93	1.55	1-43	1-03 1-56	3.4	000	0.0
4 7n (a (ba)	1 2.11 (B/ AB)	77 28	110 27	148 68	3819 (3·582) 995 (2·998)	1.93	1·59	1-47	1-08 1-62	3-3	0 0 0 0	0.0
I and of addad Zn (a (ba)	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	163 98	213 87	241 121	3999 (3·602) 1837 (3·264)	1.92	1.61	1.51	1.19 1.61	3·8	0.0 0.7	0-0
	4	297 295	438 324	340 273	3443 (3·537) 2917 (3·465)	1.92	1.72	1.72	1-34 1-93	4-5	0.7 0.7	0.6
	0	685 767	705 791	769 817	120 (2.080) 131 (2.119)	1.93	1.89	1.86	1·55 2·19	6.5	5.7 6.5	6.0
Week	experi-		00	~~ ^ _	[-3	0	1	7	m m	-	66	m
	Breed†	7	- 7	- 4 -	- 0	1+2	1+2	1+2	7 1	1+2	- 7	1+2
		Food intake (g)	į	ł	Zn intake‡ (mg)	Body-wt (kg)				Egg no.		

https://doi.org/10.1079/BJN19860040 Published online by Cambridge University Press

NS, not significant.
P<0.05.*** P<0.01.
Breed 1, Hisex white: breed 2, Hisex brown.
Mean values are antilogs of the mean of the log transformations which are given in parentheses.

Bredit 0 4 8 12 16 Diet xdiet Response Bredit Diet xdiet Response Bredit Diet bredit Diet xdiet Response Bredit Diet bredit Diet xdiet Response Bredit Diet xdiet Diet xdiet Diet xdiet Diet xdiet Diet xdiet Diet xdiet Diet Diet Xdiet Diet Medit Diet Diet Diet Diet Medit Diet Medit Diet Medit Diet Diet Diet Medit Diet Diet Diet Diet	Bredt0481216Dietights1217.413.620.519.8 $-$ 218.017.413.612.412.2 $ -$ 11+20.711.131.201.08 0.91 0.091 11+20.0560.0930.077 0.103 0.096 0.0076 1121.52.02.1 2.6 1.7 1121.9 2.1 2.6 1.7 2.6 121.9 2.1 2.6 4.3 4.9 4.5 122.45 9.6 3.9 4.9 4.5 $-$ 11+211.8 17.6 20.6 $2.3.7$ 23.0 0.79 11+2298144158 137 144 16.1 ontent1+2 3.72 1.39 1.02 0.84 0.82 0.263				Level	Level of added Zn (g/kg)	ş/kg)		SEM		Statisti	Statistical significance of effect	cance of	· cffect
$ \begin{bmatrix} 1 & 21! & 250 & 178 & 205 & 198 \\ 2 & 180 & 174 & 136 & 124 & 122 \\ 1+2 & 071 & 1:13 & 120 & 108 & 091 & 0.091 & - & 1.01 & Uneral & NS & NS \\ 1+2 & 0.71 & 1:13 & 120 & 108 & 0.91 & 0.091 & - & Uneral & NS & NS \\ 1+2 & 0.056 & 0.093 & 0.077 & 0.103 & 0.096 & 0.0076 & - & Uneral & NS & NS \\ 1 & 265 & 172 & 19 & 2.1 & 2.6 \\ 2 & 155 & 2.0 & 1.7 & 0.13 & 0.096 & 0.0076 & - & Uneral & NS & NS \\ 1 & 243 & 168 & 4.3 & 4.9 & 4.5 \\ 1 & 343 & 168 & 4.3 & 4.9 & 4.5 \\ 1 & 2445 & 96 & 3.9 & 4.0 & 4.1 \\ 1+2 & 118 & 176 & 206 & 23.7 & 23.0 & 0.79 & - & Uneral & NS & NS \\ 1 & 1+2 & 298 & 144 & 158 & 137 & 144 & 161 & - & Uneral & NS & NS \\ 1 & 1+2 & 3.72 & 1.39 & 1.02 & 0.84 & 0.82 & 0.263 & - & Uneral & NS & NS \\ 1 & 1+2 & 3.72 & 1.39 & 1.02 & 0.84 & 0.82 & 0.263 & - & Uneral & NS & NS \\ 1 & 1+2 & 3.72 & 1.39 & 1.02 & 0.84 & 0.82 & 0.263 & - & Uneral & NS & NS \\ 1 & 1 & 0.0761 & 0.079 & - & Uneral & NS & NS & NS \\ 1 & 1 & 0.0761 & 0.079 & - & Uneral & NS & NS & NS \\ 1 & 1 & 1 & 0.0761 & 0.079 & - & Uneral & NS \\ 1 & 1 & 1 & 1 & 0.078 & 0.73 & 0.74 & 0$	$ \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		Breed†	0	4	8	12	16	Diet	Breed × diet	Response	Breed	Diet	Breed × diet
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 1 & 21 \cdot 1 & 25 \cdot 0 & 17 \cdot 8 & 20 \cdot 5 & 12 \cdot 8 & 12 \cdot 2 \\ 1 + 2 & 0 \cdot 71 & 1 \cdot 13 & 1 \cdot 20 & 1 \cdot 08 & 0 \cdot 91 & 0 \cdot 091 \\ 1 + 2 & 0 \cdot 056 & 0 \cdot 093 & 0 \cdot 077 & 0 \cdot 103 & 0 \cdot 096 & 0 \cdot 076 \\ 1 + 2 & 0 \cdot 056 & 0 \cdot 093 & 0 \cdot 077 & 0 \cdot 103 & 0 \cdot 096 & 0 \cdot 076 \\ 1 & 1 & 26 \cdot 5 & 17 \cdot 2 & 1 \cdot 9 & 2 \cdot 1 & 2 \cdot 6 \\ 1 & 2 & 16 \cdot 8 & 4 \cdot 3 & 4 \cdot 9 & 4 \cdot 5 \\ 1 & 2 & 24 \cdot 5 & 9 \cdot 6 & 3 \cdot 9 & 4 \cdot 0 & 4 \cdot 1 \end{bmatrix} - 1 \\ 1 + 2 & 11 \cdot 8 & 17 \cdot 6 & 20 \cdot 6 & 23 \cdot 7 & 23 \cdot 0 & 0 \cdot 79 \\ 1 + 2 & 11 \cdot 8 & 17 \cdot 6 & 20 \cdot 6 & 23 \cdot 7 & 23 \cdot 0 & 0 \cdot 79 \\ 1 + 2 & 11 \cdot 8 & 17 \cdot 6 & 20 \cdot 6 & 23 \cdot 7 & 23 \cdot 0 & 0 \cdot 79 \\ 1 + 2 & 298 & 144 & 158 & 137 & 144 & 16 \cdot 1 \\ 1 + 2 & 3 \cdot 72 & 1 \cdot 39 & 1 \cdot 02 & 0 \cdot 84 & 0 \cdot 82 & 0 \cdot 263 \\ \end{bmatrix} $	Fissue weights					1				Overall	**	**	*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Liver	- 0	21-1 18-0	25-0 17-4	17-8 13-6	20·5 12·4	12.2	1	1.01	Linear		***	* 4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1+2 0.71 1.13 1.20 108 0.91 0.091 $1+2$ 0.056 0.093 0.077 0.103 0.096 0.0076 2 $1-2$ 1.68 6.9 1.72 1.9 2.1 2.6 2 168 6.9 1.5 2.0 1.77 0.006 0.0076 2 1.8 17.2 1.9 2.1 2.6 1.77 0.006 0.0076 2 2.1 2.6 1.72 1.9 2.1 2.6 0.0076 2 2.45 9.6 3.9 4.0 4.5 4.5 -1.7 $1+2$ 11.8 17.6 20.6 23.7 23.0 0.79 ation $1+2$ 298 144 158 137 144 16.1 ationt $1+2$ 3.72 1.39 1.02 0.84 0.82 0.263		I					-			Quadratic	SN	2 * Z *	sz Sz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1+2 0.056 0.093 0.077 0.103 0.096 0.076 1 2 1.68 6.9 1.72 1.9 2.1 2.6 2 16.8 4.3 4.9 4.5 $ 1$ 34.3 16.8 4.3 4.9 4.5 2 24.5 9.6 3.9 4.0 4.5 $ 1+2$ 11.8 17.6 20.6 23.7 23.0 0.79 ation $1+2$ 298 144 158 137 144 16.1 ationt $1+2$ 3.72 1.39 1.02 0.84 0.82 0.263	Spleen	1+2	17-0	1.13	1.20	1.08	16-0	0.091		Linear		SN ***	SZ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1+2 0.056 0.093 0.077 0.103 0.996 $0.00/6$ 2 16.8 6.9 1.5 2.0 2.7 2.65 $ 1$ 2 16.8 6.9 1.5 2.0 1.7 $ 1$ 34.3 16.8 4.3 4.9 4.5 $ 2$ 24.5 9.6 3.9 4.0 4.1 $ 1+2$ 11.8 17.6 20.6 23.7 23.0 0.79 ation $1+2$ 298 144 158 137 144 16.1 ation $1+2$ 298 144 158 137 144 16.1 attent $1+2$ 3.72 1.39 1.02 0.84 0.82 0.263										Overall	***	* *	SZ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 \\ 2 \\ 2 \\ 16.8 \\ 16.8 \\ 6.9 \\ 1.5 \\ 2.0 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.1 \\ $	Adrenals	1+2	0-056	0-093	0-077	0.103	0-096	0-0076		Linear Ouadratic		SN	n n Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 2 & 10.8 & 0.9 & 1.5 & 2.0 & 1.7 \\ 1 & 34.3 & 16.8 & 4.3 & 4.9 & 4.5 \\ 2 & 24.5 & 9.6 & 3.9 & 4.0 & 4.1 \\ 1+2 & 11.8 & 17.6 & 20.6 & 23.7 & 23.0 & 0.79 \\ ation & 1+2 & 298 & 144 & 158 & 137 & 144 & 16.1 \\ attent & 1+2 & 3.72 & 1.39 & 1.02 & 0.84 & 0.82 & 0.263 \\ ntent & 1+2 & 3.72 & 1.39 & 1.02 & 0.84 & 0.82 & 0.263 \\ \end{bmatrix}$	Ovary	(26.5	17-2	1.9	2.1	2.6	ļ	2.21	Overall Linear	*	* *	* *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 34.3 & 16.8 & 4.3 & 4.9 & 4.5 \\ 2 & 24.5 & 9.6 & 3.9 & 4.0 & 4.1 \\ 1+2 & 11.8 & 17.6 & 20.6 & 23.7 & 23.0 & 0.79 \\ ation & 1+2 & 298 & 144 & 158 & 137 & 144 & 16.1 \\ attent & 1+2 & 3.72 & 1.39 & 1.02 & 0.84 & 0.82 & 0.263 \\ \end{bmatrix}$		7	10.8	6.0	c.I	0.7	(/.1			Quadratic		**	SN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 24.5 9.6 3.9 4.0 4.1 1+2 11.8 17.6 20.6 23.7 23.0 0.79 ation 1+2 298 144 158 137 144 16.1 ntent 1+2 3.72 1.39 1.02 0.84 0.82 0.263	Oviduct	-	34.3	16-8	4-3	4.9	4-5		1.07	Overall	*	* * * *	* *
	1+2 11.8 17.6 20.6 23.7 23.0 0.79 ation 1+2 298 144 158 137 144 16·1 ationt 1+2 298 144 158 137 144 16·1 attent 1+2 3·72 1·39 1·02 0·84 0·82 0·263		2	24.5	9.6	3.9	4·0	4·1		10.1	Ouadratic		***	SZ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1+2 11.8 17.6 20.6 23.7 23.0 0.79 ation 1+2 298 144 158 137 144 16·1 ationt 1+2 3.72 1.39 1.02 0.84 0.82 0.263										Överall	*	***	NS
ation 1+2 298 144 158 137 144 16·1 – Linear Verall NS *** Quadratic *** overall NS *** Quadratic *** 0·1-2 3·72 1·39 1·02 0·84 0·82 0·263 – Linear ***	ation 1+2 298 144 158 137 144 1 ntent 1+2 3·72 1·39 1·02 0·84 0·82	Gizzard	1+2	11.8	17-6	20-6	23.7	23-0	0-79	ļ	Linear Quadratic		* * * * * *	SN SN
ation 1+2 298 144 158 137 144 16·1 – Linear *** Quadratic NS *** overall NS *** ntent 1+2 3·72 1·39 1·02 0·84 0·82 0·263 – Linear ***	ation 1+2 298 144 158 137 144 1 ntent 1+2 3·72 1·39 1·02 0·84 0·82	iver lipid									Overall	SN	* *	SN
Quadratic Verall NS *** 0.0000 0.0000 0.000	1+2 3.72 1.39 1.02 0.84 0.82	Concentration	1+2	298	144	158	137	144	16.1	ļ	Linear		* *	SZ
1+2 3·72 1·39 1·02 0·84 0·82 0·263 — Linear *** Quadratic ***	1+2 3.72 1.39 1.02 0.84 0.82										Quadratic	SN	* *	SZZ
*		Total content	1+2	3.72	1.39	1.02	0.84	0-82	0.263	ļ	Linear		* *	SN
											Quadratic		* *	NS

Effects of dietary ZnO in the laying hen

Table 4. Expt 1. Mean zinc concentrations ($\mu g/g$ dry matter) and total contents (μg) of some tissues of mature, female domestic fowl given control and zinc oxide-supplemented diets

Breedt 0 Zn concentrations 1 99 Liver‡ 1 995 Kidneys ‡ 1 117 Ridneys ‡ 1 2 97 Pancreas‡ 1 2 97 Pancreas‡ 1 2 113 Spleen 2 95 97 Adrenals 1 43 96		4	8								
- 2 - 2 - 2 -				12	16	Diet	Breed × diet	Response	Breed	Diet	Breed × diet
s t 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 + 2 1 1 1 2 1 1 1 1		1641	1718	1888	1644			llO	*	*	:
s t s t s t s t s t s t s t s t s t s t		(3-215) 1750	(3-235)	(3·276)	(3·216)	I	(0-0462)	Linear		* * *	*
s t 1 ast 1+2 1 2 1 1+2		(3·243)	(3-047)	(3-000)	(3.036)			Quadratic		**	SN
ast 1 + 2 1 2 1 1 4		402	750	953	897			Overall	*	***	2
as‡ 1 + 2 1 2 1 1 + 2		(2·604)	(2·875)	(2·979)	(2.953)		(0.0504)	Linear		***	*
ast 1+2 (1 1 2 1s 1		450 (2·563)	235 (2·728)	638 (2-805)	د اه (2·789)			Quadratic		*	SN
	76)	4899	4560	2707	4560			Overall	SN	***	SN
1 2 1		(3-690)	(3.659)	(3-569)	(3.659)	(0-0414)		Linear Ouadratic		::	SN SN
lis - 2 -	6	001	Ì					Overall	***	***	•
		97 56	97 92	67 66	06 112		5-3	Linear		***	:
-		•						Quadratic		:	SZ
	~	43	37	45	47 }		7.6	Uverall Linear	*	SZ	sz *
2		41	36	29	34]	ł	0,4	Ousdratic			NIC
contents		0000									
/cni I I I/cni		150/0	1014U (4.006)	11940	(1956)			Overall	*	***	:
2 1216		16480	7621	5902	(c/c.c)		(0.0507)	Linear		***	***
		(4-217)	(3.882)	(3-771)	(3.787)			Quadratic		* *	SN
Kidneyst 1 275		916	1469	1679	1560			:			4
		(2·962)	(3·167)	(3-225)	(3-193)		0000	Overall	NN NN		SZ.
2 331		807	1178	1611	1102		(9900.0)	Ousdrotic			NC.
(2.52	20)	(2·907)	(3-071)	(3-076)	(3-042) J						
Pancreast 1+2 99		3639	2851	2080	7438			Overall	¥	***	SN
	(566-	(3-561)	(3.455)	(3.318)	(3-387)	(0.0534)	I	Linear		:::	SZ
								Overall	***	*	SZ
Spleen 1+2 29		4	4	40	33	3.0	I	Linear		SN	SZ
	,	((Quadratic	٠	SN	~•
C'I I Adrenals	<u>^</u>	0.7		6:7 -	4 1	I	0-25	Linear		SZ	:
	0	<u>к</u> .т	7.7	<u>,</u>	1 / .1			Quadratic		NS	SN
NS, n * b	not signific	ant. 2 _ 0.01 ***		NS, not significant.							
+ Bre	ced I. His	ex white: bre	ed 2. Hisex b	TOWD.							

т ът ** *

Table 5. Expt 1. Mean iron concentrations (µg/g dry matter) and total contents (µg) in some tissues of mature, female domestic found for the found of the supplemented diets for a second of the supplemented diets for a second of the second o
--

ireed†		Level c	Level of added Zn (g/kg)	g/kg)		8	SEM	Statistic		Statistical significance of effect	
	0	4	8	12	16	Diet	Breed × diet	Response	Breed	Diet	Breed × diet
T	356	ULC	\$12	041	CF01					-	
	()-406)	2/2 (7:437)	(012-C)	041 (7-975)	3-0181			Overall	*	**	SN
2	245	389	733	6272	923	ļ	(0.0468)	Linear		* *	SZ
	(2-390)	(2.590)	(2-865)	(2.990)	(2.965)			Quadratic		*	*
								Overall	SZ	***	SN
Kidneys 1+2	285	213	271	295	366	14-2		Linear		* *	SZ
								Quadratic			2*
Pancreas 1	108	290 102	224	337	365 }		9.76	Uverall	•	*	• •
7	16	197	235	246	1961		i	Quadratic		*	SN
								Overall	SZ	*	SZ
Spleen 1+2	681	582	694	811	843	52.5		Linear		*	SN
								Quadratic		SZ	SZ
	157				ţ			Overall	SZ	*	NZ Z
Adrenais 1+2	ccl	761	11/	111	14/	4.4	I	Linear Oudertie		2 *	2 Z
contents								Quadratic			
	2/23	2483	3020	5321	5943			Overall	*	***	*
	(3:433)	(665.5)	(3.480)	(3.726)	(3.774)		(0.0461)	l inear		***	2N
7	3062	3664	5012	5768	5200			Oredantic		NG	*
)	(3-486)	(3-564)	(3·700)	(3-761)	(3·716)			Quadratic		2	•
								Overall	SN	* *	SN
Kidneys 1+2	696	483	571	539	651	36.6		Linear		SZ	SZ
								Quadratic	SN	*	n v Z Z
Pancreas 1+2	108	176	143	161	146	12.1	ļ	Linear		SN	SZ
								Ouadratic		¥	SZ
								Óverall	SN	SN	SN
Adrenals 1+2	5.7	6-0	7.1	7-0	7.3	0-49	1	Linear		*	SS
								Quadratic		SN	NS
	NS, not significant.	ificant.									
• +	P < 0.05, Breed 1 F	• $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$. + Breed 1 Hisey white: hreed 2 Hisey brown	** P < 0.001.	urown							

c .: <u> </u> . 1 1 EC. ~ . ,

							SEM	7	Statistic	Statistical significance of effect	ance of e	ffect
			Level	Level of added Zn (g/kg)	g/kg)		A A A A A A A A A A A A A A A A A A A	Braad				Breed
	Breedt	0	4	8	12	16	Diet	× diet	Response	Breed	Diet	× diet
Cu concentrations									Ē		+	
Liver	1+2	12-0	9.3	12.8	12.8	14.5	0.62		Uverall	·	* *	n v Z Z
	 -		2)) •	,		Quadratic		*	SZ
		•							Överall	SN	* *	SZ
N idneys	7+1	13.3	1./1	1-07	8-07	8.87	58.1		Linear		SIN .	n 97
									Qverall	SN	2×**	n SZ
Pancreas	1 + 2	3.7	6.5	9-9	6.5	7.6	0-43]	Linear		* * *	SZ
									Quadratic		*	SZ
									Overall	NS	*	SZ
Spleen	1 + 2	3.9	3.1	3.2	3.3	3.4	0.13	1	Linear		SN	SZ
									Quadratic		***	SZ
									Overall	SZ	* *	SZ
Adrenals	1+2	3.5	1.8	2.2	5.8 7	3.9	0-30	1	Linear Quadratic		SZ **	SZ SZ
Total Cu contents									Overall	**	***	Z
Liver	1+2	136	87	82	79	81	4-0	I	Linear		***	ZSZ
									Quadratic		**	SZ
									Overall	NS	*	SZ
Kidneys	1+2	32	38	42	46	51	3.3		Linear		* *	NS
									Quadratic		SS	SN
									Overall	**	SN	SZ
Spleen	1+2	1.31	1·43	1-33	1.21	1·10	160-0		Linear		* 2	SZ
									Quadratic	NIC	^ * Z *	n u Z Z
A dramate									OVELALI			
	1 1	0.17	00.0	0.12	0.17	0.10	0.018		lineor		**	N

https://doi.org/10.1079/BJN19860040 Published online by Cambridge University Press

NS, not significant.
* P < 0.05, ** P < 0.01, *** P < 0.001.
† Breed 1, Hisex white; breed 2, Hisex brown.

Effects of dietary ZnO in the laying hen

increased to 128% of the control value and total Fe content decreased by a maximum of 23%. The pancreas also showed a marked increase in Fe concentration and content.

Liver, pancreas, spleen and adrenals Cu concentrations (Table 6) exhibited a quadratic response and renal Cu concentrations showed a positive linear response. Total Cu content of the liver gave a decreasing quadratic response to dietary added ZnO whereas total content of the kidneys showed a positive linear response. Total pancreatic Cu (results not presented) was unaffected by treatment, the mean for the white and brown birds being 3.6 and $4.9 \mu g/g$ dry matter respectively.

Expt 2

The mortality rates of the birds offered diets containing 5 or 6 g added Zn/kg were 56 and 86% respectively. Consequently information concerning the mean performance and tissue mineral analysis of the birds on the highest level of dietary ZnO has been omitted from the results. Mild changes were observed in the gizzards of the white hens with small erosions apparent, particularly in the troughs of the rugae of the gizzard linings. More distinctive changes were observed in the gizzards of the brown strain including haemorrhages of the koilin layer and dilatation of the mucosal glands.

Zn intakes (Table 7) showed an increasing quadratic response. Mean food intakes, body-weights, egg production and food conversion efficiencies (Table 7) were significantly depressed by addition of ZnO. Mean food consumptions of the birds on the highest level of added ZnO were reduced by 64% compared with the controls and there was a negative linear relation between final body-weight and increasing dietary Zn concentration.

An almost complete pause in egg production was induced by 4 and 5 g added Zn/kg diet and significant linear reductions in egg number, total egg weight and food conversion efficiency were apparent in response to the rise in dietary ZnO.

The effects of dietary ZnO incorporation on the fresh weights of organs, expressed per unit body-weight, together with the liver lipid values are shown in Table 8. Significant overall dietary effects on liver, pancreas, gizzard, ovary and oviduct fresh weights/kg body-weight were observed. Liver lipid concentration and total content were significantly reduced by increasing added ZnO.

Results of the analyses of tissue Zn, Fe and Cu concentrations and total contents are shown in Tables 9–11 respectively. The liver and pancreatic Zn concentrations and total contents exhibited significant increasing quadratic responses to dietary ZnO levels, while kidney and spleen concentrations and kidney total Zn showed increasing linear responses.

The liver Fe concentrations and contents increased by up to 200% at the highest level of Zn addition for the white birds. In contrast, there was a decrease at the intermediate levels of addition of about 50% for both strains. Kidney Fe concentrations and contents were depressed by ZnO treatments except at the 1 g/kg level of addition.

The Cu concentrations and total contents of the liver were both significantly reduced by dietary treatment. The Cu concentrations of the kidneys and pancreas showed quadratic relations to dietary treatment. Negative linear responses were observed for the Cu concentration and total content of the spleen.

DISCUSSION

The results confirm previous evidence (Creger & Scott, 1977; Shippee *et al.* 1979) that high dietary levels of ZnO can be used to induce a pause in lay by the mature, female domestic fowl.

Although Shippee *et al.* (1979) advocated the use of 10 g Zn as ZnO/kg diet, it is evident from Expt 1 that the addition of between 4 and 8 g Zn as ZnO/kg diet is sufficient to ensure

Breed† 0 1 Food intake (kg) 1+2 3·45 3·48 Zn intake‡ (mg) 1+2 3·45 3·48 Zn intake‡ (mg) 1+2 3·45 3·45 Zn intake‡ (mg) 1+2 2·399 3365 Zn intake‡ (mg) 1+2 2·379) (3·527) Initial body- 1+2 1·87 1·87 wt (kg) 1 1/47 1·54 wt (kg) 2 2·202 2·18 Egg no. 1+2 21·7 21·6 Total egg 1+2 1·31 1·32	1 2	1 7 / C / C			SEM	¥	Statist	Statistical significance of effect	nce of ef	ect
Breed+ 0 kg) 1+2 3.45 ig) 1+2 239 ig) 1+2 (2:379) ig) 1+2 1.87 1+2 1.87 1.47 2 2.20 2.30 1+2 1+2 21.7 1+2 1+2 1.31 1+2 1.31	1 2	Level of added 2n (g/kg)	5			Broad				Broad
kg) 1+2 3.45 1g) 1+2 3.45 (2.379) 1+2 (2.379) 1+2 1.87 1+2 1.87 1+2 21.7 1+2 1.31		æ	4	5	Diet	× diet	Response	Breed	Diet	× diet
kg) 1+2 3-45 ig) 1+2 239 ig) 1+2 (2:379) 1+2 1-87 2 2:379 1 1-47 2 2:00 1+2 2:107 1+2 1:147 1+2 2:017 1+2 1:17 1+2 1:131							Overall	NS	***	SN
lg) 1+2 239 (2:379) 1+2 1.87 1 1-47 2 2:20 1+2 21·7 1+2 1·31	3.48 3.00	2.19	1.88	1.25	0.088	ļ	Linear		***	SN
1g) 1+2 239 (2:379) (2:379) 1+2 1.87 2 2:02 1+2 21:7 1+2 1:31							Ouadratic		*	SN
1E $1+2$ 2.39 $1+2$ $(2\cdot379)$ $1+2$ $1\cdot87$ 1 $1\cdot47$ 2 $2\cdot20$ $1+2$ $21\cdot7$ $1+2$ $1\cdot31$				0000			Overall	SN	**	SN
(2:3/9) 1+2 1-87 1 1-47 2 2:20 1+2 21·7 1+2 1·31	3365 5728	5957	6622	5888			Linear		***	SN
1+2 1.87 1 1.47 2 2.20 1+2 21·7 2 1+2 1·31		(3.77.5)	(3-821)	(3.7/0)	(6510-0)]	Quadratic		***	SN
1+2 1.87 1 1.47 2 2.20 1+2 21·7 2 1+2 1·31							Overall	***	SN	SN
1 1.47 2 2.20 1+2 21·7 2 1+2 1·31	1.87 1.88	1.88	1.89	1.88	0.013	ł	Linear		NS	SN
1 1.47 2 2.20 1+2 21·7 2 1+2 1·31							Quadratic		SN	SN
1 1-4/ 2 2:20 1+2 21·7 2 1+2 1·31				(20 -			Overall	***	***	***
2 2:20 1+2 21·7 2 1+2 1·31	1.54 1.54 1.54 1.54	16.1	01.1		ł	0·072	Linear		***	***
1+2 21·7 2 1+2 1·31		I· /0	I -48	(7 1 .			Quadratic		SN	SN
1+2 21·7 2 1+2 1·31							Overall	*	***	SN
1+2 1.31	1.6 15.9	6.1	2.3	1.7	0-92		Linear		* * *	SN
1+2 1·31							Ouadratic		SN	SN
1+2 1:31							Óverall	SN	***	SN
- -	1.32 0.97	0-35	0.13	0.10	0.058	}	Linear		***	SN
							Quadratic		SN	SN
ŝ							Overall	SN	***	SN
FCE 1+2 0.390 0.3	0.380 0.324	0.172	0.073	060.0	0-0217	ļ	Linear		***	SZ
1 - -							Quadratic		SN	SN

 Table 7. Expt 2. Mean food and zinc intakes, body-weights, egg production values and food conversion efficiency of mature, female

 Amountic foul airon control and zinc oxide sumlamented dists for five 28 d marines

NS, not significant; FCE, food conversion efficiency (kg eggs produced/kg food intake). * P < 0.05, ** P < 0.01, *** P < 0.001.

Breed 1, Hisex white; breed 2, Hisex brown.
 Mean values are antilogs of the mean of log transformations which are shown in parentheses.

4 5 Diet Breed × diet Response 15.5 16.8 0.99 - Overall Linear 1:27 1:35 0.128 - Overall Quadratic 0.78 0.82 - 0.102 Underatic 0.78 0.82 - 2.32 Underatic 1.3 1.3 2.06 - Underatic 1.4 1.4 - 2.32 Underatic 1.4 1.4 - 2.32 Underatic 0.65 0.65 0.200 - Overall 1.6 116 115 13.4 - Underatic 0.65 0.65 0.500 - Underatic 0.61 0.001 - Underatic				Τ	Level of added Zn (g/kg)	led Zn (g/)	ke)		SEM	W	Statist	Statistical significance of effect	ance of ef	fect	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Breed†	0	-	5	3	1	5	Diet	Breed × diet	Response	Breed	Diet	Breed × diet	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ssue weights														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											Overall	***	*	NS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Liver	1+2	18·8	18-5	21·1	17-7	15.5	16-8	66-0	I	Linear		*	NS	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											Quadratic		SZ	SN	
1+2 1:74 1:56 1:50 1:08 1:27 1:35 0:128 - Linear 1 0.74 0:55 0:68 0.79 0:92 1:00 0.921 1:00 0verall 2 1:01 0:77 0:84 0:83 0.78 0:82 - 0:102 Linear 1+2 14:0 12.7 17:2 17:9 25:5 26:4 1:11 - 0:verall 1+2 14:0 12.7 17:2 17:9 25:5 26:4 1:11 - 0:verall 1+2 24:5 24:9 18:5 14:4 1:3 1:3 2:06 - Linear 1 37:0 35:3 36:4 23:5 2:6 0:verall 0:verall 1 37:0 35:3 36:4 2:3 2:4 0:4 1:4											Overall	***	*	SN	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pancreas	1+2	1.74	1.56	1.50	1.08	1·27	1.35	0·128	I	Linear		**	SN	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											Quadratic		*	SN	
$ \begin{bmatrix} 2 & 101 & 0.77 & 0.84 & 0.83 & 0.78 & 0.82 \\ 1+2 & 140 & 12.7 & 17.2 & 17.9 & 25.5 & 26.4 & 1.11 & - & 0.02 \\ 0.0071 & 0.0071 & 0.007 & 0.007 \\ 1+2 & 24.5 & 24.9 & 18.5 & 14.4 & 1.3 & 1.3 & 2.06 & - & 1.10 \\ 1 & 37.0 & 35.3 & 36.4 & 23.5 & 2.3 & 2.6 \\ 2 & 25.3 & 24.9 & 20.9 & 8.3 & 1.4 & 1.4 \\ 1 & 37.0 & 35.3 & 36.4 & 23.5 & 2.3 & 2.6 \\ 1 & 1+2 & 175 & 182 & 192 & 146 & 116 & 116 & 13.4 & - & 0.077 \\ 1 & 1+2 & 175 & 182 & 192 & 146 & 116 & 116 & 13.4 & - & 0.077 \\ 1 & 1+2 & 1.78 & 182 & 192 & 146 & 116 & 116 & 13.4 & - & 0.0771 \\ 1 & 1+2 & 1.64 & 1.78 & 1.86 & 1.08 & 0.65 & 0.65 & 0.200 & - & 0.00771 \\ 1 & 1+2 & 1.64 & 1.78 & 1.86 & 1.08 & 0.65 & 0.65 & 0.200 & - & 0.00771 \\ 1 & 0.00711 & 0.00711 & 0.0071 \\ 1 & 0.00711 & 0.00711 & 0.0071 \\ 1 & 0.00711 & 0.0071 & 0.001 \\ 1 & 0.00711 & 0.0071 & 0.001 \\ 1 & 0.00711 & 0.0071 & 0.001 \\ 1 & 0.00711 & 0.001 & 0.001 \\ 1 & 0.00711 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0071 & 0.001 & 0.001 \\ 1 & 0.0001 & 0.0001 \\ $	Culson	-	0.74	0.55	0.68	0.70	0.0	1-00-1			Overall	SN	SN	SN	
1+2 140 127 172 164 13 12 206 -1 111 -1 $116ar$ 1 370 353 364 2335 233 249 236 236 233 266 -1 211 $000000000000000000000000000000000000$	oprecii	- (10-1	0.5	0.84	0.83	72 0	- 20 -		0.102	Linear		SN	*	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	1 1 1			200		1 70 0			Quadratic		SZ	SZ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											Overall	NS	**	SN	
$1+2$ $24\cdot5$ $24\cdot9$ $18\cdot5$ $14\cdot4$ $1\cdot3$ $1\cdot3$ $2\cdot06$ $-$ Quadratic Overall Coverall 1 $37\cdot0$ $35\cdot3$ $36\cdot4$ $23\cdot5$ $23\cdot3$ $26\cdot6$ $ 2.066$ $ 0uadratic Overall 2 22\cdot3 24\cdot9 20\cdot9 8\cdot3 1\cdot4 1\cdot4 2:32 Quadratic Overall 2 25\cdot3 24\cdot9 20\cdot9 8:3 1\cdot4 1\cdot4 2:32 Quadratic Overall 2 1+2 175 182 192 146 116 116 13\cdot4 2:32 Quadratic Overall 1+2 1\cdot64 1\cdot86 1\cdot08 0.65 0.65 0.200 Quadratic Overall 1+2 1\cdot64 1\cdot86 1\cdot08 0.65 0.65 0.200 Quadratic Overall 1+1 1+2 1\cdot64 1\cdot86 1\cdot08 0.65 0.65 0.200 Quadratic Overall 1+2 1\cdot64 $	Gizzard	1+2	14.0	12-7	17·2	17-9	25.5	26.4	1.11		Linear		***	SN	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											Quadratic		*	NS	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											Overall	***	**	SN	
1 37.0 35.3 36.4 23.5 2.3 2.6 0 -detail 0 -detail 2 25.3 24.9 20.9 8.3 1.4 1.4 2.32 0 -detail ation 1+2 175 182 192 146 116 116 13.4 $ 0$ -detail intent 1+2 1.64 1.78 186 1.08 0.65 0.65 0.65 0.00 $ 0$ -detail intent 1+2 1.64 1.78 1.86 1.08 0.65 0.65 0.200 $ 0$ -detail intent 1+2 1.64 1.78 1.86 1.08 0.65 0.65 0.200 $ 0$ -detail intent 1+2 1.64 1.78 1.86 1.08 0.65 0.65 0.200 $ 0$ -detail intent 1+2 1.64 1.78 1.86 0.65 0.65 0.200 $ 0$ -detail N_{S} not significant. P < 0.01, *** $P < 0.01$. <td coldstaic<="" td="" td<=""><td>Ovary</td><td>1 + 2</td><td>24.5</td><td>24-9</td><td>18.5</td><td>14.4</td><td>1·3</td><td>1.3</td><td>2·06</td><td> </td><td>Linear</td><td></td><td>***</td><td>SN</td></td>	<td>Ovary</td> <td>1 + 2</td> <td>24.5</td> <td>24-9</td> <td>18.5</td> <td>14.4</td> <td>1·3</td> <td>1.3</td> <td>2·06</td> <td> </td> <td>Linear</td> <td></td> <td>***</td> <td>SN</td>	Ovary	1 + 2	24.5	24-9	18.5	14.4	1·3	1.3	2·06		Linear		***	SN
$\begin{bmatrix} 1 & 37.0 & 35.3 & 36.4 & 23.5 & 2.3 & 2.6 \\ 2 & 25.3 & 24.9 & 20.9 & 8.3 & 1.4 & 1.4 \end{bmatrix} - 2.32 \begin{bmatrix} \text{Overall} \\ \text{Linear} \\ \text{Quadratic} \\ \text{Quadratic} \\ \text{Intent} & 1+2 & 1.64 & 1.78 & 1.86 & 1.98 & 0.65 & 0.65 & 0.200 & - \\ 1 & 1.86 & 1.98 & 1.66 & 1.66 & 0.200 & - \\ \end{bmatrix} \begin{bmatrix} \text{NS}_{\text{not significant}} \\ \text{NS}_{\text{not significant}} \\ \text{NS}_{\text{not significant}} \\ \text{NS}_{\text{not significant}} \\ \end{bmatrix} \begin{bmatrix} \text{NS}_{\text{not significant}} \\ \text{MS}_{\text{not significant}} \\ \text{Overall} \\ Ove$											Quadratic		SN	SN	
1 570 500 230 530 230 530 244 14 14 $1-4$ $2-32$ Linear ration $1+2$ 175 182 192 146 116 116 134 $ 2.32$ Linear ration $1+2$ 175 182 192 146 116 116 134 $ 0.04rall$ intent $1+2$ 1.78 1.86 1.08 0.65 0.65 0.200 $ 0.04rall$ intent $1+2$ 1.64 1.78 1.86 1.08 0.65 0.65 0.200 $ 0.04rall$ intent $1+2$ 1.64 1.78 1.86 1.08 0.65 0.65 0.200 $ 0.04rall$ $N_{\rm S}$ not significant. $*$ $P < 0.01$, $***$ $P < 0.01$. $*$ $P < 0.01$. $*$ $P < 0.00$.	*****	-	0 20	75 7	4 36	3 66	ç	1.7.0			Overall	***	***	*	
2 2^{-3} 2^{-4} 2^{-9} 8^{-3} 1^{-4} $1^$	Ovlauct	- (0./0		4.00	C.67	C.7	0.7		2.32	Linear		***	*	
ration $1+2$ 175 182 192 146 116 116 13.4 $-$ Overall Linear Quadratic		7	6.07	6-47	6-07	¢.ø	i i	[-4]			Quadratic		:	*	
ration $1+2$ 175 182 192 146 116 116 13.4 - Linear nuent $1+2$ 1.64 1.78 1.86 1.08 0.65 0.65 0.200 - Linear NS, not significant. NS, not significant. * $P < 0.05, ** P < 0.01, *** P < 0.01.$	ver linid										Overall	SN	***	SZ	
$1+2 1.64 1.78 1.86 1.08 0.65 0.65 0.200 - \begin{array}{c} \text{Quadratic} \\ \text{Overall} \\ \text{Overall} \\ \text{Overall} \\ \text{A prime and } \\ \text{NS, not significant.} \\ * P < 0.05, ** P < 0.01, *** P < 0.01. \\ * P < 0.05, ** P < 0.01. \\ * P < 0$	Concentration	1 + 2	175	182	192	146	116	116	13-4		Linear		***	SZ	
$1+2 1.64 1.78 1.86 1.08 0.65 0.65 0.200 - \begin{array}{c} Overall \\ Ditear \\ Quadratic \\ NS, not significant. \\ * P < 0.05, ** P < 0.01, *** P < 0.001. \end{array}$		-			l			1			Ouadratic		SZ	SZ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											Overall	SN	* *	SZ	
NS, not significant. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.	Total content	1 + 2	1.64	1.78	1.86	1.08	0.65	0.65	0.200	1	Linear		***	SN	
NS, not significant. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.			C 40								Quadratic		NS	NS	
N, not significant. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$. + D_{mand} 1 Trisser three theorem						, , ,	-			And a second					
4 Darred 1 I Illions trained 2 I Illions Lanced					йч Х *	not signinc < 0.05, **	P < 0.01.	*** $P < 0.0$	01.						
I DICED I, MISEX WINE: DICED 2, MISEX DICEMI.					† Br	eed 1. Hise	x white: b	reed 2. Hise	x brown.						

			1 r	I evel of added Zn (o/ko)	rd Zn (o∕kr	() ()		SEM	M	Statist	Statistical significance of effect	ance of el	fect
			1		- /9\ mm m	B)			Breed				Rrand
	Breed†	0	1	2	æ	4	5	Diet	×diet	Response	Breed	Diet	× diet
Zn concentrations													
Livert	1+2	143	333	1033	1225	1542	1469		İ	Overall	SZ	**	SN
+ 12	1	(2.154)	(2.522)	(3-014)	(3.088)	(3.188)	(3.167)	(0.0332)		Linear		* *	SZ
						(and a)				Quadratic		*	SZ
										Overall	SZ	***	SZ
Kidneys	1 + 2	136	143	252	409	629	624	37.9	ļ	Linear		**	SN
Pancreast		108	339	2404	3443	3715	3289 1			Quadratic		SZ	SZ
		(2-034)	(2.530)	(3.381)	(3-537)	(3·570)	(3.517)			Overall	ŝ	* 1	SZ '
	2	93	340	2742	3451	3281	3784		(0-0/04)	Linear			•
	I	(0.6-1)	(2.532)	(3-438)	(3.538)	(3.516)	(3.578)			Quadratic		* *	SZ
										Overall	SN	***	SN
Spleen	1+2	80	83	87	93	120	113	2.7	ļ	Linear	1	***	SZ
										Quadratic		NS	SN
otal Zn contents										Overall	SN	***	SN N
Liver‡	1 + 2	1285	3228	9354	8954	8492	7980			Linear		***	n Z Z
		(3.109)	(3·509)	(3.971)	(3-952)	(3-929)	(3-902)	(0.0468)		Quadratic		***	SN
T		0.75	27.6			0001	100			Overall	SN	***	SN
Muneys4	1+1	000	COC	110	60/	1202	000			Linear		***	SZ
		(066.7)	(706.7)	(10/.7)	(000.7)	(non.c)	(1/6.7)	(7740.0)	1	Quadratic		SN	SN
Dencreee+	с - -	101	101	1656	1574	1630	1517			Overall	ZS	***	SZ
r allul cast	1 + 1		767		+/c1	0501 V	/101 0/			Linear		**	SZ
		(cm.7)	(004.7)	(617.0)	(161.0)	(101.0)	(181.0)	(0-0043)		Quadratic		***	SZ
Snleen	_	<i>cc</i>	17	20	96	90	30.)			Overall	***	SZ	SZ
manda	· c	14	34	2 C	9 (74	2.5		4.5	Linear		SZ	*
	1	1	5	40	3	5	(70			Constant of the second se			01 M

https://doi.org/10.1079/BJN19860040 Published online by Cambridge University Press

NS, not significant. * P < 0.05, ** P < 0.01, *** P < 0.001. † Breed 1, Hisex white; breed 2, Hisex brown. ‡ Mean values are antilogs of the mean of log transformations which are shown in parentheses.

Table 10. Expt 2. Mean iron concentrations ($\mu g/g$ dry matter) and total contents (μg) in some tissues of mature, female domestic fowl given control and zinc oxide-supplemented diets for five 28 d periods

			L	Level of added Zn (g/kg)	ed Zn (g/k	(g		5	SEM	SUALIS	Statistical significance of effect	ncance of	effect
	Breed [†]	0	-	7	3	4	\$	Diet	Breed × diet	Response	Breed	Diet	Breed × diet
Fe concentrations													
liver	-	375	364	107	116	440	184)			Overall	SZ	***	* *
	- (130	117			1	32-3	Linear		***	***
	4	174	478	767	744	550	141			Ouadratic		***	***
	-	066	756	010	001		1 200			Overall	***	***	*
vianeys	(800	000	617	661	/17	177]	18.5	Linear		***	*
	7	231	407	196	661	1./4	1 602		2	Ouadratic		**	SZ
										Overall	*	***	SN
Pancreas	1 + 2	93	160	174	171	160	199	11-0		Linear		***	NS
										Quadratic		*	SN
										Overall	***	***	SZ
Spleen	1 + 2	801	841	686	640	621	631	27-8		Linear		***	SN
										Quadratic		SN	SN
Total Fe contents										Overall	SN	***	***
Liver	-	3127	3429	2096	1711	2299	4484)			Linear		*	***
	2	4189	4355	2137	1974	3049	2339	326-2		Ouadratic		***	Z
			000							Overall	*	***	SZ Z
Nigneys	(<u></u>	8/9	500	000	410	380	ļ	63-4	Linear		***	*
	7	770	060	C0 1	C74	ž	1410			Ouadratic		*	SN
										Overall	SN	*	SZ
Pancreas	1+2	94	143	119	86	74	89	15.7		Linear		*	SZ
										Ouadratic		SN	SZ
Culoon	-	720	197	163	107	175	1001			Óverall	*	*	SZ
aprecii	-	101	10/	501	161	C/1	001		39-9	Linear		***	**
	7	100	670	747	607	+C1	104)			Quadratic		NS	NS
				UI A									
				u ∕cv v d *	ot significa	nt. ⁹ < 0-01, *	NS, not significant. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$.	01.					
				† Bre	ed 1, Hisex	white; bre	† Breed 1, Hisex white; breed 2, Hisex brown.	t brown.					

Effects of dietary ZnO in the laying hen

			° I	ماما مراما		-		SI	Mes	Statist	Statistical significance of effect	ficance of	effect
			3	vel of add	Level of added 2n (g/kg)	(j) (j)			Broad				Broad
	Breed†	0	-	2	e	4	5	Diet	x diet	Response	Breed	Diet	× diet
Cu concentrations	3												
Liver	1	15.7	16-9	7-6	7.2	8·1	7-7	l	0.85	Overall I inear	NS	* *	SZ *
	6	13.5	14.6	7-8	8.9	L-L	8.8		200	Ouadratic		***	SZ
										Óverall	NS	***	SN
Kidneys	1 + 2	11-8	11-8	14.7	14.4	18.8	14-4	<i>LT-</i> 0	ļ	Linear		***	SN
•										Quadratic		*	SN
										Overall	SZ	***	SZ
Pancreas	1 + 2	4·4	5.2	6·8	6.0	3.9	4.5	0.37		Linear		SZ	SZ
										Quadratic		***	SN
										Overall	SN	***	SZ
Spleen	1 + 2	4-3	4·8	9·6	3.3	3.5	3.2	0-19	ł	Linear		***	SZ
ſ										Quadratic		NS	NS
Total Cu contents										Overall	SN	***	SN
Liver	1+2	132	153	72	60	4	4	6.8	-	Linear		***	SS
										Quadratic		•	SN
										Overall	SN	*	SN
Kidneys	1+2	32	30	34	28	37	23	2.4		Linear		SN	NS
•										Quadratic		SZ	SN
										Overall	SS	* *	SN
Pancreas	1+2	4.5	4.5	4.5	3·1	1·8	2.1	0-39	ļ	Linear		* *	SZ
										Quadratic		SN	SZ
Spleen	-	1.18	1-03	0.91	0.02	0.87	1.94			Overall	***	***	SZ
						10.57	10.5			.,		***	1

NS, not significant. • P < 0.05, ** P < 0.01, *** P < 0.001. † Breed 1, Hisex white; breed 2, Hisex brown.

Effects of dietary ZnO in the laying hen 347

a rapid cessation in egg production and act effectively as a technique for the force-resting of laying hens.

The relatively high degree of tolerance of adult hens to excessive levels of dietary Zn compounds over an extended period of time was clearly demonstrated by Expt 2 which indicated that food consumption, body-weight and egg production over a 5-month period were not significantly affected by the dietary incorporation of up to 1 g Zn as ZnO/kg. These observations corroborated those of Hermayer *et al.* (1977) who reported similar results.

The severe depression of food intake at dietary levels of ZnO addition in excess of 1 g Zn/kg diet presumably contributed to the corresponding reductions in body-weight and egg numbers, since the intakes of major and minor nutrients were well below the specific requirements recommended by the Agricultural Research Council (1975) for maintenance and adequate production. However, it is not clear whether the resultant loss in appetite associated with high dietary levels of ZnO may be attributed to toxic effects of the compound or to a reduction in palatability. The domestic fowl has been reported to have relatively few taste buds (Kare & Rogers, 1976) and, in view of the organoleptic nature of ZnO, it would seem that factors other than just a decrease in palatability have, at least partially, induced inappetance. Dewar *et al.* (1983) have identified gizzard and pancreatic lesions occurring in hens offered 10 g Zn as ZnO/kg diet for 4 d, and it is possible that these toxic effects may be injurious to the general health and consequently to the appetite of the bird.

In the short-term experiment (Expt 1), further reductions in body-weight were not substantially induced by dietary addition of ZnO at levels providing more than 8 g Zn/kg diet. Examination of the fresh weights of the liver, pancreas and reproductive organs per unit body-weight also revealed that they were not significantly further depressed by higher dietary levels of added ZnO despite associated reductions in food intake. However, it should also be noted that Zn intake per unit body-weight was maximum for the brown strain at 4 g added Zn/kg diet while for the white strain the maximum was above 8 g added Zn/kg. It appears that offering laying hens a diet containing approximately 8 g Zn/kg for at least 7 d is sufficient to cause a complete regression in the ovary and oviduct tissues. In the fowl the liver is the principal site of fatty acid synthesis (Leveille, 1969). Thus, a considerable proportion of the decrease in liver fresh weight may be attributed to the depression of oestrogen production and the consequent inhibition of oestrogen-induced lipidaemia (Griminger, 1976). Furthermore, the decrease in liver weight was similar in magnitude to the increase in hepatic weight observed when immature pullets came into lay (Pearce, 1971).

The marked increase in gizzard weight in response to dietary ZnO addition is rather similar to the effects observed on supplementing diets with high levels of copper sulphate (Fisher *et al.* 1973; Stevenson & Jackson, 1981).

Brake *et al.* (1977) suggested that increases in adrenal gland and spleen weight of force-moulted birds were indicative of physiological stress, at least during the early phase of starvation, while Eltohamy *et al.* (1980) identified hypertrophy of the adrenal cortex in cockerels offered up to 4 g Zn/kg diet and hypothesized that excessive dietary Zn indirectly affected the release of adrenocorticotrophic hormone from the amphophils of the cephalic lobe. This suggests that the increased weights of the adrenals and spleen per unit body-weight may possibly have been induced by stress effects, thus reducing food consumption.

The increase in hepatic and renal Zn concentration with increasing dietary level of ZnO addition supports the findings of Johnson *et al.* (1962) and Kincaid *et al.* (1976*b*) who reported elevated Zn concentrations in both the liver and kidneys of broiler chicks given diets incorporating ZnO at levels of 2 and 2.4 g Zn/kg diet respectively.

The highest concentration of Zn was found in the pancreas, increasing by 500-fold in hens offered 4 g Zn as ZnO/kg diet. This substantiates the observation by Oh *et al.* (1979) that Zn accumulated to the largest extent in the metallothionein of pancreatic tissue in

broiler chicks offered excess dietary Zn acetate. Marked increases in pancreatic Zn have also been reported in cockerels (Eltohamy *et al.* 1980), sheep (Ott *et al.* 1966*a*) and calves (Kincaid *et al.* 1976*a*) given high levels of Zn compounds.

It is apparent from the present findings that the accumulation of tissue Zn in the fowl exhibits a threshold level of tolerance to the concentration of dietary ZnO. The results of Expt 2 indicate that the threshold for mature hens given ZnO-supplemented diets is at a level of about 1 g Zn/kg diet. Although at this level of inclusion the Zn concentrations of both liver and pancreas were observed to increase more than twofold compared with the controls, the effect of 2 g added Zn as ZnO/kg diet was to increase their Zn concentrations by over seven- and twenty-five-fold respectively. Thresholds of dietary Zn compound concentrations above which tissue Zn accumulation increases markedly have also been identified for various species (Ott *et al.* 1966*b*; Kincaid *et al.* 1976*b*; Hamilton *et al.* 1979). It is important in making comparisons to realize that the threshold levels are largely dependent on the physical nature and solubility of the Zn compound.

The quadratic response of liver Fe content to increasing dietary levels of supplemental ZnO observed in Expt 2 was unexpected. Previous investigations with other species such as rats (Cox & Harris, 1960; Magee & Matrone, 1960), swine (Cox & Hale, 1962) and Japanese quail (Coturnix coturnix japonica) (Hamiliton et al. 1979) have shown that excessive levels of dietary Zn compounds cause a marked reduction in hepatic Fe concentration and content. However, the anomalous results obtained for the domestic fowl may be partly explained in terms of the corresponding effects of the different dietary treatments on egg production. The depletion of hepatic Fe content observed for the lower levels of ZnO inclusion may have been due to the joint effect of a diminished tissue Fe uptake concomitant with a drain of liver Fe stores associated with egg production. Egg-yolk formation has been shown by Halkett et al. (1958) to draw on the plasma Fe pool in laying hens and, since it has been estimated that a 50 g egg contains approximately 2.25 mg Fe (Romanoff & Romanoff, 1949), it would seem likely that egg production draws heavily on their Fe reserves. The observed increases in liver Fe content for the groups offered the diets with the two highest levels of ZnO supplementation may therefore reflect the corresponding cessation in egg production induced by these treatments. The resultant effect on the hepatic Fe content may have been reinforced by the associated depletion of liver Cu stores since there is evidence that Fe mobilization is inhibited at low Cu levels (Butler, 1971).

The slight increase observed in liver Cu concentration with the high dietary ZnO treatments of Expt 1 was evidently a reflection of the diminished liver weight since added dietary ZnO caused a significant depression in total liver Cu content. The severe reduction in hepatic Cu levels was even more apparent in Expt 2. The distinct increase in kidney total Cu content and concentration may reflect an increase in renal excretion of endogenous Cu associated with the observed antagonistic effect of dietary ZnO on liver Cu storage. The fall in the spleen and adrenal Cu concentrations at the 4 g Zn/kg level of supplementation may be attributed to the competitive effect of Zn and Cu but there is no obvious explanation for the rise in Cu concentration of the adrenals after the initial fall at the lowest level of supplementation although this must be a function of treatment.

The effects of excessive dietary ZnO intake on the storage and utilization of Cu in the mature fowl have not been investigated by other workers, although the antagonistic effect of dietary ZnO on tissue Cu accumulation has been extensively reported for other species including rats (Cox & Harris, 1960), broiler chicks (Johnson *et al.* 1962), sheep (Ott *et al.* 1966b) and turkey poults (Vohra & Heil, 1969). Furthermore, an inverse correlation between hepatic Fe and Cu levels has been identified by Ritchie *et al.* (1963) in growing pigs as well as by Ott *et al.* (1966b) in lambs. The results of the present work suggest that an inverse relation between the liver total Fe and Cu contents also exists in adult domestic fowl offered high levels of dietary ZnO.

The authors thank Mr W. D. Graham and Mrs D. A. Macartney for technical assistance and the British Egg Marketing Board Research and Education Trust for the award of a postgraduate scholarship to S. W. G.

REFERENCES

- Agricultural Research Council (1975). The Nutrient Requirements of Farm Livestock no. 1, Poultry. London: H.M. Stationery Office.
- Brake, J., Thaxton, P., Pardue, S. L. & Morgan, G. W. (1977). Poultry Science 56, 1697-1698 Abstr.
- Butler, E. J. (1971). In *Physiology and Biochemistry of the Domestic Fowl*, pp. 397-426 [D. J. Bell and B. M. Freeman, editors]. London: Academic Press.
- Cox, D. H. & Hale, O. M. (1962). Journal of Nutrition 77, 225-228.
- Cox, D. H. & Harris, D. L. (1960). Journal of Nutrition 70, 514-520.
- Creger, C. R. & Scott, J. T. (1977). Poultry Science 56, 1706 Abstr.
- Dewar, W. A., Wight, P. A. L., Pearson, R. A. & Gentle, M. J. (1983). British Poultry Science 24, 397-404.
- Eltohamy, M. M., Takahara, H. & Okamato, M. (1980). Journal of the Faculty of Agriculture, Kyushu University 24, 189-199.
- Fisher, C., Laursen-Jones, A. P., Hill, K. J. & Hardy, W. S. (1973). British Poultry Science 14, 55-68.
- Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). Journal of Biological Chemistry 226, 497-509.
- Gentle, M. J., Dewar, W. A., Wight, P. A. L. & Dick, K. M. (1982). Journal of Intake Research 3, 53-60.
- Griminger, P. (1976). In Avian Physiology, 3rd ed., p. 312 [P. D. Sturkie, editor]. New York, Heidelberg and Berlin: Springer-Verlag.
- Halkett, J. A. E., Peters, T. & Ross, J. F. (1958). Journal of Biological Chemistry 231, 189-199.
- Hamilton, R. P., Fox, M. R. S., Fry, B. E. Jr, Jones, A. O. L. & Jacobs, R. M. (1979). Journal of Food Science 44, 738-741.
- Hermayer, K. L., Stake, P. E. & Shippee, R. L. (1977). Poultry Science 56, 1721-1722 Abstr.
- Johnson, D., Mehring, A. L., Savino, F. X. & Titus, H. W. (1962). Poultry Science 41, 311-317.
- Kare, M. R. & Rogers, T. G. (1976). In Avian Physiology, 3rd ed., pp. 29–52 [P. D. Sturkie, editor]. New York, Heidelberg and Berlin: Springer-Verlag.
- Kincaid, R. L., Miller, W. J., Fowler, P. R., Gentry, R. P., Hampton, D. L. & Neathery, M. W. (1976a). Journal of Dairy Science 59, 1580-1584.
- Kincaid, R. L., Miller, W. J., Jensen, L. S., Hampton, D. L., Neathery, M. W. & Gentry, R. P. (1976b). Poultry Science 53, 1954–1957.
- Leveille, G. A. (1969). Comparative Biochemistry and Physiology 23, 431.
- Magee, A. C. & Matrone, G. (1960). Journal of Nutrition 72, 233-242.
- Magee, A. C. & Spahr, S. (1964). Journal of Nutrition 82, 209-216.
- Miller, W. J., Clifton, C. M., Fowler, P. R. & Perkins, H. F. (1965). Journal of Dairy Science 48, 450-453.
- Oh, S. H., Nakave, H., Deagen, J. T., Whanger, P. D. & Arscott, G. H. (1979). Journal of Nutrition 109, 1720–1729.
- Ott, E. A., Smith, W. H., Harrington, R. B. & Beeson, W. M. (1966a). Journal of Animal Science 25, 414-418.
- Ott, E. A., Smith, W. H., Harrington, R. B., Stob, B. M., Parker H. E. & Beeson, W. M. (1966b). Journal of Animal Science 25, 424-431.
- Palafox, A. L. & Ho-A, E. (1980). Poultry Science 59, 2024-2028.
- Pearce, J. (1971). Biochemical Journal 123, 717-719.
- Ritchie, H. D., Leucke, R. W., Baltzer, E. V., Miller, E. R., Ullrey, D. E. & Hoefer, J. A. (1963). Journal of Nutrition 79, 117-123.
- Roberson, R. H. & Schaible, P. J. (1960). Poultry Science 39, 893-896.
- Romanoff, A. L. & Romanoff, A. J. (1949). The Avian Egg, pp. 353-358. New York: John Wiley.
- Shippee, R. L., Stake, P. E., Koehn, N. V., Lambert, J. L. & Simmons, R. W. (1979). Poultry Science 58, 949-954.
- Stevenson, M. H. & Jackson, N. (1981). British Journal of Nutrition 46, 71-76.
- Vohra, P. & Heil, J. R. (1969). Poultry Science 48, 1686-1691.