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Ln SETS AND THE CLOSURES OF 
OPEN CONNECTED SETS 

NICK M. STAVRAKAS 

1. Introduction. F. A. Valentine in [4] proved the following two theorems. 

THEOREM 1. Let S be a closed connected subset of Rd which has at most n points 
of local nonconvexity. Then S is an Ln+i set. 

THEOREM 2. Let S be a closed connected subset of Rd whose points of local non-
convexity are decomposable into n closed convex sets. Then S is an L2n+i set. 

These results have been extended by a number of authors, but always with 
stronger hypothesis. (See [1] and [2].) Using a minimal arc technique, new 
proofs of Theorems 1 and 2 were given in [3]. 

Valentine remarks in [4] that Theorem 2 might be improved in the case that 
5 is the closure of an open connected set. The goal of this paper is to give such 
an improvement for sets satisfying a particular local connectivity property. 

2. Statement of main result. Following two definitions, we present: the 
main result to be proved in this paper. 

Definition 1. A set S is said to be locally star shaped at x if there is a neighbor
hood Nx of x such that S C\ Nx\s starshaped with respect to x. A set is locally 
starshaped if it is locally starshaped at each of its points. 

Definition 2. A set B in Rd is called strongly locally convex connected provided, 
given x 6 B (the closure of B) and a neighborhood Nx of x, there exists a 
convex open neighborhood NJ of x such that Nx C Nx and Nx P\ B is 
connected. 

THEOREM 3. Let S be a set in Rd which is the closure of an open connected, 
strongly locally convex connected set. Suppose S is locally starshaped and that the 
points of local nonconvexity of S are decomposable into n closed convex sets, 
&, . . . , Cn. Then S is an Ln+\ set. 

3. Conventions and notations. If 5 is a subset of Rd, C(S) and L(S) shall 
denote the points of local convexity of 5 and the points of local nonconvexity 
of 5, respectively. The symbol int S shall denote the interior of S. If S is 
convex, aff 5 and dim 5 shall denote the linear variety generated by S and the 
dimension of that linear variety, respectively. If S is starshaped, the convex 
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kernel of S is the set of all seeing points of S. If a, b G S, ab shall denote the 
closed line segment from a to b and (afr), [ab), (ab] shall have the usual mean
ings. 

The join of a point x and set S, denoted xS, is defined as {xs\s G 5}. Through
out the remainder of the paper we shall always assume 5 is the closure of an 
open connected, strongly locally convex connected subset of Rd. 

If L(S) is decomposable into n closed convex sets G, . . . , Cn, we shall say 
x G {Jn

i=id is a simple point if x is contained in exactly one Ct. Otherwise, 
x shall be called a juncture point. It follows from the proofs in [3] that, given 
x, y G S, where L(S) is decomposable into n closed convex sets, that an arc 
from x to y in S of smallest arc length (a minimal arc) is a polygonal arc. 

4. Preliminary results. 

LEMMA 1. Let S be a subset of Rd with L(S) = C convex and suppose that 
# G C, y G int 5 ^ aff C with xy C -S. Then there exists a neighborhood Ny of y 
such that xNy C S. 

Proof. Since y G aff C there is a closed convex neighborhood Ny of y such 
that Ny C S and for z G iV», (xz] H aff C = 0, and so (xNy ^ {x}) C\ aff C = 
0. Consider ws for u G (xy] and z £ Ny and the component r of S Pi ^iVy con
taining wy U ys C -S*. Since uNy C xiV^ ^ {x}, we have w7Vy H C = 0; since 
wiVj, is convex, any point of local nonconvexity of T is one in S, so T is closed, 
connected and locally convex and therefore convex by Tietze's theorem. Then 
uz C T C S and hence xz C S. Therefore, xNy C 5. 

LEMMA 2. Suppose S is a locally star shaped subset of Rd with L(S) = C con
vex and dim C ^ d — 2. If x £ C and y G int 5 ^ aff C, //ze?z xy C -S1. 

Proof. Let iVa; be an open neighborhood of x such that S C\ Nxis starshaped 
from x; there exists u G int S C\ Nx since S = int 5. Let Nu be an open neigh
borhood about u such that Nu d S C\ Nx. Since dim (aff C) ^ d — 2, Nu (/ 
aff C and so there exists z G Nu ^ aff C. But z G int 5 so z G int 5 ^ aff C. 
Since int 5 is connected and dim (aff C) ^ d — 2, then int S ^ aff C is con
nected and therefore polygonally connected. Hence, there exists a polygonal 
arc P in int S ^ aff C from s to y. But xs C S, so suppose w is the last point 
on P which x can see via S. Now w G int S ^ aff C and so Lemma 1 asserts 
that w is not the last point which x can see. Therefore, xy C S. 

LEMMA 3. If S satisfies the hypothesis of Lemma 2, then C lies in the convex 
kernel of S. 

Proof. This follows from Lemma 2 and the fact that int 5 ^ aff C is dense 
in S. 

LEMMA 4. If S is locally starshaped and L(S) = C is convex, then dim C rg 
d - 2. 
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Proof. Suppose dim C §; d — 1 ; since C is convex and has empty interior, 
dim C = d — 1. Then H = aff C is a hyperplane and let i7+ and i7~ denote 
the two open half spaces determined by H. Let x be a point in the relative 
interior of C as a subset of H and let Nx be a neighborhood of x such that 
5 P Nx is starshaped with respect to x. Since # G L(S), there is a point y in 
(int 5 A Nx) ^ H and without loss of generality, suppose y G int S P iJ+ . 
Since xy C 5, let T be a maximal convex subset of 5 containing xy. We claim 
that dim (T r\ H) = d — 1. Note that y G int T. A polygonal arc lying in 
int S joining u G int T P H+ C int 5 Pi H+ to a point v G int 5 P JT~ must 
meet int 5 P iif at some point w and we may assume that w is the first such 
point from u. By Tietze's theorem it follows that uw C 5 and that if Nw is a 
convex neighborhood of w such that Nw C 5, then Nw P i J + C T. Hence, 
Nw P H C T P # and dim (T P i7) = d - 1. Choose xr in the relative in
terior of C P ( r P H) = C P T. Since x' Ç L(5), there exists y' G int 5 P 
H~ such that x'y' C »5 and let T' be a maximal convex subset of 5 containing 
x'yf. As before T' meets H in a convex set of dimension 6̂  — 1 and we may 
locate an x" in the relative interior oi C C\T C\V. But then x" G int 5, con
tradicting x" G C = L(S). This proves dim C ^ d — 2. 

Lemmas 3 and 4 obviously imply the following result. 

COROLLARY 1. Let S be locally starshaped with L(S) = C convex. Then C 
lies in the convex kernel of S. 

5. Proof of the main result. 

Definition 3. A single segment ab is one having the property (ab) C C(S). 
A double segment ab in 5 is one having the property ab C L(S). 

THEOREM 4. Let S satisfy the hypothesis of Theorem 3. Let x, y G 5 and let I be 
a minimal arc from x to y in S. Let c be a vertex of I, c distinct from x and y. 
Suppose c is contained in both a single segment and double segment of I. Then c is 
a juncture point. 

Proof. Suppose cd \J ce C I and cd C L(S), (ce) C C(S). Assume c is a 
simple point and that c G CV Since c is not a limit point of any Cjt j ^ i, 
there is an open convex set Nc such that Nc P Cj = 0 for j ^ i and Nc P int 5 
is connected. Let Sr = Nc P int S. Then Sf is the closure of an open connected 
set. Consider L(Sf). Since Nc is convex, any point of local nonconvexity of S' 
will be a point of local nonconvexity of S, so L(S') C A^ P L(S) = Nc P d; 
we show that u G L(S'). Let u G Ncf~\ Cf. Then uc C Ct and a sequence 
{ŵ } C NCC\ Ci converging to u exists and thus sequences {vf\ and {wf\ in 
Nc P int S C 5 converging to w such that y ^ (^ 5 exist, which implies 
VJWJ (Z Nc P int 5 - 5 r . Thus u G L(5') and hence L(S') =WenCt is con
vex. Thus S' satisfies the hypothesis of Corollary 1. By Corollary 1, L(S') is in 
the convex kernel of 5' . Thus a po in t / G (^) can see a point of (ce). This 
implies / could be shortened, a contradiction. 

https://doi.org/10.4153/CJM-1975-001-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-001-3


4 NICK M. STAVRAKAS 

THEOREM 5. Let S satisfy the hypothesis of Theorem 3. Let x, y Ç S and let I be 
a minimal arc in S joining x and y, where 

I = #o#i {J X1X2X U . . . U xkxk+i, 

XQ = x and xk+i = y. Then there exist k distinct integers j \ , . . . , j k such that 
xt £ Ciit l ^ i û k . 

Proof. We prove the theorem by induction on k. Suppose the theorem is true 
for integers < k and that a choice for distinct integers j i , . . . , j k - \ such that 
Xt G Cjij 1 ^ i ^ k — 1, has been made. Consider xk. It is clear xk ([ Cjt for 
any i S k — 2 or else / could be shortened. If xk Ç Cjk_l and xk (I Ct for 
i 7e jk~i then xk is not a limit point for any other d. Thus c Ç (xp^+i) exists 
such that (xkc) P C* = 0 for i ^ 7V-1. But (xkc) P CyA_x = 0 since otherwise 
again / could be shortened. Thus (xkc) C C(S) and xk-\Xk C Cyfc„n so xk is con
tained in both a single and a double segment of /. By Theorem 4 xk is a juncture 
point and X& € Ci for some i 7̂  jk-i. Take j * = i; we have xk £ C;fc with 
jk 7e jk-ij ii» • • • » ifc-i and the induction carries. Thus, by the hypothesis of 
Theorem 3, k S n, proving that S is an Ln+i set, which establishes our main 
theorem. 

We remark that Theorem 4 is of interest in its own right since it gives in
sight into the relationship between vertices of a minimal arc and points of local 
nonconvexity. 

6. An example. Consider in the plane one triangle 7 \ contained in another 
Ti and these two triangles have a common vertex c. See Figure 1. Define a set 5 
as the set of points lying between 7\ and T% including T\ and 7Y Obtain a 
set S' in Rz by translating S' along a segment of length 1 starting at x perpen
dicular to the plane. Note that the line segment ab generated by the movement 

FIGURE 1 

of c is contained in L(S'). Note that any point y £ (ab) is contained in both 
a single and double segment of Sf but y is not a juncture point. Note S' is not 
strongly locally convex connected. This shows that Theorem 4 fails unless 
strong local convex connectedness is assumed. 
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