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The direct numerical simulation (DNS) study by Jin et al. (J. Fluid Mech, vol. 766, 2015,
pp. 76–103) shows that the turbulent structures are generally restricted in size to the pore
scale, leading to the pore-scale prevalence hypothesis (PSPH). Although the PSPH has
been validated under most conditions, it might become invalid as the porosity approaches
unity. In order to investigate the valid domain of the PSPH, we have studied the turbulent
flows in porous matrices which have one or two length scales using DNS and macroscopic
simulation methods. The large porous elements are made of staggered arrays of square
cylinders, which might stimulate strong macroscopic (large-scale) turbulence. The small
porous elements are made of aligned arrays of spheres or cubes, which suppress the
macroscopic turbulence. The analyses are performed for various values of the Reynolds
number, Darcy number, pore-scale ratio and porosity. Turbulent two-point correlations,
integral length scales and premultiplied energy spectra are calculated from the DNS and
macroscopic simulation results to determine the length scale of the turbulent structures.
Our numerical results show that the flow becomes turbulent when the Reynolds number is
sufficiently large. However, the length scale of turbulence is not considerably affected by
the Reynolds number, Darcy number and pore-scale geometry. The PSPH is valid when the
porosity has small or medium values. At a sufficiently large Reynolds number, large-scale
turbulence survives if the porosity is larger than a critical value. Our DNS and macroscopic
simulation results show that this critical value is in the range 0.93–0.98 for porous matrices
with large Darcy numbers (0.3–1.26 using the definition in this study). The dependence of
the critical porosity on the pore-scale geometry still needs to be further investigated.
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1. Introduction

A porous medium refers to a material consisting of a solid matrix with interconnected
voids. Flows in porous media are often laminar due to the low Reynolds number.
However, at certain conditions, the Reynolds number based on the pore scale might
exceed its critical value for laminar–turbulence transition and thus the flow becomes
turbulent.

Turbulence in porous media can be often found in canopy flows. The examples include
the flows in porous canopies made of trees, vegetation or buildings (Meroney 2007). These
canopies usually have large porosities (typically >90%, see Ghisalberti & Nepf (2009))
and high permeability (10−4–10−1 m2, see Rubol, Ling & Battiato (2018)). Whether
macroscopic turbulence can survive or not in porous media is a significant question for
these applications. It might enhance pollutant removal in wetland (Serra, Fernando &
Rodriguez 2004), benefit vegetation by augmenting nutrient uptake and/or gas exchange
(Nepf 2012), influence biological and ecological mechanisms (de Langre 2008) and help
to blow air pollutants in a city away efficiently. One type of macroscopic turbulence
is generated due to Kelvin–Helmholtz stability which occurs at the canopy interface.
Many studies about this type of macroscopic turbulence can be found, see Breugem,
Boersma & Uittenbogaard (2006), Suga (2016), Kim et al. (2020) as examples. Nepf
(2012) indicated that the lower canopy, which is far below the interface, is associated with
pore-scale turbulence. However, when the lower canopy has more than one length scale,
the large-scale turbulence stimulated by the large porous elements (e.g. tree trunks in a
forest canopy) can be also treated as macroscopic turbulence. This macroscopic turbulence
might survive if it cannot be suppressed by the small porous elements (e.g. tree leaves,
stems or grasses).

Possibility for survival of macroscopic turbulence in porous media has been intensively
studied in past years. There are two distinct views on this question. According to the
first view, macroscopic turbulence in porous media is believed to be possible, see Lee
& Howell (1991) and Antohe & Lage (1997). Transport of turbulence kinetic energy
should be accounted for when there is macroscopic turbulence. The examples include the
models by Prescott & Incropera (1995), Antohe & Lage (1997), Getachew, Minkowycy
& Lage (2000) and de Lemos (2012). Macroscopic turbulence models have also been
used to simulate flow in a porous matrix represented by a periodic array of square
cylinders (Kazerooni & Hannani 2009; Kundu, Kumar & Mishra 2014). Belcher, Harman
& Finnigan (2012) suggested that canopy flows are characterized by the drag length scale
rather than the depth of the canopy. However, it is not clear if the drag length scale is
related to macroscopic turbulence.

In the second view, macroscopic turbulence is impossible because of the limitation on
the size of turbulent eddies imposed by the pore scale, see Nield (1991, 2001), Nakayama
& Kuwahara (1999) and Kuwahara et al. (1998) as examples. Using an experimental
method, Tanino & Nepf (2008) suggested that the integral length scale of turbulence is
determined by the minimum value of the surface-to-surface distance between cylinders and
the cylinder diameter, both of which belong to pore scales. They further proposed that only
turbulent eddies with mixing length scales greater than the cylinder diameter contribute
significantly to dispersion, which is the transport of solute due to both time fluctuations
and spatial deviations of microscopic velocity and species concentration. Through a direct
numerical simulation (DNS) study of turbulent flows in a porous medium made of square
cylinders, Jin et al. (2015) concluded the turbulent eddies are generally restricted by the
pore size, leading to the pore-scale prevalence hypothesis (PSPH). Uth et al. (2016) and
Jin & Kuznetsov (2017) confirmed the PSPH with the DNS results for different geometries
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Survival of macroscopic turbulence in porous media

of the porous matrix. Rao, Kuznetsov & Jin (2020) developed a macroscopic model based
on the PSPH, in which microscopic turbulence is modelled.

However, the PSPH has a boundary of validity. If the porosity approaches unity, the
effect of the porous matrix on the flow will disappear. Macroscopic turbulence will survive
under such a condition. In Uth et al. (2016), a second (large) element is imposed in the
porous matrix; it can stimulate strong large-scale turbulence. The DNS results show that,
when the porosity for the porous matrix made of small length scales is large enough, the
macroscopic turbulence seems to survive. Chu, Weigand & Vaikuntanathan (2018) and
Srikanth et al. (2018) also confirmed the existence of large turbulent structures for flows
with large porosities. Therefore, the PSPH should have a boundary of validity, out of which
macroscopic turbulence might survive.

The purpose of this study is to find out in what conditions the large turbulent structures
might survive. To achieve this goal, the turbulent flows in a porous matrix with two length
scales will be calculated by using both DNS and macroscopic simulation methods. Strong
large-scale turbulence can be stimulated by the large porous matrix. The spacing between
small porous elements is varied to obtain different porosity values. The PSPH macroscopic
model proposed by Rao et al. (2020) will be used in the macroscopic simulation. While
the microscopic turbulence is modelled in the PSPH model, it is possible to resolve
the macroscopic turbulence directly when it can survive. The DNS and macroscopic
simulation results will verify and complement each other in the study.

2. Geometry of the porous matrix

The porous matrix in this study is made of two-dimensional staggered arrays of bars with
the element size dl and spacing sl and three-dimensional aligned arrays of spheres or cubes
with the element size ds and spacing ss, see figure 1(a,b). The computational domain is a
representative elementary volume (REV) for the large porous element. The ratio between
the large pore size sl and the bar size dl has a fixed value (sl/dl = 2). The same domain
size (2sl × 2sl × sl) is used for all test cases.

The porous matrices are made of the same large porous elements (staggered bars) but
different numbers of REVs have been studied in Jin et al. (2015). The numerical results
show that the computational domain in this study is large enough to calculate the length
scale of turbulence at the centre of a REV accurately.

The flow is in x1 direction. The Reynolds numbers for the large and small elements are
defined as

Res = umds

ν
, Rel = umdl

ν
, (2.1a,b)

where um is the mean seepage velocity.
The Reynolds number ReK for a generic porous matrix (GPM) made of small porous

elements can be defined as

ReK = um
√

K
ν

, (2.2)

where K is the permeability. The Darcy number Da for the GPM is defined as

Da = K/d2
l , (2.3)

φs denotes the porosity for the porous matrix made of small porous elements. For the
porous matrix made of spheres, φs is calculated as

φs = 1 − π

6

(
ds

ss

)3

. (2.4)
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Figure 1. Porous matrices used in the study. (a) A porous matrix with two length scales (made of cubes and
spheres); (b) a REV for the small porous element; (c) a porous matrix with only small pore scale (made of
spheres); (d) a porous matrix with only large pore scale (made of bars).

For the porous matrix made of cubes, φs is calculated as

φs = 1 −
(

ds

ss

)3

. (2.5)

In order to make the comparison, we have also calculated the flows in porous matrices
with only one length scale. They are made of either only large porous elements (figure 1c)
or only small porous elements (figure 1d).

3. Governing equations and numerical methods

3.1. DNS
In DNS, the transient Navier–Stokes equations accounting for all scales of turbulent
motions are solved directly without using any turbulence model. For flows in porous
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media, the detailed pore-scale geometry is also resolved. The governing equations for an
incompressible flow read

∂ui

∂xi
= 0, (3.1)

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2
j

+ gi, (3.2)

where gi is the applied pressure gradient in the momentum equation which maintains a
constant flow rate. A set of general units (L for length and T for time) are used in the study
so that the numerical results can be applied in any system of units.

The governing equations (3.1)–(3.2) are solved by using a lattice-Boltzmann method
(LBM). The basic equation for the present LBM is a discretized version of the
Boltzmann equation (Aidun & Clausen 2009). The collision operator is modelled by the
Bhatnagar–-Gross–Krook (BGK) model (Bhatnagar, Gross & Krook 1954),

fi(x + ξ i�t, t + �t) − fi(x, t) = −1
τ
( fi(x, t) − f eq

i (x, t)), (3.3)

where ξ i is a discrete particle velocity, fi(x, t) is the number distribution of molecules at
a position x at a time t along with direction i, f eq

i (x, t) is the equilibrium form of fi(x, t)
and τ is the relaxation time which determines the kinematic viscosity (see Chen & Doolen
1998).

With the help of the Chapman–Enskog expansion (see Chen & Doolen 1998), (3.3)
solves the incompressible Navier–Stokes equations (3.1)–(3.2) by streaming and collision
processes. The left-hand side term represents the streaming process while the right-hand
side term represents the collision process. Equation (3.3) is a linear partial differential
equation and the meshes are uniformly distributed in all directions, which leads the
LBM to run efficiently on massively parallel architectures. The bounce-back model with
numerical approximation of second order is applied to the wall surfaces of the porous
elements. More details can be found in Mohamad (2011).

3.2. Macroscopic simulation
Direct numerical simulation is the most accurate method for studying turbulent flows in
porous media, however, it is extremely expensive, particular for porous media with high
porosities and low Darcy numbers. So, some cases are calculated by using macroscopic
simulation. Some DNS cases are calculated again using the macroscopic simulation solver
for validation.

The large porous elements (bars) are still fully resolved in macroscopic simulation while
the small porous elements are modelled. Volume averaging (3.1)–(3.2) in each REV and
using the theorem of local volumetric average (Slattery 1967; Whitaker 1969, 1999; Gray
& Lee 1977), the macroscopic equations for flows in a porous medium can be obtained,
expressed as

∂uDi

∂xi
= 0, (3.4)

∂uDi

∂t
+ ∂(uDiuDi/φ)

∂xj
= −∂(φ〈p〉i)

∂xi
+ φgi − φRi + ν

∂2uDi

∂x2
j

− ∂(φ〈iui
iuj〉i

)

∂xj
. (3.5)
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The operator 〈·〉i denotes volume averaging over the fluid region of an REV. Here uDi =
φ〈ui〉i is the superficial velocity and Ri denotes the total drag caused by the effect of the
porous matrix. The spatial deviation iui is the difference between the value at a point and
its intrinsic average, calculated as iui = ui − 〈ui〉i.

Rao et al. (2020) assumed in the PSPH model that macroscopic turbulence does not exist
when the porosity is not very large, so only microscopic turbulence is accounted for in this
model. However, it is still possible to capture the macroscopic turbulence directly using
this model if it survives. Now Ri is decomposed into a drag term R∗

i which is determined
by uDi and the residual drag term Ri − R∗

i related to the gradient of uDi. Making a Taylor
extension for R∗

i with respect to a local Reynolds number ReK = √
K|uD|/ν and taking

the first two leading-order terms, we have

R∗
i = ν

K
uDi(1 + cF1ReK). (3.6)

Equation (3.6) is identical to the Forchheimer extension of the Darcy term (Lage & Antohe
2000). For the small porous elements under consideration (aligned spheres or cubes), the
Forchheimer coefficient cF1 is set to 0.1, see Nield & Bejan (2017) and Rao et al. (2020).

The sum of the momentum dispersion φ〈iui
iuj〉i, molecular diffusion 2νsDij and drag

due to the velocity gradient Ri − R∗
i is modelled using a Laplacian term Li, expressed as

Li = φ(Ri − R∗
i ) + ν

∂2uDi

∂x2
j

− ∂(φ〈iui
iuj〉i

)

∂xj
= ∂

∂xj
(2ν̃sDij) , (3.7)

where ν̃ is an effective viscosity. Rao et al. (2020) introduced another local Reynolds
number to model the effective viscosity ν̃, defined as

Red = K|sD|
ν

, (3.8)

where sD is the strain rate tensor of the superficial velocity uD. Making a Taylor expansion
with respect to Red for ν̃/ν and taking the first two leading-order terms, we have

ν̃/ν = cB1 + cB2Red. (3.9)

The model coefficients K, cF1, cB1 and cB2 are all geometric parameters which are
independent of the flow condition. They are determined empirically in this study. The
permeability K can be approximated by the Carman–Kozeny equation (Kozeny 1927;
Carman 1956), expressed as

K = D2
P2φ

3

cK(1 − φ)2 , (3.10)

where DP2 is an effective average particle or fibre diameter. The model coefficient cK has
the value 180, and cB1 and cB2 are calculated using the correlations in Rao et al. (2020),
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they are

cB1 = 49.63 × (1 − φ)2

φ0.5 + 1, (3.11)

cB2 = 0.79 × (1 − φ)2

φ3 . (3.12)

Substituting (3.6) and (3.7) into (3.5), normalizing with the mean velocity um and the large
element size dl, the following dimensionless macroscopic equations can be obtained:

∂
�uDi

∂
�xi

= 0, (3.13)

∂
�uDi

∂
�
t

+ ∂(
�uDi

�uDi/φ)

∂
�xj

= −∂(φ〈�p〉i
)

∂
�xi

+ φ
�gi − �

Ri + �

Li, (3.14)

where � denotes a dimensionless variable. The dimensionless drag and Laplacian terms
are calculated as

�

Ri = φ

DaRel

�uDi + φcF1

Da1/2

∣∣∣�uD

∣∣∣ �uDi, (3.15)

�

Li = 2
∂

∂xj

[(
cB1

Rel
+ cB2Da

∣∣∣�sD

∣∣∣
)

ŝDij

]
. (3.16)

When Rel is high enough (Rel → ∞), (3.15) and (3.16) can be simplified as

�

Ri = φcF1

Da1/2

∣∣∣�uD

∣∣∣ �uDi, (3.17)

�

Li = ∂

∂xj
(2cB2Da

∣∣∣�sD

∣∣∣ �sDij). (3.18)

Equation (3.17) is consistent with the momentum equation for canopy flows (Nepf 2012)
in which the viscous resistance is neglected. It can be seen that the momentum transport
is affected by the geometric parameters φ, cF1, cB2 and Da when Rel is high enough. If
the correlations and model coefficients for calculating cB2 and the Forchheimer term are
generic for all porous matrices, (3.13)–(3.14) are determined only by Da and φ. So, for a
given value of Da, there is a critical value of porosity φc above which the macroscopic
turbulence might occur.

A finite volume method (FVM) is used to solve the governing equations. The
computational fluid dynamics (CFD) solver is developed based on the open source CFD
program OpenFoam 18.06. The solutions are advanced in time, with the second-order
implicit backward method. To compute the derivatives of the velocity, the variables at the
interfaces of the grid cells are obtained using linear interpolation. The linear interpolation
of the interfacial values leads to a second-order central difference scheme for spatial
discretization. The pressure at the new time level is determined by the Poisson equation.
The velocity is corrected with the pressure implicit with splitting of operators pressure
velocity coupling scheme.

937 A17-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.87


F. Rao and Y. Jin

Porous matrix φs sl/ss Mesh resolution Res Rel

‘bars+spheres’ 0.61–0.98 4–12 353 × 353 × 177 355–704 781–4224
1153 × 1153 × 577

‘bars+cubes’ 0.88–0.98 4 641 × 641 × 321 614–749 2512–5992
1281 × 1281 × 641

‘spheres’ 0.61–0.98 — 353 × 353 × 177 391–754 860–4524
961 × 961 × 481

‘cubes’ 0.88–0.96 — 641 × 641 × 321 469–689 2352–4137
961 × 961 × 481

‘bars’ 1.0 — 161 × 161 × 81 — 528–653
201 × 201 × 201

Table 1. Main parameters for the DNS cases, LBM. The lowest and highest mesh resolutions for each porous
matrix are shown.

Porous matrix φs sl/ss Da Mesh resolution ReK Rel

‘bars+spheres’ 0.93–0.99 4, 8 0.07–1.26 161 × 161 × 81 39–2009 62–5392
‘bars+GPM’ 0.93–0.99 — 0.3–1.2 161 × 161 × 81 ∞ ∞

256 × 256 × 256
‘bars’ 1.0 — — 81 × 81 × 81 — 566–671

161 × 161 × 161

Table 2. Main parameters for the cases of macroscopic simulation, FVM. The lowest and highest mesh
resolutions for each porous matrix are shown.

4. Results and discussion

4.1. Description of the test cases
The main parameters for DNS cases and macroscopic simulation cases are shown in
tables 1 and 2, respectively. The length scale ratio ss/ds is varied in the DNS cases to obtain
the porosity values from 0.61 to 0.98. For φs = 0.7, the pore-size ratio sl/ss varies between
4 and 12. Relatively large Reynolds numbers are studied (Res > 350 and Rel > 500) to
ensure the flows are in the fully turbulent regime; the laminar–turbulent transition is not in
the scope of this study. The grid points are uniformly distributed in the DNS cases. Body
fitted meshes are used in the cases of macroscopic simulation. A higher resolution mesh is
used for flows with a higher Reynolds number, see table 1 for the highest and lowest mesh
resolutions for each geometry.

The effect of small porous elements is approximated using a continuous model in the
macroscopic simulation. The geometric parameters are determined empirically, see details
in § 3.2. The solid matrix geometry in the first group of test cases is assumed to be the
same as ‘bars+spheres’ in DNS. The values of sl/ss are set to 4 and 8 so the macroscopic
simulation results can be compared with the DNS results. In another group of cases, we
have carried out the macroscopic simulation for Rel → ∞ to exclude the effect of the
Reynolds number. The small porous elements are not specified in these cases and the Darcy
number is given directly, so this porous matrix is called ‘bars+GPM’. Equations (3.13) and
(3.14) with the drag terms expressed by (3.17) and (3.18) are solved for the calculation of
this group of cases.

Typical DNS and macroscopic simulation cases are calculated using two mesh
resolutions to perform the mesh-convergence study. In addition, typical macroscopic
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simulation results are compared with the DNS results for validation. Details about
verification and validation are presented in the Appendix.

4.2. DNS results
The Q-method (Hunt, Wary & Moin 1988) is used to identify the turbulent structures
in porous media qualitatively. The quantity Q = −1

2(∂ui/∂xj)(∂uj/∂xi) is the second
invariant of the instantaneous velocity gradient tensor. According to the Q-method,
vortices can be identified by connected fluid regions with positive Q values. Figure 2 shows
the turbulent structures identified by the isosurfaces of Q in different porous matrices.
When the porous matrix has only large elements (staggered arrays of square cylinders), it
can be seen in figure 2(a) that the size of vortices is close to the large pore size sl.

For the porous matrix with only small porous elements, fully developed turbulence can
be found when Res is approximately 500. The size of vortices is close to the small pore
size ss, which is much smaller than sl, see figure 2(b).

If we combine the two porous elements together, we may investigate whether (or in what
conditions) the vortices with the large length scale sl may survive. The values of Res for
the cases in figures 2(c) and 2(d) are still above 500. The size of turbulent structures is
generally close to the small pore size ss when the porosity has a medium value (φs = 0.7),
see figure 2(c). The vortical tubes are more densely populated in the passage between
the two large porous elements. However, we have not observed any vortices which are
evidently larger than ss. All large vortices are damped by the porous medium made of
small porous elements and vanish. This is in accordance with the PSPH. However, when
the porosity is increased to φs = 0.98, some vortical bulks which are much larger than ss
(close to the large element size dl) can be found; their locations are indicated by the circles
in figure 2(d). We can also see the long wakes downstream of the large vortical bulks.
The vortical structures show qualitatively that the large-scale turbulence survives when
φs = 0.98.

However, the Q-method should be combined with other statistical results to perform
quantitative analysis. In order to detect the length scale of turbulence quantitatively, the
two-point correlation due to turbulence R̂ij(r, x0) is calculated. The correlation point x0
is at the centre of the cross-plane (sl, sl, x3). When the velocity components u′

i(x0, t)
and u′

j(x0 + r, t) are correlated, the overall two-point correlation Rij(r, x0) can be directly
calculated from the DNS results, it is defined as

Rij(r, x0) = 〈u′
i(x0, t)u′

j(x0 + r, t)〉t, (4.1)

where the operator 〈·〉t denotes the time averaging. To extract the correlation due
to non-turbulent fluctuation from Rij〈r, x0〉 and calculate the correlation due to true
turbulence R̂ij(r, x0), a lateral correlation is calculated as

R̃ij(r, r3, x0) = 〈u′
i(x0, t)u′

j(x0 + r + r3e3, t)〉t, (4.2)

where e3 is the unit vector in the spanwise direction and r3 is the value of distance. Due
to the periodicity of the flow in the x3 direction, we expect the non-turbulent correlation
R̃ij(r, x0) can be approximated by R̃ij〈r, r3, x0〉 if r3 is large enough. Thus, the turbulent
two-point correlation can be calculated as

R̂ij(r, x0) = Rij(r, x0) − R̃ij(r, r3, x0). (4.3)

The distributions of R̂11〈r, x0〉 for turbulent flows in porous matrices with two length
scales (‘bars+spheres’) or only one length scale (‘bars’ or ‘spheres’) are shown in figure 3.
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–0.50 –0.25 0 0.25 0.50

(a) (b)

(c) (d )

Figure 2. Instantaneous turbulence structures, colour coding showing the instantaneous value of the vertical
velocity u2, Q/QM = 2 × 10−2, where QM is the maximum value of Q. Possible large-scale structures are
indicated by circles. (a) Bars, φs = 1.0, Rel = 641, QMd2

l /u2
m = 4.8 × 103; (b) spheres, φs = 0.70, Res = 545,

Rel = 1308, QMd2
l /u2

m = 2.0 × 104; (c) bars and spheres, φs = 0.70, Res = 536, Rel = 1286, QMd2
l /u2

m =
1.4 × 104; (d) bars and spheres, φs = 0.98, Res = 564, Rel = 3384, QMd2

l /u2
m = 2.0 × 105.

It can be seen that, if the porous matrix has only large porous elements (‘bars’), R̂11 is
non-zero as the distance from the centre point x1 − x10 is in the range [−sl, sl], while R̂22
is non-zero as x2 − x20 is in the range [−sl, sl], indicating that the turbulence close to the
domain centre has the length scale sl, see the dash–dotted lines in figure 3. If the porous
matrix has also small porous elements (‘spheres’) with a medium porosity (φs = 0.7),
no matter the large porous elements (‘bars’) exist or not, the non-zero ranges of R̂11 and
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Figure 3. Turbulent two-point correlations in the streamwise (x1) direction (a) and transverse (x2)
direction (b).
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Figure 4. Turbulent two-point correlations in the streamwise (x1) direction (a) and transverse (x2)
direction (b).

R̂22 are reduced to [−1
4 sl,

1
4 sl], see the solid and dashed lines in figure 3. The turbulence

has the length scale 1
4 sl which is identical to the small pore size ss = 1

4 sl. The DNS
results confirm the PSPH, which states that, for a porous matrix with medium to low
porosity, the turbulence length scale is generally determined by the pore size and there is
no macroscopic turbulence.

As the value of φs is increased to 0.98 while the Reynolds number is kept high enough to
ensure the flow to be fully turbulent, the non-zero ranges of R̂11 and R̂22 for ‘bars+spheres’
become wider than [−1

4 sl,
1
4 sl], see figure 4. They are also larger than the non-zero

ranges for ‘spheres’. The DNS results indicate that macroscopic turbulence survives in
this condition.

The integral length scales can be calculated from the turbulent two-point correlations
to quantify the length scale of turbulence. Similar to the definitions in Pope (2000), the
longitudinal integral length scales in the parallel (x1) and transverse (x2) directions Lx and
Ly are, respectively, calculated as

Lx =
∫ sl

−sl

R̂11(r1e1, x0)/û′2
1 (x0) dr1, (4.4)
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Figure 5. Effects of the Reynolds number on the integral length scales: (a) Lx/sl, φs = 0.70; (b) Ly/sl,
φs = 0.70; (c) Lx/sl, φs = 0.98; (d) Ly/sl, φs = 0.98.

Ly =
∫ sl

−sl

R̂22(r2e2, x0)/û′2
2 (x0) dr2, (4.5)

where Lx and Ly for ‘bars+spheres’ with different Reynolds numbers Res are shown in
figure 5. They are compared with the integral length scales in the porous matrices with only
large length scale (‘bars’) or small length scale (‘spheres’). Here Lx and Ly are averaged in
a certain range of Reynolds numbers (Res ∈ [400, 600] for ‘spheres’ and Rel ∈ [528, 653]
for ‘bars’) for further analysis. The averaged integral length scales 〈Lx〉/sl and 〈Ly〉/sl for
‘spheres’ are 0.15 and 0.07, respectively. They are much lower than the averaged integral
length scales for ‘bars’, which are 0.46 and 0.56, respectively. It can be seen in figures 5(a)
and 5(b) that the Lx/sl and Ly/sl values for ‘bars+spheres’ change only marginally with
the Reynolds number Res or Rel. They are close to the values for ‘spheres’; this implies
that the macroscopic turbulence cannot be stimulated by increasing the Reynolds number.
By contrast, Lx/sl and Ly/sl become closer to the values for ‘bars’ as the porosity φs is
increased to 0.98, suggesting that the macroscopic turbulence occurs in this condition, see
figures 5(c) and 5(d).

Figure 6 shows the averaged integral length scales 〈Lx〉/sl and 〈Lx〉/sl for φs = 0.7 and
the pore-scale ratio sl/ss in the range 4–12. The difference between the length scale of
macroscopic turbulence and the pore-scale turbulence becomes more evident as the scale
ratio sl/ss becomes larger. As sl/ss is increased from 4 to 12, 〈Lx〉/sl is decreased from
0.14 to 0.05, while 〈Ly〉/sl is decreased from 0.07 to 0.02. They are almost identical to the
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Figure 6. Effects of sl/ss on the averaged integral length scales, φs = 0.70. The length scales are averaged in
the range Res ∈ [436, 649] with (a) 〈Lx〉/sl; (b) 〈Ly〉/sl.
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Figure 7. Effects of the porosity φs on the averaged integral length scales with (a) 〈Lx〉/sl; (b) 〈Ly〉/sl.

integral length values when the porous matrix has only small porous elements (spheres).
The DNS results confirm that there is no macroscopic turbulence for this porosity value.

Figure 7 shows the relationship between the integral length scales and the porosity φs
when the flow is fully turbulent. The DNS results for ‘bars+spheres’ are compared with
those for ‘bars’ and ‘spheres’. Here 〈Lx〉/sl and 〈Lx〉/sl change only marginally as φs is
increased from 0.61 to 0.93, while an abrupt jump can be found for φs = 0.98, which
indicates the onset of macroscopic turbulence. So, we expect that the critical porosity φc
for the survival of macroscopic turbulence lies between 0.93 and 0.98. It should be noted
that, up to now, this critical porosity value is only validated for the scale ratio sl/ss = 4.

Another porous matrix has been studied to understand the effects of pore-scale geometry
on the critical porosity φc. The small porous elements for this porous matrix are made of
cubes. Figure 8 shows the averaged integral length scales for different porous matrices.
It can be seen that the values of 〈Lx〉/sl and 〈Ly〉/sl for ‘bars+cubes’ are close to the
values for ‘cubes’ as φs is increased from 0.86 to 0.96. They jump abruptly and become
close to the values for ‘bars’ as φs is increased to 0.98. The DNS results suggest that the
critical value for the onset of macroscopic turbulence lies between 0.96 and 0.98. Again,
this critical porosity is only validated for the scale ratio sl/ss = 4.
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Figure 8. The averaged integral length scales for ‘bars+cubes’ with (a) 〈Lx〉/sl; (b) 〈Ly〉/sl.

The one-dimensional energy spectra at the domain centre can be calculated using the
DNS results for two-point correlations. According to the definition by Kolmogorov (1941)
for locally homogeneous and isotropic turbulence, it is calculated as

Êii(x0, k1) = 1
π

∫ ∞

−∞
R̂ii(x1e1, x0) exp(−ik1x1) dx1, (4.6)

where k1 denotes the wavenumber in the x1 direction. Jin et al. (2015) and
Gomes-Fernandes, Ganapathisubramani & Vassilicos (2015) argued that this equation can
be also used to calculate the local energy spectra for inhomogeneous and anisotropic flows.

Figure 9 shows the premultiplied energy spectra k1Êii(x0, k1), which can be used to
identify the k−1

1 range (Jimenez 1998). The Reynolds numbers are high enough to ensure
the flow is fully turbulent. The maximum of wavelength Λ = 2π/k1 which corresponds to
the peak values of k1Êii(x0, k1) represents the largest length scale of turbulent structures
(Guala, Hommema & Adrian 2006; Balakumar & Adrian 2007). When the porous matrix
has only large porous elements (bars), the maximum value of Λ is approximately 5.3ss,
which is between sl = 4ss and 2sl = 8ss, while it is much larger than the small pore scale
ss. When the porosity for the small porous elements has a medium value (φs = 0.7), no
matter the porous matrix has one (‘spheres’) or two (‘bars+spheres’) length scales, the
maximum value of Λ is approximately 1.6ss, which is close to the small pore scale ss. By
contrast, when the porous matrix has two length scales (‘bars+spheres’) and the porosity
is large (φs = 0.98), the second peak of k1Êii(x0, k1) can be observed. The corresponding
value of Λ is approximately 4ss, which is close to the maximum Λ for ‘bars’. The
premultiplied energy spectra also confirm the occurrence of macroscopic turbulence at
φs = 0.98.

4.3. Macroscopic simulation results
The DNS results show that, when the Reynolds number is high enough to ensure the
flow become fully turbulent, the porosity has a critical value φc for the occurrence of
macroscopic turbulence. Now φc is generally independent of the Reynolds number and
the shape of porous elements. However, it might be affected by the Darcy number which
is determined by the scale ratio sl/ss. To further investigate the generality of φc, we have
calculated the turbulent flows in the same porous matrices using macroscopic simulation.
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Figure 9. Premultiplied energy spectra for ‘bars+spheres’, ‘bars’ and ‘spheres’, sl/ss = 4. The peaks with
the lowest wave-numbers are indicated with solid circles. The values of Res are 536 for ‘bars+spheres’ with
φs = 0.7, 564 for ‘bars+spheres’ with φs = 0.98 and 545 for ‘spheres’, respectively. The value of Rel for ‘bars’
is 641.

The instantaneous velocity magnitude in a cross-section for different values of porosity
φs is shown in figure 10. The Reynolds number Rel is 5060 for φs = 0.93, which is much
higher than the critical value of Rel for the onset of macroscopic turbulence when the
porous matrix has only large porous elements. The value of ReK is 1302, suggesting that
the flow is in the Forchheimer regime. However, no macroscopic turbulence is found in this
case, see figure 10(a), while the microscopic turbulence is modelled. The macroscopic
turbulence survives as the porosity φs is increased to 0.98 (figure 10b). Similarly,
macroscopic turbulence is also found as φs is further increased, see figure 10(c) for
φs = 0.99 and figure 10(d) for φs = 1. The macroscopic simulation results are consistent
with the DNS results.

Figure 11 shows the turbulent two-point correlation R̂11(r, x0) calculated from the
macroscopic simulation. The test cases have similar values of ReK . Now R̂11(r, x0) is equal
to zero when φs = 0.93 but has a non-zero range when φs ≥ 0.98. This non-zero range of
R̂11(r, x0) exceeds [−1

4 sl,
1
4 sl], which corresponds to the microscopic length scale, and

becomes wider as φs is increased from 0.98 to 1.
Figure 12 shows the relationship between the Reynolds number ReK and the normalized

macroscopic turbulence kinetic energy 2〈k〉/u2
m for φs = 0.98 and different Da values.

The onset of macroscopic turbulence occurs at ReK = 133 for Da = 0.39 or ReK = 120
for Da = 0.10. The results are consistent with the statement by Nield & Bejan (2017) that
the transition from a Darcy flow to a Darcy–Forchheimer flow occurs when ReK is of order
102. In addition, we have found that the values of 2〈k〉/u2

m change only marginally when
the ReK is above 1000.

The longitudinal integral length scales Lx and Ly for ReK > 1000 are shown in figure 13.
The macroscopic results are compared with the DNS results for ‘bars’. Both macroscopic
simulation and DNS results show that Lx and Ly change only marginally when the value
of ReK is increased. The values of Lx and Ly increase with the increase of φs and approach
the values for φs = 1. The macroscopic simulation results of 〈Lx〉 and 〈Ly〉 for φs = 1 are
0.45 and 0.54, respectively, which are close to DNS results for ‘bars’.
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Figure 10. Instantaneous velocity magnitude, ‘bars+spheres’ with (a) φs = 0.93, Da = 0.07, ReK = 1302,
Rel = 5060; (b) φs = 0.98, Da = 0.39, ReK = 1225, Rel = 1969; (c) φs = 0.99, Da = 1.26, ReK = 1135,
Rel = 1009; (d) φs = 1.0, Rel = 630.

Figure 14 shows the premultiplied energy spectra of macroscopic simulation results. A
plateau of k1Ê11/u′2

1 ≈ 0.35 can be found for porosity φs = 1, which indicates the range of
large-scale turbulent motion. The peak of k1Ê11 for φs = 1 corresponds to the wavelength
Λ = 1.33sl, which is identical to the value of Λ for φs = 0.99. When the porosity φs is
decreased to 0.98, the value of Λ declines to sl which is identical to the large pore size.

The macroscopic simulation results discussed above are for a GPM made of spherical
porous elements with the scale ratio sl/ss = 4 or 8. The permeability K is calculated
using the Carman–Kozeny equation (3.10). However, the values of K and the Darcy
numbers calculated from this equation might have uncertainties due to the variation of the
pore-scale geometries. To better understand the dependence of the critical porosity φc on
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Figure 11. Turbulent two-point correlations in the streamwise (x1) direction (a) and transverse (x2) direction
(b), ‘bars+spheres’.
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Figure 12. Normalized macroscopic turbulence kinetic energy 2〈k〉/u2
m versus Reynolds number ReK ,

φs = 0.98, ‘bars+spheres’.
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Figure 13. Turbulent two-point correlations in the streamwise (x1) direction and transverse (x2) direction,
‘bars+spheres’ with (a) Lx; (b) Ly.
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Figure 14. Premultiplied energy spectra for ‘bars+spheres’. The peaks with the lowest wavenumbers are
indicated with solid circles.
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Figure 15. Normalized macroscopic turbulence kinetic energy 2〈k〉/u2
m versus porosity. Here Rel → ∞,

Da ∈ [0.3, 1.2], ‘bars+GPM’.

the Darcy number, we have solved (3.13) and (3.14) with the drag terms expressed by (3.17)
and (3.18) for different Darcy numbers. The solutions are independent of the Reynolds
numbers. Figure 15 shows the relationship between φs and 2〈k〉/u2

m. The macroscopic
simulation results indicate that the critical porosity φc for the survival of macroscopic
turbulence is between 0.95 and 0.97, which is similar to the DNS results. Now φc is not
sensitive to the Darcy number when it is in the range 0.3–1.2. When φs is smaller than φc,
macroscopic turbulence cannot be stimulated even if Rel → ∞.

5. Conclusions

In order to understand whether macroscopic turbulence might survive in certain conditions
and thus know the valid domain of the PSPH, we have studied the turbulent flows in porous
matrices which have one or two length scales using DNS and macroscopic simulation.
The large porous elements are made of two-dimensional bars with the element size dl and
spacing sl, while the small porous elements are made of spheres or cubes with the element
size ds and spacing ss.

Instantaneous Q isosurfaces, turbulent two-point correlations, integral length scales
and premultiplied energy spectra which are obtained from both DNS and macroscopic
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Accuracy

Test cases φs Mesh resolution Res Rel Δ (%)

‘bars+spheres’ 0.89 545 × 545 × 273 571 1941 8.0
0.91 577 × 577 × 289 600 2160 6.3
0.92 609 × 609 × 305 636 2417 5.6
0.93 641 × 641 × 321 615 2460 5.1
0.98 961 × 961 × 481 704 4224 1.0

‘bars+cubes’ 0.88 641 × 641 × 321 628 2512 7.3
0.96 961 × 961 × 481 614 3684 1.3
0.98 1281 × 1281 × 641 749 5992 0.2

‘spheres’ 0.70 385 × 385 × 193 465 1116 6.0
0.76 417 × 417 × 209 476 1238 2.7
0.81 449 × 449 × 225 647 1812 4.0
0.84 481 × 481 × 241 623 1869 1.0
0.87 513 × 513 × 257 775 2480 3.0

‘bars’ — 161 × 161 × 161 — 528 3.0
— 161 × 161 × 161 — 594 6.8
— 161 × 161 × 161 — 630 7.9
— 161 × 161 × 161 — 641 8.6
— 161 × 161 × 161 — 653 8.5

Table 3. Main parameters for the typical DNS cases, LBM.

simulation are used to detect the possible macroscopic turbulence. The DNS results show
that the critical porosity φc for the survival of macroscopic turbulence is between 0.93
and 0.98 when the scale ratio sl/ss is set to 4. When the porosity is lower than φc,
the integral length scales for porous matrices with two length scales (‘bars+spheres’ or
‘bars+cubes’) are almost identical to those for porous matrices with only small porous
elements (‘spheres’ or ‘cubes’). When the flow is fully turbulent, the value of φc does
not change markedly as the Reynolds number (Res or Rel) is increased or the pore-scale
elements are changed from ‘spheres’ to ‘cubes’.

The generality of the value of φc is further studied using macroscopic simulation. The
porous matrix made of spherical elements is modelled as a continuous porous medium
whose geometric parameters are determined empirically. The macroscopic simulation
results for ‘bars+spheres’ show that φc is in the range 0.95–0.97, which is close to the
DNS results. Then, the macroscopic simulations for Rel → ∞ and the Darcy number
values in the range 0.3–1.2 are performed. The numerical results show that φc is still
in the range 0.95–0.97. It should be noted that that cB2 for our macroscopic simulation is
calculated using (3.12) and the coefficient of the Forchheimer term is set to cF1 = 0.1. The
current critical porosity value φc is calculated based on the coefficient cB2 and cF1 values.
When the Darcy number approaches zero, the macroscopic turbulence might survive only
with larger critical porosity since the drag term becomes infinity in (3.17). The effect of
pore-scale geometries on these coefficients has not been taken into account in our study.
In addition, the DNS is for only two pore-scale geometries (‘spheres’ and ‘cubes’). The
dependence of the critical porosity on the pore-scale geometry still needs to be further
investigated.

The comparison between the DNS and macroscopic simulation results also confirms the
accuracy of the PSPH model proposed by Rao et al. (2020), as well as the capability of
using this model to directly resolve the macroscopic turbulence in porous media.
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Figure 16. Applied pressure gradient g1 versus Reynolds number Rel, DNS results. The porous matrix is
made of staggered arrays of bars. Here FVM and LBM results with different mesh resolutions are compared.

–1.0 –0.5 0 0.5 1.0

0

0.5

1.0

(x1 – x10)/sl

–1.0 –0.5 0 0.5 1.0

(x2 – x20)/sl

             Rel Method

    641   LBM
    630   FVM

R̂ 1
1
/û
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Figure 17. Turbulent two-point correlations in the streamwise (x1) direction (a) and transverse (x2) direction
(b). The porous matrix is made of staggered arrays of bars. Here FVM and LBM results are compared.
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Appendix A. Verification and validation

The accuracy of the DNS solution can be examined by an accuracy measure, which we
define as

Δ = g1 − gs

g1
, (A1)
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Figure 18. Premultiplied energy spectra. The porous matrix is made of staggered arrays of bars. Here FVM
and LBM results are compared.
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Figure 19. Distribution of 〈ū1〉v,x3 and 〈ū2〉v,x3 along the streamwise (x1) lines at x2/ss = 0.5 (squares), 2.5
(circles), 4.5 (up-pointing triangles) and 6.5 (down-pointing triangles). Solid symbols indicate DNS results
and hollowed symbols indicate macroscopic simulation results. The porous matrix is ‘bars+spheres’ with
φs = 0.70. The Reynolds number Res is 436 (a,b) or 620 (c,d).
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where g1 and gs are the pressure gradient in the streamwise direction and the
volume-averaged dissipation rate in the computational domain. Jin et al. (2015) suggested
that a solution with Δ values below 10% for this type of flows is accurate enough for the
analysis. Table 3 shows the values of Δ for typical DNS cases.

The FVM and LBM methods have been intensively applied and verified in our previous
studies, see Jin et al. (2015), Uth et al. (2016), Jin & Kuznetsov (2017) and Rao et al.
(2020). Here we make further verification using the cases in this study. Figure 16 shows the
relationship between Rel and the drag coefficient fD = dlg1/u2

m calculated from different
mesh resolutions and solvers (the FVM and the LBM). The porous matrix is made of
staggered arrays of bars. It can be seen that calculated Rel is only marginally changed as
the number of mesh cells is increased. The LBM results for the applied pressure gradient
are approximately 6% higher than the FVM results. The reason is that the bounced back
model used in the LBM leads to slightly larger solid region; this is an acknowledged error.
Figures 17 and 18 show the LBM and FVM results for the two-point correlations and the
premultiplied energy spectra; the marginal difference does not affect our analysis.

The cases ‘bars+spheres’ with φs = 0.70 are calculated using both DNS and
macroscopic simulation methods. Figure 19 shows the time-, REV- and spanwise (x3)
averaged velocity components 〈ū1〉v,x3 and 〈ū2〉v,x3 along the streamwise (x1) lines. It can
be seen that the macroscopic simulation results are in reasonable accordance with the DNS
results; the macroscopic simulation model is well validated.

REFERENCES

AIDUN, C.K. & CLAUSEN, J.R. 2009 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech.
41, 439–472.

ANTOHE, B.V. & LAGE, J.L. 1997 A general two-equation macroscopic turbulence model for incompressible
flow in porous media. Intl J. Heat Mass Transfer 40, 3013–3024.

BALAKUMAR, B.J. & ADRIAN, R.J. 2007 Large- and very-large-scale motions in channel and boundary-layer
flows. Phil. Trans. R. Soc. Lond. A 365, 665–681.

BELCHER, S.E., HARMAN, I.N. & FINNIGAN, J.F. 2012 The wind in the willows: flows in forest canopies in
complex terrain. Annu. Rev. Fluid Mech. 44, 479–504.

BHATNAGAR, P.L., GROSS, E.P. & KROOK, M. 1954 A model for collision processes in gases. I. Small
amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525.

BREUGEM, W.P., BOERSMA, B.J. & UITTENBOGAARD, R.E. 2006 The influence of wall permeability on
turbulent channel flow. J. Fluid Mech. 562, 35–72.

CARMAN, P.C. 1956 Flow of Gases Through Porous Media. Academic Press.
CHEN, S. & DOOLEN, G.D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30,

329–364.
CHU, X., WEIGAND, B. & VAIKUNTANATHAN, V. 2018 Flow turbulence topology in regular porous media:

from macroscopic to microscopic scale with direct numerical simulation. Phys. Fluids 30, 065102.
DE LANGRE, E. 2008 Effects of wind on plants. Annu. Rev. Fluid Mech. 40, 141–168.
DE LEMOS, M.J.S. 2012 Turbulence in Porous Media: Modeling and Applications, 2nd edn. Elsevier.
GETACHEW, D., MINKOWYCY, W.J. & LAGE, J.L. 2000 A modified form of the model for turbulent flows of

an incompressible fluid in porous media. Intl J. Heat Mass Transfer 43, 2909–2915.
GHISALBERTI, M. & NEPF, H. 2009 Shallow flows over a permeable medium: the hydrodynamics of

submerged aquatic canopies. Trans. Porous Med. 78, 309.
GOMES-FERNANDES, R., GANAPATHISUBRAMANI, B. & VASSILICOS, J.C. 2015 The energy cascade in

near-field non-homogeneous non-isotropic turbulence. J. Fluid Mech. 771, 676–705.
GRAY, W.G. & LEE, P.C.Y. 1977 On the theorems for local volume averaging of multiphase systems. Intl J.

Multiphase Flow 3, 333–340.
GUALA, M., HOMMEMA, S.E. & ADRIAN, R.J. 2006 Large-scale and very-large-scale motions in turbulent

pipe flow. J. Fluid Mech. 554, 521–542.
HUNT, J.C.R., WARY, A.A. & MOIN, P. 1988 Eddies, stream, and convergence zones in turbulent flows.

Center for Turbulence Research Report CTR-S88, pp. 193–208.

937 A17-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.87


Survival of macroscopic turbulence in porous media

JIMENEZ, J. 1998 The largest scales of turbulent wall flows. In Center for Turbulence Research, Annual
Research Briefs, pp. 137–154. Stanford University.

JIN, Y. & KUZNETSOV, A.V. 2017 Turbulence modeling for flows in wall bounded porous media: qan analysis
based on direct numerical simulations. Phys. Fluids 29, 045102.

JIN, Y., UTH, M.-F., KUZNETSOV, A.V. & HERWIG, H. 2015 Numerical investigation of the possibility of
macroscopic turbulence in porous media: A direct numerical simulation study. J. Fluid Mech. 766, 76–103.

KAZEROONI, R.B. & HANNANI, S.K. 2009 Simulation of turbulent flow through porous media employing a
v2f model. Sci. Iran. Trans. B 16, 159–167.

KIM, T., BLOIS, G., BEST, J.L. & CHRISTENSEN, K.T. 2020 Experimental evidence of amplitude
modulation in permeable-wall turbulence. J. Fluid Mech. 887, A3.

KOLMOGOROV, A.N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32,
19–21.

KOZENY, J. 1927 Ueber kapillare Leitung des Wassers im Boden. Sitzb. Akad. Wiss. Wien. Math. naturw.
Klasse. 136, 271–306.

KUNDU, P., KUMAR, V. & MISHRA, I.M. 2014 Numerical modeling of turbulent flow through isotropic
porous media. Intl J. Heat Mass Transfer 75, 40–57.

KUWAHARA, F., KAMEYAMA, Y., YAMASHITA, S. & NAKAYAMA, A. 1998 Numerical modeling of
turbulent flow in porous media using a spatially periodic array. J. Porous Media 1, 47–55.

LAGE, J.L. & ANTOHE, B.V. 2000 Darcy’s experiments and the deviation to nonlinear flow regime. Trans.
ASME J. Fluids Engng 122, 619–625.

LEE, K.B. & HOWELL, J.R. 1991 Theoretical and experimental heat and mass transfer in highly porous media.
Intl J. Heat Mass Transfer 34, 2123–2132.

MERONEY, R.N. 2007 Fires in porous media: natural and urban canopies. In Flow and Transport Processes
with Complex Obstructions (ed. Y. A. Gayev & J. C. Hunt), vol. 236. Springer.

MOHAMAD, A.A. 2011 Lattice Boltzmann Method. Springer.
NAKAYAMA, A. & KUWAHARA, F. 1999 A macroscopic turbulence model for flow in a porous medium.

Trans. ASME J. Fluids Engng 121, 427–433.
NEPF, H.M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123–142.
NIELD, D.A. 1991 The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated

porous medium and at an interface. Intl J. Heat Fluid Flow 12, 269–272.
NIELD, D.A. 2001 Alternative models of turbulence in a porous medium, and related matters. Trans. ASME J.

Fluids Engng 123, 928–931.
NIELD, D.A. & BEJAN, A. 2017 Convection in Porous media, 5th edn. Springer.
POPE, S.B. 2000 Turbulent Flows. Cambridge University Press.
PRESCOTT, P.J. & INCROPERA, F.P. 1995 The effect of turbulence on solidification of a binary metal alloy

with electromagnetic stirring. Trans. ASME J. Heat Transfer 117, 716–724.
RAO, F., KUZNETSOV, A.V. & JIN, Y. 2020 Numerical modeling of momentum dispersion in porous media

based on the pore scale prevalence hypothesis. Trans. Porous Med. 133, 271–292.
RUBOL, S., LING, B. & BATTIATO, I. 2018 Universal scaling-law for flow resistance over canopies with

complex morphology. Sci. Rep. 8, 4430.
SERRA, T., FERNANDO, H.J.S. & RODRIGUEZ, R. 2004 Effects of emergent vegetation on lateral diffusion

in wetlands. Water Res. 38, 139–47.
SLATTERY, J.C. 1967 Flow of viscoelastic fluids through porous media. AIChE J. 13, 1066–1071.
SRIKANTH, V., HUANG, C.W., SU, T.S. & KUZNETSOV, A.V. 2018 Symmetry breaking in porous media as

a consequence of the von Kármán instability. Fluid Dyn. arXiv:1810.10141
SUGA, K. 2016 Understanding and modelling turbulence over and inside porous media. Flow Turbul. Combust.

96 (3), 717–756.
TANINO, Y. & NEPF, H.M. 2008 Lateral dispersion in random cylinder arrays at high Reynolds number.

J. Fluid Mech. 600, 339–371.
UTH, M.-F., JIN, Y., KUZNETSOV, A.V. & HERWIG, H. 2016 A direct numerical simulation study on the

possibility of macroscopic turbulence in porous media: effects of different solid matrix geometries, solid
boundaries, and two porosity scales. Phys. Fluids 28, 065101.

WHITAKER, S. 1969 Advances in theory of fluid motion in porous media. Ind. Engng Chem. 61, 14–28.
WHITAKER, S. 1999 The Method of Volume Averaging. Springer.

937 A17-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

87
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://arxiv.org/abs/1810.10141
https://doi.org/10.1017/jfm.2022.87

	1 Introduction
	2 Geometry of the porous matrix
	3 Governing equations and numerical methods
	3.1 DNS
	3.2 Macroscopic simulation

	4 Results and discussion
	4.1 Description of the test cases
	4.2 DNS results
	4.3 Macroscopic simulation results

	5 Conclusions
	Appendix A. Verification and validation
	References

