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Abstract. The purpose of this paper is to present a brief discussion of both the
normed space of operator p-summable sequences in a Banach space and the normed
space of sequentially p-limited operators. The focus is on proving that the vector space
of all operator p-summable sequences in a Banach space is a Banach space itself and
that the class of sequentially p-limited operators is a Banach operator ideal with respect
to a suitable ideal norm - and to discuss some other properties and multiplication results
of related classes of operators. These results are shown to fit into a general discussion
of operator [Y, p]-summable sequences and relevant operator ideals.

2010 Mathematics Subject Classification. 47B10, 46A45.

1. Introduction and notation. Throughout the paper we work with Banach spaces
X ,Y ,Z, etc. over the same scalar field � ∈ {�, �} and denote the space of bounded
linear operators from X to Y by B(X, Y ). The continuous dual space B(X, �) of
X is denoted by X∗, whereas UX denotes the closed unit ball of X . Other classical
classes of linear operators from X to Y that will be encountered in this manuscript
are K(X, Y ) (the space of compact linear operators), W(X, Y ) (the space of weakly
compact operators), �p(X, Y ) (the space of p-summing operators) and Np(X, Y ) (the
space of p-nuclear operators). They are of course linear subspaces of the vector space
B(X, Y ).

The scalar sequence (δi,n)i such that δn,n = 1 and δi,n = 0 if i �= n will be denoted by
en. The set {en : n ∈ �} is a Schauder basis for the space �p of absolutely p-summable
(scalar) sequences (with 1 ≤ p < ∞) as well as the space c0 of scalar null sequences.
For a Banach space Y we let

�s
p(Y ) = {(yn) ∈ Y � : (‖yn‖) ∈ �p}, with norm ‖(yn)‖p =

( ∞∑
i=1

‖yi‖p

)1/p

.

In the paper [6], the authors introduce the operator p-summable sequences in
a Banach space X and among some applications with respect to p-limited sets and
the p-Dunford–Pettis-property, they introduce the sequentially p-limited operators
which map weakly p-summable sequences to operator p-summable sequences. In a
brief discussion of sequentially p-limited operators, they introduce a norm �tp on
each vector space Ltp(X, Y ) of sequentially p-limited operators as X ,Y run through
the family of all Banach spaces and show that (Ltp, �tp) is a normed operator ideal.
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They could not verify the completeness of this normed ideal and therefore followed a
completion procedure to obtain a Banach operator ideal.

Inspired by the paper [6], especially by the Banach ideal property of (Ltp, �tp), we
introduce in Section 1 the general concept of “operator [Y, p]-summable sequence” in
a Banach space X , consider the vector space Yp(X) of all operator [Y, p]-summable
sequences in X and introduce a norm on this space. We then prove that Yp(X) is a
Banach space. The results of the general setting are then applied to the special setting
of operator p-summable sequences in a Banach space X . Based on the discussion of
Section 1, we consider the sequentially p-limited operators in Section 2. Following
standard techniques for p-summing operators, we prove the main result of this section
which states that given any pair X, Y of Banach spaces, then the normed space
(Ltp(X, Y ), �tp(·)) is a Banach space. Thus, the pair (Ltp, �tp) is a complete normed
operator ideal. In Section 3, we study the normed operator ideal (A�, α�) of operators
T : X → Y so that for the scalar Banach sequence space � we have ST ∈ A(X,�) for
all S ∈ B(Y,�), where X ,Y run through the family of all Banach spaces and where
(A, α) is a given normed operator ideal. The corresponding normed operator ideal
(A�, α�) is studied and it is shown that if (A, α) is a Banach operator ideal, then so
is (A�, α�). The results of Section 2 may also be obtained by using the operator ideal
approach of Section 3. In Section 4, we consider some other classes of sequentially
limited operators, which are also special cases of the operator ideals discussed in
Section 3, and prove some multiplication (or composition) results.

We now recall some definitions and notations in the literature. The space of all
weakly p-summable sequences in a Banach space X is denoted by �wk

p (X); recall that it
is a Banach space with norm

‖(xi)‖wk
p := sup

⎧⎨⎩
( ∞∑

i=1

|〈xi, x∗〉|p
)1/p

: x∗ ∈ X∗, ‖x∗‖ ≤ 1

⎫⎬⎭ .

This space is isometrically isomorphic to B(�p′ , X) (with 1
p + 1

p′ = 1). For (xi) ∈ �wk
p (X)

(taking 1 < p < ∞), the linear operator

E(xi) : �p′ → X : (λi) →
∞∑

i=1

λixi,

is bounded, with ‖E(xi)‖ = ‖(xi)‖wk
p . Conversely, it is also well-known that each T ∈

B(�p′ , X) can be uniquely identified as an operator E(xi) for some (xi) ∈ �wk
p (X), so that

B(�p′ , X) is isometrically identified with �wk
p (X) by the mapping (xi) → E(xi). Similarly,

B(�1, X) = �wk
∞ (X) and B(c0, X) = �wk

1 (X).
The space of all weak∗ p-summable sequences in the dual space X∗ of a Banach

space X is denoted by �wk∗
p (X∗). Recall that it is a Banach space with norm

‖(x∗
i )‖wk∗

p := sup

⎧⎨⎩
( ∞∑

i=1

|〈x, x∗
i 〉|p

)1/p

: x ∈ X, ‖x‖ ≤ 1

⎫⎬⎭ .

This space is isometrically isomorphic to B(X, �p). For a fixed (x∗
i ) ∈ �wk∗

p (X∗) the
operator F(x∗

i ): X → �p : x → (〈x, x∗
i 〉)i is bounded and linear with ‖F(x∗

i )‖ = ‖(x∗
i )‖wk∗

p .
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Conversely, since each T ∈ B(X, �p) can be uniquely identified with an operator F(x∗
i ) for

some (x∗
i ) ∈ �wk∗

p (X∗), the mapping (x∗
i ) → F(x∗

i ) identifies B(X, �p) isometrically with
�wk

p (X∗). In the case of p = ∞ we consider the space cwk∗
0 (X∗) of weak∗ null sequences

in X∗. Note that �wk∗
p (X∗) = �wk

p (X∗), but that cwk
0 (X∗) ⊆ cwk∗

0 (X∗), whereby cwk
0 (X∗) is

isometrically isomorphic to the space W(X, c0) of weakly compact operators.
In general it is not true that limn→∞ ‖(xi) − (x1, x2, . . . xn, 0, 0 . . . )‖wk

p = 0. The
subspace �wk

p,c(X) of �wk
p (X) for which this is true, is a Banach space with respect to

the norm ‖(·)‖wk
p and the identification of (xi) ∈ �wk

p,c(X) with E(xi): �p′ → X : (λi) →∑∞
i=1 λixi defines an isometric isomorphism between �wk

p,c(X) and the space K(�p′ , X)
of compact linear operators. Similarly, the subspace �wk∗

p,c (X∗) of �wk∗
p (X∗) consisting of

all sequences (x∗
i ) ∈ �wk∗

p (X∗) so that limn→∞ ‖(x∗
i ) − (x∗

1, x∗
2, . . . x∗

n, 0, 0 . . . )‖wk∗
p = 0, is

isometrically isomorphic to the space K(X, �p) (of compact operators) by the isometry
(x∗

i ) → F(x∗
i ). Refer (for instance) to the paper [5] for these facts.

2. Operator p-summable sequences.

DEFINITION 2.1. Let X , Y be given Banach spaces and let 1 ≤ p < ∞. A sequence
(xn) in X is called operator [Y, p]-summable if

∑∞
n=1 ‖Txn‖p < ∞ for all T ∈ B(X, Y ),

i.e. if (Txn) ∈ �s
p(Y ) for all T ∈ B(X, Y ).

We can extend the Definition 2.1 above to include the case when p = ∞ by adopting
the convention that “operator [Y,∞]-summable sequence (xn) in X” will mean that
for each T ∈ B(X, Y ) we have ‖Txn‖ n−→ 0 (i.e. (Txn) ∈ cs

0(Y ), ∀T ∈ B(X, Y )).
Let

Yp(X) := {(xi) ∈ X� : (xi) is operator [Y, p]-summable}.
For a given (xi) ∈ Yp(X), we define an operator

B(X, Y ) → �s
p(Y ) : T → (Txn),

which has closed graph. Therefore, we may define

‖(xi)‖Yp := sup

⎧⎨⎩
( ∞∑

n=1

‖Txn‖p

)1/p

: T ∈ B(X, Y ), ‖T‖ ≤ 1

⎫⎬⎭ ,

for each (xi) ∈ Yp(X).
For x∗ ∈ UX∗ , y ∈ UY , the rank one operator

x∗ ⊗ y : X → Y : x → 〈x, x∗〉y,

has norm ≤ 1 and

|〈xn, x∗〉| ≤ ‖(x∗ ⊗ y)xn‖ ≤
( ∞∑

i=1

‖(x∗ ⊗ y)xi‖p

)1/p

≤ ‖(xi)‖Yp .

It is therefore clear that

‖(xi)‖Yp = 0 =⇒ xi = 0, ∀i ∈ �.
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It is readily verified that ‖ · ‖Yp defines a norm on the vector space Yp(X) and that for
any (xi) ∈ Yp(X),

(†) ‖xj‖ ≤ ‖(xi)‖Yp , ∀j ∈ �,

showing that

LEMMA 2.2. If xn
n−→ x in (Yp(X), ‖ · ‖Yp ), where xn = (xn,j)j and x = (xj), then for

each j ∈ �, we have xn,j
n−→ xj in X.

Using Lemma 2.2, the completeness of the space X and the inequality (†) above,
it is routine to verify that

THEOREM 2.3. (Yp(X), ‖ · ‖Yp ) is a Banach space.

In the paper [6] (and elsewhere in the literature), the well-known concept of “limited
set” in a Banach space is generalized to introduce the so-called “p-limited” sets. A
subset D of a Banach space X is said to be p-limited (1 ≤ p < ∞) if for each weak∗

p-summable sequence (x∗
n) in X∗ there exists a sequence (λi) ∈ �p such |〈x, x∗

n〉| ≤ λn

for each n ∈ � and all x ∈ D, i.e if and only if for each weak∗ p-summable sequence
(x∗

n) in X∗, we have (supx∈D |〈x, x∗
n〉|)n ∈ �p.

Replacing Y in Definition 2.1 by �p, we agree to use the phrase “operator p-
summable” instead of “operator [�p, p]-summable”, thereby recalling a definition from
the paper [6]

DEFINITION 2.4 (cf. [6]). Let 1 ≤ p < ∞. A sequence (xn) is called operator p-
summable if (Txn) ∈ �s

p(�p) for all T ∈ B(X, �p).

By Proposition 2.4 in [6] a sequence (xn) in a Banach space X is operator p-
summable if and only if (xn) ∈ �wk

p (X) and E(xi)(U�p′ ) is a p-limited set. Let �o
p(X) denote

the vector space of all operator p-summable sequences in the Banach space X (i.e.
following the notation of Definition 2.1, we put �o

p(X) = (�p)p(X)). If for (xi) ∈ �o
p(X)

we let

‖(xi)‖o
p := sup

⎧⎨⎩
(∑

n

‖Txn‖p
p

)1/p

: T ∈ B(X, �p), ‖T‖ ≤ 1

⎫⎬⎭ ,

then it follows from Theorem 2.3 that:

THEOREM 2.5. (�o
p(X), ‖ · ‖o

p) is a Banach space.

It is clear from Definition 2.4 above that �s
p(X) is a subspace of �o

p(X) and that the
inclusion map has norm ≤ 1. Also, since the rank one operator

x∗ ⊗ ej : X → �p : x → 〈x, x∗〉ej,

has norm ≤ 1 for all x∗ ∈ UX∗ and all j ∈ �, it is readily seen that for all (xi) ∈ �o
p(X)

we have (xi) ∈ �wk
p (X) and ‖(xi)‖wk

p ≤ ‖(xi)‖o
p. We thus conclude that

THEOREM 2.6. Let 1 ≤ p < ∞. We have the following continuous (norm ≤ 1)
inclusions:

�s
p(X) ⊆ �o

p(X) ⊆ �wk
p (X).
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REMARK 2.7. Let 1 ≤ p < ∞. Recall that an operator T ∈ B(X, Y ) is said to be
p-summing if (Txn) ∈ �s

p(Y ) for all (xn) ∈ �wk
p (X). The vector space �p(X, Y ) of all

p-summing operators is a Banach space with respect to the norm

πp(T) := sup{‖(Txn)‖p : ‖(xn)‖wk
p ≤ 1}.

For a detailed discussion of p-summing operators, the reader is referred to the book
[4]. In [6] the authors introduce and study the so called weak p-spaces. A Banach
space X is called a weak p-space (or X is said to have the p-Dunford–Pettis property) if
�o

p(X) = �wk
p (X). This is the case if and only if �p(X, �p) = B(X, �p) (cf. [6], Proposition

3.1). It is therefore immediately clear that �p itself is not a weak p-space. Moreover, it
is shown in [6] that �p (for 1 < p < ∞) is in fact not a weak r-space for any r > 1.

By Theorem 8.3.1 in [1] (page 213) every T ∈ B(L1(μ), �2) is absolutely summing
and therefore also 2-summing. Thus, the space L1(μ) is a weak 2-space. Since �1 is an
L1(μ)-space for a suitable measure μ, the same theorem in [1] also holds for operators
T : �1 → �2. Thus, in contrast with the spaces �p for 1 < p < ∞, the space �1 is a weak
2-space. If X is an infinite dimensional reflexive Banach space, then all p-summing
operators on X are compact (cf. [1], Corollary 8.2.15, page 211). Therefore, K(X, �p) =
B(X, �p) if X is a reflexive weak p-space. The equality K(X, �p) = B(X, �p) holds if and
only if �wk∗

p,c (X∗) = �wk∗
p (X∗) and this is the case if and only if �wk∗

p (X∗) ⊂ cs
0(X∗) (cf. for

instance [2] and [5] for these facts).

3. Sequentially p-limited operators. In [6] (Definition 4.1), an operator T ∈
B(X, Y ) is said to be sequentially p-limited if it maps weakly p-summable sequences to
operator p-summable sequences, i.e.

DEFINITION 3.1 (cf. [6], Definition 4.1). Let 1 ≤ p < ∞. An operator T ∈ B(X, Y )
is called sequentially p-limited if (Txn) ∈ �o

p(Y ) for all (xn) ∈ �wk
p (X).

It is clear from the definition and Remark 2.7 that idX is sequentially p-limited if
and only if X is a weak p-space. An operator T : X → Y is sequentially p-limited if and
only if RT is p-summing for all R ∈ B(Y, �p). Refer to [6] (Theorem 4.4, p.435) for this
fact. Following [6] we let

Ltp(X, Y ) := {T ∈ B(X, Y ) : T is sequentially p-limited}.

The authors (in [6]) define a norm on Ltp(X, Y ) by

�tp(T) := sup{πp(RT) : R ∈ B(Y, �p) and ‖R‖ ≤ 1},

and mention that it is routine to show that the pair (Ltp, �tp) so defined is a normed
operator ideal. However, the authors also note in [6] that they could not show that
(Ltp, �tp) is a Banach operator ideal. In order to obtain a Banach operator ideal, they
settled for taking the completions of isometric copies of the components Ltp(X, Y ) of
the ideal (Ltp, �tp) in the corresponding Banach spaces B(B(Y, �p),�p(X, �p)). Here
is what happens in [6]: For each T ∈ B(X, Y ) the authors consider the operator ϕT :
B(Y, �p) → B(X, �p), given by ϕT (S) = ST , and note that T → ϕT is a linear isometry
from B(X, Y ) into B(B(Y, �p), B(X, �p)) for 1 ≤ p ≤ ∞ (where in the case of p = ∞, the
space �∞ is replaced by c0). Then T ∈ Ltp(X, Y ) if and only if ϕT (B(Y, �p)) ⊂ �p(X, �p)
and �tp(T) = ‖ϕT‖; here ‖ϕT‖ denotes the operator norm of ϕT considered as an

https://doi.org/10.1017/S0017089515000348 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000348


578 JAN H. FOURIE AND ELROY D. ZEEKOEI

element of B(B(Y, �p),�p(X, �p)). This can be done, since the Closed Graph Theorem
implies that if T ∈ Ltp(X, Y ), then

sup
R∈UB(Y,�p )

πp(RT) < ∞.

A discussion of this fact in the general setting of operator ideals follows in Section 3.
Finally, the authors consider the completion (closure) of the set {ϕT : T ∈ Ltp(X, Y )}
in the complete space B(B(Y, �p),�p(X, �p)) and denote this completion (also) by
Ltp(X, Y ). In this way a Banach operator ideal is obtained (cf. [6], Proposition 4.7).

The presence of the Banach operator ideal (�p, πp) in the definition of (Ltp, �tp)
suggests a different approach in the study of sequentially p-limited operators via the
theory of p-summing operators. Based on our discussion of the sequence space �o

p(X)
in Section 1, we are now ready to discuss the completeness of the normed space
(Ltp(X, Y ), �tp(·)) in the following theorem.

THEOREM 3.2. Let 1 ≤ p < ∞ and let X, Y be Banach spaces. The space
(Ltp(X, Y ), �tp(·)) of sequentially p-limited operators is a Banach space. Thus, (Ltp, �tp)
is a Banach operator ideal.

Proof. We associate with each T ∈ Ltp(X, Y ) the operator

T̂ : �wk
p (X) → �o

p(Y ) : (xi) → (Txi).

A routine argument, involving the operators y∗ ⊗ e1 ∈ UB(Y,�p) where y∗ runs through
the unit ball UY∗ of Y∗, shows that T̂ has closed graph and hence is bounded. Note
that

‖T̂‖ = sup
‖(xi)‖wk

p ≤1
‖(Txi)‖o

p.

Also

sup
R∈UB(Y,�p )

πp(RT) = sup
‖(xi)‖wk

p ≤1
sup{‖(RTxi)‖p : R ∈ UB(Y,�p)} = ‖T̂‖,

showing that �tp(T) = ‖T̂‖. From this discussion it is clear that the mapping


 : Ltp(X, Y ) → B(�wk
p (X), �o

p(Y )) : T → T̂,

is an isometry which associates the space (Ltp(X, Y ), �tp(·)) isometrically with
a subspace of the Banach space B(�wk

p (X), �o
p(Y )). We denote the range space


(Ltp(X, Y )) by L̂tp(X, Y ) and prove that it is a closed subspace of the complete
normed space B(�wk

p (X), �o
p(Y )): Consider any sequence (T̂n) in L̂tp(X, Y ) which

converges in operator norm to some operator S ∈ B(�wk
p (X), �o

p(Y )). If (xi) ∈ �wk
p (X)

and S((xi)) = (yi) ∈ �o
p(Y ), then

‖(Tnxi) − (yi)‖o
p = ‖T̂n((xi)) − (yi)‖o

p
n−→ 0,

where Tn ∈ Ltp(X, Y ) such that 
(Tn) = T̂n for all n ∈ �. By Lemma 2.2, it thus follows

that Tnxj
n−→ yj for all j ∈ �. This implies that if we put Tx = limn Tnx for each x ∈ X ,

then T is a bounded linear operator and given any (xi) ∈ �wk
p (X) and S((xi)) = (yi), we
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have Txi = yi for all i ∈ �. Thus T ∈ Ltp(X, Y ) and S = T̂ ∈ L̂tp(X, Y ), showing that
L̂tp(X, Y ) is a closed subspace of the Banach space B(�wk

p (X), �o
p(Y )), i.e. Ltp(X, Y ) is

a Banach space for all Banach spaces X, Y . �
Let 1 < p < ∞. In this case, using Proposition 2.19 in [4] (page 50), it is easy to

see that if the second dual operator T∗∗: X∗∗ → Y∗∗ of the operator T ∈ B(X, Y ) is
sequentially p-limited, then so is T . Moreover, we also have:

PROPOSITION 3.3. Let 1 < p < ∞. If an operator T: X → Y is sequentially p-limited
and weakly compact, then so is its second dual T∗∗.

Proof. Assume that T : X → Y is sequentially p-limited and weakly compact.
Since T is weakly compact, it follows from Theorem 5.5 in [3] (page 185) that T∗∗ is
weakly compact and that T∗∗(X∗∗) ⊆ Y . Let S ∈ B(Y∗∗, �p) and denote the canonical
embedding (evaluation) from Y into Y∗∗ by CY . Recall that C∗

Y defines a canonical
projection from Y∗∗∗ to Y∗. Using the above information we get

〈ST∗∗x∗∗, γ 〉 = 〈S∗∗C∗∗
Y T∗∗x∗∗, γ 〉,

for all x∗∗ ∈ X∗∗, γ ∈ �p′ and thus that

ST∗∗ = S∗∗C∗∗
Y T∗∗ = (SCY T)∗∗.

Since SCY T is p-summing, it follows from Proposition 2.19 in [4] that ST∗∗ is p-
summing. This completes the proof. �

There are sequentially p-limited operators which are not weakly compact. Refer
to the discussion in Remark 2.7 above. Each bounded linear operator from �1 to �2

is absolutely summing, hence by the Inclusion Theorem (see [4], Theorem 2.8, page
39) each bounded linear operator from �1 to �2 is p-summing for all 1 ≤ p < ∞, in
particular, each S ∈ B(�1, �2) is 2-summing. Therefore, the identity id�1 : �1 → �1 is
sequentially 2-limited, but not weakly compact. This argument, of course, will also
imply that for all nonreflexive Banach spaces X such that B(X, �p) = �p(X, �p) (i.e.
for all nonreflexive weak-p spaces) the identity operator idX on X is sequentially p-
limited but not weakly compact. The discussion in Remark 2.7 shows that L1(μ) and
�1 are (nonreflexive) weak 2-spaces. Also, c0 is a (nonreflexive) weak 2-space (see [6]).
In general, if X, Y are nonreflexive Banach spaces, where X is also a weak p-space,
then each T ∈ B(X, Y ) such that T �∈ W(X, Y ) is an example of a sequentially p-
limited operator which is not weakly compact. By an application of Grothendieck’s
Inequality, it follows that for each compact Hausdorff space K and any measure
μ, we have B(C(K), Lp(μ)) = �2(C(K), Lp(μ)) if 1 ≤ p ≤ 2. In particular, this yields
B(C(K), �2) = �2(C(K), �2), i.e. that C(K) is a nonreflexive weak 2-space (cf. [4],
Theorem 3.5 for the details). This is also true for all Banach spaces X such that
X∗∗ is a C(K) space.

The immediate question arising from Proposition 3.3 is when a sequentially p-
limited operator T : X → Y will be weakly compact. In the following lemma we list
some conditions (by no means all possible conditions) from the literature which imply
that each bounded linear operator is weakly compact.

LEMMA 3.4. For two Banach spaces X and Y, each T ∈ B(X, Y ) is weakly compact
if
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(i) Either X or Y is reflexive.
(ii) X = C(K) for some compact Hausdorff space K and no closed subspace of Y

is isomorphic to c0 (cf. [1], Corollary 5.5.4, page 120).
(iii) X does not contain a copy of �1 and Y = L1, where L1 denotes the space

L1([0, 1], λ) and λ is Lebesgue measure on [0, 1] (cf. [1], page 125).
(iv) If X has type r > 1 and Y = L1(μ) (for some σ -finite measure μ), for in this

case each T factors through the reflexive space Lq(μ) for all 1 < q < r (cf.
[1], Theorem 7.1.8, page 172).

(v) X has type 2 and Y has cotype 2, for in this case each T factors through a
Hilbert space by the well-known Kwapień–Maurey Theorem (cf. [1], Theorem
7.4.2, page 187).

(vi) X∗ has cotype 2 and Y = L1, for in this case each T factors through a Hilbert
space (cf. [1], Theorem 8.1.7, page 203).

(vii) X∗ has cotype 2, Y has cotype 2 and either X or Y has the approximation
property, for in this case each T factors through a Hilbert space by Pisier’s
Abstract Grothendieck Theorem (cf. [1], Theorem 8.1.8, page 204).

From Proposition 3.3 and Lemma 3.4 we conclude that

COROLLARY 3.5. Let 1 < p < ∞. If the Banach spaces X and Y satisfy any one of
the conditions (i) to (vii) in Lemma 3.4, then if T : X → Y is sequentially p-limited, so
is T∗∗.

4. An operator ideal approach. The reader is referred to [7] for information on
operator ideals. Consider a Banach operator ideal (A, α). Fix a Banach sequence space
(�, ‖ · ‖�) which contains the set φ of all sequences having only a finite number of non-
zero terms and for which ‖en‖� = 1 for all n ∈ �. Clearly, � = �p (for 1 ≤ p ≤ ∞) and
� = c0 satisfy these properties. However, there are more Banach sequence spaces with
these properties (see for instance Remark 4.6 at the end of this section). With the vector
space A(X, Y ) we associate

A�(X, Y ) := {T ∈ B(X, Y ) : ST ∈ A(X,�), ∀S ∈ B(Y,�)}.

From the operator ideal properties of A it is easily verified that A� also defines an
operator ideal.

For T ∈ B(X, Y ) we let

φT : B(Y,�) → B(X,�) : S → ST.

Then φT is a bounded linear operator for which ‖φT‖ ≤ ‖T‖ is clear from its definition.
On the other hand

‖φT‖ ≥ sup
‖y∗‖≤1

‖(y∗ ⊗ e1) ◦ T‖ = sup
‖y∗‖≤1

sup
‖x‖≤1

‖〈Tx, y∗〉e1‖� = ‖T‖.

Thus, we define an isometry T → φT from B(X, Y ) into B(B(Y,�), B(X,�)). It is then
clear that T ∈ A�(X, Y ) if and only if φT (B(Y,�)) ⊆ A(X,�).

Now let T ∈ A�(X, Y ) be given. By the above discussion φT is a linear operator
from B(Y,�) into A(X,�). Using that ‖R‖ ≤ α(R) for all R ∈ A(X,�), a routine
argument shows that φT : B(Y,�) → (A(X,�), α) has closed graph. Thus, we may
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define

α�(T) := sup{α(ST) : S ∈ B(Y,�), ‖S‖ ≤ 1}.
Then α�(·) defines a norm on A�(X, Y ) and ‖T‖ ≤ α�(T) for all T ∈ A�(X, Y ). Since
this is true for all Banach spaces X and Y , it therefore follows that:

PROPOSITION 4.1. (A�, α�) is a normed operator ideal.

Clearly, α�(T) is the operator norm of φT considered as an element of
B(B(Y,�),A(X, Y )). Therefore, T → φT defines an isometry from A�(X, Y ) into
B(B(Y,�),A(X, Y )), associating A�(X, Y ) isometrically with a subspace A� := {φT :
T ∈ A�(X, Y )} of the Banach space B(B(Y,�),A(X, Y )).

Taking R ∈ B(B(Y,�),A(X, Y )) from the closure of the subspace A�, let (φTn ) ⊂
A� so that φTn

n−→ R in the operator norm of B(B(Y,�),A(X, Y )). Then, since

‖STn − R(S)‖ ≤ α(STn − R(S))
n−→ 0, ∀S ∈ B(Y,�),

STnx
n−→ R(S)x for each x ∈ X and each S ∈ B(Y,�). Denote the restriction of

the operator norm of B(B(Y,�),A(X, Y )) to the subspace A� by ‖ · ‖A�
. From the

isometry T → φT discussed above, we then conclude that

‖Tn − Tm‖ ≤ α�(Tn − Tm) = ‖φTn − φTm‖A�
→ 0 as m, n → ∞.

Thus, there exists T ∈ B(X, Y ) so that Tn
n−→ T in the operator norm of B(X, Y ) and

R(S)x = STx for each x ∈ X and each S ∈ B(Y,�), i.e. R = φT . We have thus shown
that for each pair of Banach spaces X and Y , the vector space A� is a closed subspace
of the complete space B(B(Y,�),A(X, Y )). Therefore, we may conclude that

THEOREM 4.2. (A�, α�) is a Banach operator ideal.

It is clear from the definition that A�(X,�) = A(X,�) for all Banach spaces
X . Recall that an operator ideal A is said to be surjective if for all Banach spaces
X, Y, Z, and each T ∈ B(X, Y ) for which there exists a surjective operator (quotient
map) Q ∈ B(Z, X) so that TQ ∈ A(Z, Y ), it follows that T ∈ A(X, Y ). It is easily seen
that if A is a surjective ideal, then so is A�.

For a given Banach operator ideal (A, α), consider the associated operator ideal
(A♦

�, α
♦
�), whereby we let

A♦
�(X, Y ) = {T ∈ B(X, Y ) : TS ∈ A(�, Y ),∀S ∈ B(�, X)}

α
♦
�(T) = sup{α(TS) : S ∈ B(�, X), ‖S‖ ≤ 1}.

To verify that α
♦
� is an ideal norm, note that

‖T‖ ≤ sup
‖x‖≤1

‖T ◦ (e1 ⊗ x)‖ ≤ sup{α(TS) : S ∈ B(�, X), ‖S‖ ≤ 1} = α
♦
�(T).

From the definition we have A♦
�(�, Y ) = A(�, Y ) for all Banach spaces Y . Recall that

an operator ideal A is said to be injective if for all Banach spaces X, Y, Y0 such that Y
is isometrically embedded into Y0 by J ∈ B(Y, Y0), it follows from T ∈ B(X, Y ) and
JT ∈ A(X, Y0) that T ∈ A(X, Y ). It is easily seen that if A is an injective ideal, then
so is A♦

�.
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We conclude this section with a brief discussion of dual ideals in the context of this
manuscript. Given a Banach operator ideal (A, α), we recall that a Banach operator
ideal (Ad , αd ), called the dual ideal of (A, α), is defined by the components

Ad (X, Y ) := {T ∈ B(X, Y ) : T∗ ∈ A(Y∗, X∗)},
where X, Y run through the family of all Banach spaces. Here

αd (T) = α(T∗).

Let 1 < p < ∞. Since each T ∈ B(�p′ , X∗) is weak-to-weak continuous and �p′ is
reflexive, we have

LEMMA 4.3. Let 1 < p < ∞. Each T ∈ B(�p′ , X∗) is weak∗-to-weak∗ continuous.

Consider the case when � = �p with 1 < p < ∞. In this case denote the Banach
operator ideal (A�, α�) (respectively, (A♦

�, α
♦
�)) by (Ap, αp) (respectively, (A♦

p , α♦
p )).

Using Lemma 4.3 to realize that S ∈ B(�p′ , Y∗) if and only if there exists R ∈ B(Y, �p)
such that R∗ = S, one verifies easily that

PROPOSITION 4.4. Let 1 < p < ∞. Then T ∈ (A♦
p′)d (X, Y ) if and only if T ∈

(Ad )p(X, Y ); in this case (α♦
p′ )d (T) = (αd )p(T).

It follows from Proposition 4.4 that:

COROLLARY 4.5. For 1 < p < ∞, we have

(�d
p )p(X, Y ) := {T ∈ B(X, Y ) : T∗S ∈ �p(�p′ , X∗),∀S ∈ B(�p′ , Y∗)}.

REMARK 4.6. In our discussion above it is clear that to obtain the necessary
isometric embedding T → φT , we need to assume the properties on � stated at the
beginning of this section (in particular, that ‖en‖� = 1 for all n). These properties are
for instance also shared by some Orlicz sequence spaces. For example, if for 1 ≤ p < ∞
we let

Np(t) =
{

tp(1 + | ln t|), for t > 0;
0, if t = 0,

then Np defines an Orlicz function. The norm on the corresponding Orlicz sequence
space

hNp :=
{

(αi) :
∞∑

n=1

Np

( |αn|
ρ

)
< ∞, ∀ρ > 0

}
,

is given by

‖(αi)‖Np := inf

{
ρ > 0 :

∞∑
n=1

Np

( |αn|
ρ

)
≤ 1

}
.

The set {en}∞n=1 of unit vectors is a symmetric basis for hNp and since Np(t) > 1 if t > 1,
Np(1) = 1 and limt↓1 Np(t) = 1, it follows that ‖en‖Np = 1 for all n ∈ �.

https://doi.org/10.1017/S0017089515000348 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000348


CLASSES OF SEQUENTIALLY LIMITED OPERATORS 583

Our result Theorem 3.2 also follows from the (general) operator ideal approach
discussed in this section (in particular from Theorem 4.2): Take (A, α) = (�p, πp) and
� = �p (where 1 ≤ p < ∞) to verify that in this case (A�, α�) = (Ltp, �tp) and hence
that the space (Ltp(X, Y ), �tp(·)) of sequentially p-limited operators is a Banach space.

5. More classes of operators. Recall from [4] (Chapter 10, page 197) that an
operator T : X → Y is called (q, p)-summing (with 1 ≤ p, q < ∞) if there is an induced
operator

T̂ : �wk
p (X) → �s

q(Y ) : (xn) → (Txn).

The vector space of (q, p)-summing operators is denoted by �q,p(X, Y ); it is normed
by the norm

πq,p(T) = ‖T̂‖,

where ‖T̂‖ denotes the operator norm of T̂ . A bounded linear operator T ∈ B(X, Y )
is (q, p)-summing if and only if there is some C ≥ 0 for which

(∗)

(
n∑

i=1

‖Txi‖q

)1/q

≤ C sup
x∗∈UX∗

(
n∑

i=1

|〈xi, x∗〉|p
)1/p

,

no matter how the finite set {x1, . . . , xn} of vectors from X is chosen. Moreover, πq,p(T)
is the least such constant C. Using the version (∗) of the definition of a (q, p)-summing
operator, one soon verifies that only the zero operator can be (q, p)-summing if q < p. It
will therefore be natural to assume that p ≤ q. Under the assumption 1 ≤ p ≤ q < ∞,
the pair (�q,p, πq,p) is an injective Banach ideal (cf. [4], Proposition 10.2). Observe that
an operator T ∈ B(X, Y ) is (p, p)-summing if and only if it is p-summing (refer to [4],
page 31 for the definition of p-summing operator in terms of the corresponding version
of the inequality (∗) for the case p = q).

Let 1 ≤ p ≤ q < ∞ and let 1 ≤ r < ∞. If we let (A, α) = (�q,p, πq,p) in our general
discussion of Section 3, then

(1) We denote (A�r, α�r ) by (Ltq,p,r, �tq,p,r). In this case we have T ∈ Ltq,p,r(X, Y ) if and
only if ST ∈ �q,p(X, �r) for all S ∈ B(Y, �r), i.e. if and only if

∞∑
n=1

‖STxn‖q
r < ∞, ∀ S ∈ B(Y, �r), ∀ (xn) ∈ �wk

p (X).

Also, for T ∈ Ltq,p,r(X, Y ), we have

�tq,p,r(T) = sup
S∈UB(Y,�r )

πq,p(ST).

(2) In case of p = q = r, we clearly have (Ltp,p,p, �tp,p,p) = (Ltp, �tp).
(3) In case of p = q, we denote (Ltq,p,r, �tq,p,r) by (Ltp,r, �tp,r). In this case we have

T ∈ Ltp,r(X, Y ) if and only if ST ∈ �p(X, �r) for all S ∈ B(Y, �r). The operators
T ∈ Ltp,r(X, Y ) will be called sequentially (p, r)-limited. In case of p = r, we again
have (Ltp,p, �tp,p) = (Ltp, �tp).
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By Theorem 4.2, the pairs (Ltq,p,r, �tq,p,r) and (Ltp,r, �tp,r) are Banach operator
ideals.

Using Theorem 2.8 in [4], we have the following inclusion result:

THEOREM 5.1. Let 1 ≤ p ≤ q < ∞ and 1 ≤ r < ∞. Then Ltp,r(X, Y ) ⊆ Ltq,r(X, Y ).
Moreover, for T ∈ Ltp,r(X, Y ) we have �tq,r(T) ≤ �tp,r(T).

Proof. Given T ∈ Ltp,r(X, Y ) and S ∈ B(Y, �r), it follows that ST ∈ �p(X, �r) and
πp(ST) ≤ ‖S‖�tp,r(T). By Theorem 2.8 in [4] we therefore have ST ∈ �q(X, �r) and

πq(ST) ≤ πp(ST) ≤ ‖S‖�tp,r(T).

Since S was arbitrary, it follows that T ∈ Ltq,r(X, Y ) and

�tq,r(T) = sup
S∈UB(Y,�r )

πq(ST) ≤ sup
S∈UB(Y,�r )

‖S‖�tp,r(T) = �tp,r(T).

�

Generalizing Theorem 5.1, we may use Theorem 10.4 in [4] in a similar fashion to
prove that

THEOREM 5.2. Let 1 ≤ t < ∞ and suppose that 1 ≤ pj ≤ qj < ∞ (j = 1, 2) satisfy
p1 ≤ p2, q1 ≤ q2 and

1
p1

− 1
q1

≤ 1
p2

− 1
q2

.

Then

Ltq1,p1,r(X, Y ) ⊆ Ltq2,p2,r(X, Y ),

and for each T ∈ Ltq1,p1,r(X, Y ) we have

�tq2,p2,r(T) ≤ �tq1,p1,r(T).

Using two more results from [4] (namely, Lemma 2.23 and Theorem 2.22) we
obtain the following multiplication theorem:

THEOREM 5.3. Let 1 ≤ p, q, r < ∞ such that 1
r = 1

p + 1
q . Let T ∈ �q(X, Y ) and

S ∈ Ltp,r(Y, Z). Then ST ∈ Ltr(X, Z) and

�tr(ST) ≤ �tp,r(S) πq(T).

Proof. Let (xi) ∈ �wk
r (X) and put γ := ‖(xm)‖wk

r . By Lemma 2.23 of [4], let Txn =
σnyn, for all n ∈ �, where (σn) ∈ �q and (yn) ∈ �wk

p (Y ) such that

‖(σn)‖q ≤ γ r/q and ‖(yn)‖wk
p ≤ γ r/p πq(T).
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For R ∈ B(Z, �r), with ‖R‖ ≤ 1, we have (RSyn) ∈ �s
p(�r) and

(∑
n

‖RSTxn‖r
r

)1/r

=
(∑

n

|σn|r‖RSyn‖r
r

)1/r

≤
(∑

n

|σn|q
)1/q (∑

n

‖RSyn‖p
r

)1/p

≤ γ r/q�tp,r(S)‖(yn)‖wk
p

≤ �tp,r(S) πq(T) ‖(xn)‖wk
r .

This shows that ST ∈ Ltr(X, Z). Taking firstly the supremum over all ‖(xn)‖wk
r ≤ 1 and

then the supremum over all R ∈ B(Z, �r), with ‖R‖ ≤ 1, it also follows that �tr(ST) ≤
�tp,r(S) πq(T). �

COROLLARY 5.4. Let 1 ≤ p, q < ∞ be such that 1 ≤ 1
p + 1

q . If S ∈ Ltp,1(Y, Z) and
T ∈ �q(X, Y ), then ST ∈ Lt1(X, Z) and

�t1(ST) ≤ �tp,1(S) πq(T).

Proof. For p = 1 we have S ∈ Lt1(Y, Z) and so by the operator ideal properties we
also have ST ∈ Lt1(X, Z) and

�t1(ST) = sup
R∈UB(Z,�1 )

π1(RST)

≤ sup
R∈UB(Z,�1 )

π1(RS)‖T‖ ≤ �t1,1(S)πq(T).

Now, assume p > 1. Then 1 ≤ q ≤ p′ < ∞, hence T ∈ �p′ (X, Y ) and πp′(T) ≤
πq(T) by Theorem 2.8 in [4]. The result follows by application of Theorem 5.3. �

Let 1 ≤ q < ∞. Recall from Proposition 5.23 in [4] (page 112) that
T ∈ B(X, Y ) is q-nuclear if and only if it has a representation T = ∑∞

i=1 x∗
i ⊗ yi, where

(x∗
i ) ∈ �s

q(X∗) and (yi) ∈ �wk
q′ (Y ). The norm on the vector space Nq(X, Y ) of q-nuclear

operators is then given by

νq(T) := inf

{
‖(x∗

i )‖s
q‖(yi)‖wk

q′ : T =
∞∑

i=1

x∗
i ⊗ yi

}
.

From the notation of our earlier discussion in this paper it follows that if A = Nq

(and α = νq) and � = �r, then A� becomes (Nq)r and α� = (νq)r. With this notation
in mind, we have the following composition result:

THEOREM 5.5. Let 1 ≤ p, q, r < ∞ such that 1
r = 1

p + 1
q . Let T ∈ Nq(X, Y ) and

S ∈ Ltp,r(Y, Z). Then ST ∈ (Nr)r(X, Z) and

(νr)r(ST) ≤ �tp,r(S) νq(T).
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Proof. Let T ∈ Nq(X, Y ). For δ > 0 being arbitrarily given, let T = ∑∞
i=1 x∗

i ⊗ yi,
with (x∗

i ) ∈ �s
q(X∗) and (yi) ∈ �wk

q′ (Y ) so chosen that

‖(x∗
i )‖s

q ≤ 1 and ‖(yi)‖wk
q′ ≤ νq(T) + δ .

Let R ∈ B(Z, �r) and apply Lemma 2.23 in [4] to obtain (σn) ∈ �p and (zn) ∈ �wk
r′ (�r) so

that if γ = ‖(yi)‖wk
q′ , then

‖(σn)‖p ≤ γ q′/p, ‖(zn)‖wk
r′ ≤ γ q′/r′

πp(RS) and RSyn = σnzn, ∀n.

Then, (σix∗
i ) ∈ �s

r(X
∗) and RST = ∑∞

i=1 σix∗
i ⊗ zi, thus RST ∈ Nr(X, �r). From R ∈

B(Z, �r) being arbitrary, it follows that ST ∈ (Nr)r(X, Z). Moreover,

νr(RST) ≤ ‖(σix∗
i )‖s

r ‖(zi)‖wk
r′

≤ ‖(σi)‖p γ q′/r′
πp(RS)

≤ ‖(yi)‖wk
q′ πp(RS)

≤ (νq(T) + δ)πp(RS),

from which (νr)r(ST) ≤ νq(T)�tp,r(S) follows. �
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