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Abstract

Large functional programs are often constructed by decomposing each big task into smaller
tasks which can be performed by simpler functions. This hierarchical style of developing
programs has been found to improve programmers' productivity because smaller functions
are easier to construct and reuse. However, programs written in this way tend to be less
efficient. Unnecessary intermediate data structures may be created. More function invocations
may be required.

To reduce such performance penalties, Phil Wadler proposed a transformation algorithm,
called deforestation, which could automatically fuse certain composed expressions together
to eliminate intermediate tree-like data structures. However, his technique is currently safe
(terminates with no loss of efficiency) for only a subset of first-order expressions.

This paper will generalise the deforestation technique to make it safe for all first-order and
higher-order functional programs. Our generalisation is explained using a model for safe fusion
which views each function as a producer and its parameters as consumers. Through this model,
syntactic program properties are proposed to classify producers and consumers as either safe
or unsafe. This classification is used to identify sub-terms that can be safely fused/eliminated.
We present the generalised transformation algorithm, illustrate it with examples and provide
a termination proof for the transformation algorithm of first-order programs. This paper also
contains a suite of additional techniques to further improve the basic safe fusion method.
These improvements could be viewed as enhancements to compensate for some inadequacies
of the syntactic analyses used.

Capsule Review

Wadler's deforestation algorithm from 1988 eliminates intermediate data structures from
functional programs but is only guaranteed to terminate for treeless terms. Wadler's blazed
deforestation (also from 1988) does the same as ordinary deforestation, but essentially leaves
annotated subterms untransformed.

Improving and extending work in his PhD thesis from 1990, Chin gives in the present paper
the extended deforestation algorithm, which is an improved version of the blazed deforestation
algorithm, and a technique for finding annotations. The main theorem of the paper states that

t An earlier version of this work appeared at the 7th ACM Conference on Lisp and Functional
Programming, June 92, San Francisco.
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extended deforestation applied to an arbitrary term annotated by this technique terminates.
This means that deforestation can be safely applied to all first order terms.

The core in the technique for computing annotations is to annotate non-treeless subterms;
Chin casts this in a producer-consumer terminology. The technique also applies a bottom-up
strategy. Moreover, many improvements over the basic technique are suggested. Higher-order
functions are also considered.

The techniques are syntactic and can easily be implemented in a fully automatic optimizing
compiler.

1 Introduction

Consider an expression p(q{v\),r(v2,s(v<,))), call it e, where 01,1)2,1)3 are variables and
p,q,r,s are user-defined functions. In this expression, v\,V2,vi are inputs of e, while
p, q, r, s are simpler functions decomposed from the main task of e. This expression
may be viewed as a modular construction from simpler reusable functions p,q,r,s.
However, sub-terms of e, like q(v\) or r(i>2,s^)) or s{vi), may be a source of large
intermediate data structures that are expensive to construct, but may be garbage-
collected later because they are not directly referred in the final result. This is a
source of inefficiency. A possible remedy is to apply unfold/fold transformation
(Burstall & Darlington, 1977) to fuse e into a piece of more tightly woven code,
without its unnecessary intermediate sub-terms.

For example, if all the sub-terms of e could be safely fused, a new function
/1 could be defined (to represent e) and transformed until the original nesting of
function calls disappears, as shown below (we shall use the Hope language for our
programs where equations are of the form - - - LHS <= RH$):

---fi(Vi,V2,vj) <= p(q(vi),r(v2,s(vi))) ;
transforms to

<= ..equivalent expression without the
original nested function calls..

However, not all sub-terms can be safely fused with their containing expression.
If we can identify those sub-terms which are unsuitable for fusion, a simple known
technique called parameter generalisation, can be used to abstract away the unsuitable
sub-terms before fusion. For example, if the sub-term rfa, s(v^)) cannot be fused
with p of e, then a new function, fi, can be defined with the unsuitable sub-term
replaced by a new parameter variable, w. This can then be transformed, as outlined
below:

---f2(vi,w) <= p(q(vi),w) ;
transforms to

<= ..equivalent expression without the
above nested functions..

With the above function, the expression e is now equivalent to f2(vi,r(v2,s(vi))),
where further opportunities for fusion may be found by similar analysis and trans-
formation of r(v2,s(vi)) itself. Thus, fusion can be selectively applied, as long as
sub-terms which are unsafe to fuse can be identified.

To give a more concrete example, consider the following function intseq. (Note: a
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data statement defines the algebraic list data type and dec statements specify the type
of functions. Also, we use tuple type of the form (A,B) instead of (A # B) found in
Hope):

data list(A) == nil ++ cons(A,list(A));
dec intseq: (int,int) —> list(int);
dec take: (list(A),int) -> list(A);
dec infint: int —> list(int);
---intseq fed) <= take(inRnt(s),d);
— take(nil,n) <= nil;
— take(cons(a,as),n) <= if n=0 then nil else cons(a,take(as,n-l));
— infint(n) <= cons(n,in6nt(n+l));

This function generates a finite sequence of consecutive integers, s,s+l,..,s+d-l, by
evaluating a nested expression take(inh~nt(s),d). When this function is evaluated, an
intermediate data structure would be built by the inner function infint but would
later be garbage-collected because it is not used in the final result.

To remove this unnecessary intermediate data, we could apply the unfold/fold
transformation rules to the RHS of intseq. There are six elementary but powerful
rules which could be used, namely define, unfold, fold, instantiate, where abstraction
and laws (see Burstall & Darlington, 1977). However, our basic fusion method will
make use of only the following three rules:

Define Introduce a new equation (function definition) with a
unique LHS.

Unfold Replace a call by its corresponding function body, with
the appropriate parameter substitutions. The unfold rule
will sometimes incorporate the instantiate step when deal-
ing with function calls with pattern-matching parameters.

Fold Replace an expression which matches a function body by
its corresponding function call.

For the above example, we begin with the earlier definition of intseq which is
already suitably generalised; so there is no need for a separate define step:

---intseq(s,d) <= take(infint(s),d);

We then unfold the inner infint call, followed by an unfold on the outer take call,
before a fold back on intseq, as follows:

unfold infint call
—intseq(s,d) <= take(cons(s,infint(s+l)),d);
unfold take call
—intseq(s,d) <= if d=0 then nil else cons(s,take(inGnt(s+l),d-l));
fold with intseq call
—intseq(s,d) <= if d=0 then nil else cons(s,intseq(s+l,d-l));

The final transformed function of infseq is now without the unnecessary interme-
diate data sub-term.

This paper presents an automatic method to perform such fusion transformations.
It grew out of Chapters 3 and 4 of the author's PhD thesis (Chin, 1990), and has
been inspired primarily from Phil Wadler's (1988) work on deforestation. An early
version of this work has appeared in Chin (1992a). This paper is both an expansion
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and consolidation of the previous paper with full (termination) proof and more
examples. It also contains a suite of new improvement techniques to further enhance
the fusion method.

An overview of this paper follows. In section 2, we briefly describe the pure and
blazed deforestation algorithms of Wadler. In section 3, we present a producer-
consumer model of functions and propose a new annotation scheme based on
safe/unsafe producers and consumers. (An earlier annotation scheme, proposed
by Chin (1990, 1991), is based solely on consumers. This earlier scheme works
by changing all unsafe producers to pseudo-safe. However, it hinders a further
improvement on deforestation which uses laws in addition to equations.) Section 4
presents an extended deforestation algorithm for first-order programs, together with
formal definitions for safe/unsafe producers and consumers. Section 5 presents a full
termination proof for the first-order transformation algorithm. Section 6 outlines
our extension of deforestation to a full higher-order functional language. Section 7
shows how some potential problems, which arise from the syntactic analyses used
are overcome. Section 8 provides a number of new improvements to the basic fusion
method. These improvements help to overcome some weaknesses of the syntactic
analyses for the producers and consumers. Section 9 compares with other related
work. Section 10 concludes. Throughout this paper, we will use both the terms,
deforestation and fusion, interchangeable to mean the transformation technique for
eliminating safe intermediate sub-terms from purely functional programs.

2 Wadler's deforestation

The deforestation technique was first proposed by Wadler (1988) as an automatic
transformation algorithm for eliminating unnecessary intermediate data terms from
a sub-set of first-order expressions. Both a simple version, called pure deforestation,
and its enhanced version, called blazed deforestation, were proposed.

The first-order language used contains functions of the form:

---/(«/,...,«„) <= tf;
with its RHS term, tf, described by:

t ::=v \c(t,,...,tn) \f{ti,...,tn) \casetof {pi^ti;..;pn->-tn}
p ::=c(v,,...,Vj)

Each term t can be made up of either a variable, a constructor term, a function
call or a case expression. The above grammar is actually for a restricted first-order
language because only simple patterns of the form, p = c(vi,...,vj), are allowed
in the case construct. However, there is no loss in generality because translation
methods exist (Augustsson, 1985; Wadler, 1987) to translate any expression with
complex nested patterns (in case constructs) to an equivalent expression of the above
restricted form.

In a reformulation of pure deforestation, a slightly different language was adopted
in Ferguson & Wadler (1988), where each case construct is replaced by an equivalent
g-type function. A /-type function (shown earlier) is a function which is defined
without any pattern-matching parameter in its equation. In contrast, a g-type function
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has exactly one pattern-matching parameter (the first one) and is defined using one
or more equations, as shown below.

---g(Pi,v,,...,vn) <= tg , ;

---g(pr,v,,...,vn) <= tgr;
This new language (with both /-type and g-type functions) helps to simplify the

deforestation algorithm. Its use also results in smaller transformed programs. We
shall adopt this simple but complete first-order language to describe both Wadler's
work and our extension.

Pure deforestation is a transformation algorithm, formulated using define, unfold
and fold rules. It is applicable to all expressions which are composed solely from a
special type of functions, called pure treeless functions, as defined below.

Definition 1: Pure treeless form
An expression is said to be pure treeless if it satisfies the grammar form
below.

t t : : = v | c ( t t , , . . . , t t n ) \ f ( v , , . . . , v n ) \ g ( v o , V i , . . . , v n )
where / and g are pure treeless functions and each
variable, v, occurs only once in the expression.

Correspondingly, a function is said to be pure treeless if each of its RHS
term(s) is pure treeless.

Terms of the above grammar form are known as pure treeless terms because
they do not contain nested applications of functions. Notice that all arguments
of function calls in the pure treeless form are variables. As a result, pure treeless
expressions do not construct intermediate data structures (including tree-like ones)
when they are building their final results. An example of pure treeless function is:

dec append: (list(A)Jist(A)) -> list(A);
— append(nilys) <= ys;
— append(cons(x,xs),ys) <= cons(x,append(xs,ys));

The pure deforestation algorithm can transform any expression, which uses only
pure treeless functions, to an equivalent expression that is pure treeless. For ex-
ample, the expression append(append(xs,ys),zs) uses only pure treeless functions. It
can be transformed by the deforestation algorithm to a pure treeless expression,
apptree(xs,ys,zs), as shown in Fig. 1.

Blazed deforestation is an extension of pure deforestation to cater for functions
which are not pure treeless because of atomic-type sub-terms. Atomic-type sub-terms
are those terms with simple types (like integer, char) which require small storage.
Compared to tree-like sub-terms, they do not result in much gain when eliminated.

Two examples of functions which are not pure treeless because of atomic-type
sub-terms are:

dec double: list(int) —> list(int);
dec sum: list(int) —• int;
— double(nil) <= nil;
— double(cons(a,as)) <= cons(2*a,double(as));
— sum (nil) <= 0;
— sum(cons(a,as)) <= a+sum(as);
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Initial expression to transform:
append(append(xs,ys),zs)

Define new function appthree and fold:
=> appthree(xs,ys,zs)

New function appthree:
— appthree(xs,ys,zs) <= append (append(xs,ys),zs)
Unfold inner append call
Equation from the nil case:
— appthree(nil,ys,zs) <= append(ys,zs)
Equation from the cons(x,xs) case:
— appthree(cons(x,xs),ys,zs) <= append(cons(x,append(xs,ys)),zs)

unfold outer append call:
<= cons(x,append(append(xs,ys),zs))

fold with appthree function:
<= cons(x,appthree(xs,ys,zs))

Fig. 1. Transformation steps applied by pure deforestation.

The sub-expressions which do not conform to pure treeless form are shown
underlined. Blazed deforestation handles such functions by using an annotation
scheme which marks each atomic-type sub-term with e, and each tree-type sub-
term with ©. Periodically, before each fusion sequence, all sub-terms annotated as
G are abstracted using the let constructs to prevent them from being fused. As a
consequence, atomic-type sub-terms are allowed to be nested, and their variables
be non-linear. This type-based blazing scheme is simple to implement but it cannot
be used to extend deforestation to all first-order expressions. This is because this
scheme does not guarantee deforestation algorithm's termination (for example, some
tree-like sub-terms cannot be safely fused).

In the next section, we propose a new model for safe fusion that can identify more
accurately sub-terms which can be fused, from those which cannot. This model will
be used to generalise deforestation to all first-order and higher-order programs.

3 Producer-consumer model

For the purpose of determining where fusion is possible in an expression, we propose
the use of a model which views each function as both a producer of data through
its result, and a consumer of data through its parameter. Presently, each of the / -
or g-type function takes a number of parameters and returns a single result. Each
parameter of these functions will be viewed as a consumer. Similarly, the single result
(represented by the RHS of the function definition) will be viewed as a producer.

3.1 Conditions for safe fusion

Consider a nested application of two function calls: p(q(x)). In this nested application,
the sub-term q(x) is used to produce an intermediate data which is to be consumed
by the sole parameter of p. An important question to raise is under what conditions
can this nested application be safely and effectively fused. We distinguish between
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safe and effective fusion j - A nested application is said to be safely fused if the
transformation sequence terminates and there is no loss of efficiency experienced
by the transformed expression when compared to the original expression. A nested
application is effectively fused if the need for its intermediate data disappears and
there is a gain in efficiency. In this paper, efficiency refers to the number of reduction
steps and heap storage needed to evaluate a given expression.

Ideally, we would like to know exactly when safe and effective fusion can take
place. However, we shall present a more modest result outlining sufficient criteria
which conservatively determine when safe fusion is possible. If the safe fusion also
happens to be effective, then a gain in efficiency will result.

In our proposed model, we will classify producers and consumers as either safe or
unsafe with respect to their amenability to safe fusion. The static properties which
can determine whether a given producer or consumer is safe (or unsafe) will be
given in section 4.

For the moment, we propose that any expression, p(q(x)), can be safely fused if:
(i) q(x) is a safe producer, and
(ii) the parameter of p is a safe consumer.

Conversely, if either p is an unsafe consumer and/or q is an unsafe producer,
then fusion may fail. Using the above model, Wadler's pure treeless functions can
be viewed as functions which are both safe producers and safe consumers, with any
expression composed from them being totally fusable. Also, blazed deforestation
treats all atomic-type sub-terms as unsafe, and allows only safe tree-like sub-terms
to be used. Hence, it cannot handle expressions which contain unsafe tree-like sub-
terms. Our model for safe fusion can cater to a more general deforestation algorithm.
For example, it can tolerate q as an unsafe consumer and/or p as an unsafe producer
and yet permit p(q(x)) to be still fusable.

3.2 Double annotation scheme for safe fusion

With the need to take into account the fusability properties of producers and
consumers, we propose a double annotation scheme to help identify sub-terms that
could be fused. We use the same basic annotation symbols of blazed deforestation, ©
and 9, but augment them with appropriate subscripts. In this scheme, each sub-term
is either marked as a Qp if it is an unsafe producer, or a ©p if it is not an unsafe
producer. In addition, the same sub-term may inherit a ©c annotation if it presently
lies within a safe consumer, or a Qc annotation if it lies within an unsafe consumer.

Producer-based annotation is considered a location-independent property of the
sub-terms. It can be formally contained in the following annotated grammar:

t : := v®" | c(t,,..., tn )e" | safeP | unsafe?
safeP ::=g(to,...,tn)°> | /(t , , . . . ,*„)• '

where / , g are safe producers
unsafe? : := g(t0,..., tn )e> \ f(t,,..., tn )

e"

t During a visit to Glasgow in October 1991, Phil Wadler helpfully pointed out to the author
the need to differentiate between the notions of safe, as opposed to, real I effective fusion.
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where / , g are unsafe producers

Consumer-based annotation is a location-dependent property of the sub-terms.
This is because the annotations are dependent on the parameter positions that the
sub-terms are located. Sub-terms which lie in the safe parameters (consumers) of
function calls will be annotated with a ©c; while those which lie in unsafe parameters
will be annotated with a 0C. The rest of the sub-terms, for example arguments of
constructors, which do not lie in the parameters of / - or g-type function calls, need
not be provided with any consumer-based annotations.

The criteria for classifying consumers and producers as either safe or unsafe are
given later in Section 4.3.1 and 4.3.2, respectively.

With this scheme, each sub-term is annotated either once or twice. Sub-terms
which are arguments of function calls are annotated twice, while the rest of the
sub-terms are annotated only once. For fusion purpose, we are primarily concerned
with sub-terms which are also arguments of function calls. For these sub-terms, we
mark each of them with either a © if it is safe to eliminate, or a 0 if it is not safe
to eliminate; according to the following double annotation scheme:

©p combines with ©c to give ©
©p combines with 0C to give 0
©p combines with ©c to give ©
©p combines with 0C to give ©

In the next section, we present appropriate syntactic criteria for this double anno-
tation scheme, together with the transformation algorithm for first-order programs.

4 Fusion of first-order programs

This section describes how safe fusion can be achieved for all first-order functional
programs. We present an extended result of Wadler's deforestation theorem that
is able to fuse safe sub-terms and skip over the unsafe ones. This is followed by
a corresponding annotation scheme for consumers/producers to achieve the above
result. Finally, we show how the extended deforestation algorithm could be effectively
applied to each first-order function by a bottom-up procedure.

4.1 Extended deforestation

Wadler's main theorem on pure deforestation states that any expression which is
composed from pure treeless functions could always be transformed to an equivalent
expression that is pure treeless. In this section, we provide an extension to Wadler's
theorem which could be used to handle all first-order functional expressions. Our
result uses a more general form of treelessness, called extended-treeless form, which
is formally defined below.
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Definition 2: Extended-treeless form
An expression is said to be extended-treeless (or e-treeless) if it satisfies the
grammar below:

et ::= v \ c(et,,...,etn) | f(arg,,...,argn) | g(argo,...,argn)
arg : := u® | ete

where only variables appear in arguments annotated as ©; and / , g are
e-treeless functions.

Correspondingly, a function is said to be e-treeless, if each of its definition's
RHS term(s) is e-treeless.

The e-treeless form allows sub-terms which are unsafe to fuse (marked as e ) to
remain in its expressions. Also, sub-terms which are safe to fuse (marked as e )
are assumed to be transformed away because only variables are allowed in these
sub-terms. This e-treeless form could be used to cover all first-order functions:):, as
we shall see in section 4.4.

To illustrate the e-treeless form, consider the following two functions whose RHS
are e-treeless. Note that because primitive functions (like *) cannot be unfolded, we
have to annotate their arguments as unsafe.

— revJt(nil,w) <= w;
— revJt(cons(a,as),w) <= revJtfas9,cons(a,wf');
— double(nil) <= nil;
— double(cons(a,as)) <= cons(lB *ae,double(as9));

Our main result, called the extended deforestation theorem, can be stated as follows:
Theorem 3: Extended deforestation
Every expression that is made up of only data constructors and e-treeless
functions can be safely transformed (without loss of efficiency and non-
termination) to an equivalent e-treeless expression by the extended defor-
estation algorithm.

The extended deforestation algorithm is presented in the next sub-section. I t will
attempt to remove all safe sub-terms by fusion transformation and leave the unsafe
sub-terms untouched via parameter generalisation. Simple induction proofs o n the
algorithm can show that there is no increase in reduction steps for the transformed
expression and that only e-treeless expressions result from the algorithm. These
trivial proofs are skipped in this paper.

The termination proof for the transformation algorithm (under the conditions of
the above theorem) is not trivial, and is presented in detail in section 5. In fact,
our termination proof will cover a more general result that allows the extended
deforestation algorithm to transform any expression that is composed solely from
data constructors and e-treeless with constant functions to an equivalent e-treeless
expression. The e-treeless with constant expression form is similar to the e-treeless
form, except for also allowing constant functions in the safe parameter positions. Its
formal definition is given below.

A trivial approach to make every first-order function conform to the e-treeless form is by
annotating the RHS so that all variables are marked as safe and the rest as unsafe. Thanks
to Morten H Sorensen for pointing this out. We use a slightly more sophisticated scheme.

18 FPR4
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Definition 4: Extended treeless with constant form
An expression is said to be in the e-treeless with constant form if it satisfies
the grammar below:

et ::=v\c(et,,...,etn) \ f(arg,,... ,argn) | g(argo,...,argn)
arg ::= v® \ f(f \ ete

where only variables and constants (represented by /()) appear in arguments
annotate as ©; and / , g are e-treeless with constant functions.

Correspondingly, a function is said to be e-treeless with constant, if each of
its definition's RHS term(s) is e-treeless with constant.

4.2 Transformation algorithm

The extended deforestation algorithm is made up of six syntax-directed rules given
in Fig. 2. The first rule, dealing with a variable, has nothing to fuse. The second rule,
dealing with a constructor as the outermost term, has to skip over the constructor
because it is not able to use the constructor as a consumer.

The next four rules deal with expressions that may have a nesting of function
calls that could be fused. We use a context notation, • • • C • • • (similar to that used
by Ferguson & Wadler, 1988), to help identify an inner call, C, that is about to be
unfolded by normal-order reduction strategy. This inner call lies within a nesting of
© pattern-matching arguments of g-type calls, e.g. g; (g2(- • • gn(C

e,..) • • ®, ..)*,..) where
n > 0. A formal grammar specification for this context notation is given below:

•••C---::=C\g(---C---®,t1,...,tn)

Four rules (^"3,4,5,6) are used to transform expressions of the form • • • C • • •.
Depending on appropriate conditions, these rules use one of four different transfor-
mation steps, in the order of preference shown below:

1. direct unfold {2n>a,4a).
2. skip over ($~4d, 5c, 6c).
3. fold(#~3b,4b,5a,6a).
4. define followed by an unfold ($~3c,4c,5b,6b).

A direct unfold is taken if the inner call is either g(c,(t't,...,t'j)
@,ti,...,tn) or

f(ti,...,tn) where / is non-recursive and only variables appear in the unsafe (and
non-linear) consumers. With only variables in the unsafe arguments, there is no
possibility of large arguments being duplicated or accumulated by direct unfolding.
This step is always taken in preference to the other steps (including the define &
unfold step) because it helps to obtain better transformed code. The above conditions
guarantee that there will be no infinite direct unfolding (see termination proof).

A skip over is taken if the outermost function call contains no safe sub-terms to
fuse.

A fold is taken if a previously defined function matches the current expression.
All previously defined functions are stored in a function definition set, called defset.

If none of these situations are met, then a define & unfold step is taken. In this
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(l) sr\v\
(2) 5~\c(t,,...,tn

(3)^[-g(c,(t',

a) IF (Va e 1

=> u
)] = > c ( 5 " [ f , ] , . . . , 2<~[tn])

...,t'j)9,tt,...,tn)---]
.n. ta

6—* ta = v) (direct unfold)
=>Sr[-tgi[t'l/v'u...,t'j/v'j,ti/vu..,tn/vn]-]

b ) I F f-old(vn,,...,vnk,vel,...,ves)^-g(c,(t'?,...,f*),tt--,tn)-*

W H E R E (• • •
(

e defset (fold)
=> f.old(voi,...,vok,^[te(\,...,3r[tes\)

g(c,(ff, ...,f?),tf>,...,t*)-A,te}...tes,vei... ves
, v o i . . . v o k , v n , . . . v n k ) = &[• • • g ( c , ( t ' ; , . . . , t ' . - ) , f / , . . . , t n ) - • •]

c) OTHERWISE (define & unfold)
=> /jjew(t)O;,..., vok,Zr\te{\,... ,$~[tes])

DEFINE & ADD TO defset
fjnew(vn,,...

UNFOLD
WHERE (• • •

( 4 ) * - [ • • • / ( * , , . . .

,vnk,vet,...,ves)

~n---tg,[tA/v'l,...,t'?/v'j,t<?/vu...,C/vn]--A]
g ( C , ( C f , . . . , t ' f ) > t f , . . . , e ) - - A , te}...tes,ve1...ves
v o , . . . v o k , v n , . . . v n k ) = ^ [ - • • g ( c , ( t ' , , . . . , t ' j ) , t , , . . . , t n ) • • ]

a) IF non-recursivd(f) A (Va 6 l..n. ta
e —• ta = v) (direct unfold)

b) SIMILAR
=> 3T[-tf[tx/Vu...,tn/vn}-}

TO (/bW) OF 3T3b
c) SIMILAR TO (define & unfold) OF 2T3c
d ) I F • • • / ( * ,

a) SIMILAR
b) SIMILAR
c) SIMILAR

(6) $~[-g(toe,ti

...,tn)--- =f(t!,...,tn) A Va e l..n. ta® = v (skip over)

T6'(fold) of STIb
TO (rfe/i/ie & unfold) OF .T3c
TO (skip over) OF 5"4d

« » ) • • • ]

a) SIMILAR TO (fold) OF 3T3b
b) SIMILAR
c) SIMILAR

where

<$[te] <=
0[i>] <=

TO (define & unfold) OF 3Sc
TO (sfcip ouer) OF 3~Ad

- (nv,[t],[nv],Q,Q) ! nv is a new variable
= (nv,[),n>[y]>[nv]) ! nv is a new variable

<&[c(ti,...,tn)] <= (c(t^,...,t^), te.lt, ve.lt, vo.lt, vn.lt)

$[f(t,,...,tn)] <=

Fig. 2.

where (rf ...tf,teJt,ve.lt, voJt,vn.lt) = <g£?[t, ...tn]
-- (f(tf,..., t f ) , te J t , ve Jt, vo Jt, vn.lt)

where (t^ ...t£,teJt,ve.lt,voJt,vnJt) = <$<£{t, ...tn]

where (t^ ...tf,te.lt,ve.lt,voJt,vn.lt) = &&[to -.-tn]
-- (tf ...t%,te.lt, ... te.lt n,ve.lt, ... ve.lt „, vo.lt, . ..vo.lt „

,vn.lt, ...vn.ltn)
where Vi e l..n (t,A,teJt,-, ve.lt,, vo.lti,vn.lti) = <&[t,]

Extended deforestation algorithm for first-order expressions.
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3"[revJt(double(as),double(w)) ]
=> Tevdb(as,J[double(w) ])
=> revdb(as,double(w))

Define a new function, revdb
— revdb(as,ws) <= revJt(double(as),ws)
— revdb(nil,ws) <= S~[revJt(nil,ws)]

<= ST[ws ]
<= ws

— revdb(cons(a,as), ws) <= &[revJt(cons(2*a,double(as)), ws) ]
<= 2T[revJt(double(as),cons(2*a, ws)) ]
<= ievdb(5~[as ],&[cons(2*a, ws) ])
<= revdb (as,cons(?r[2*a ],2T[ws ]))
<= revdb(as,cons(£T[2]*3T[a ],ws))
<= revdb(as,cons(2*a,ws))

$~5b define revdb
!F5c skip over

unfold double(as)
&"Sa unfold revJt
ST\ skip

3"ha unfold revJt
3T5a fold revdb
3T\,$~2 skip

2T2,ZT 1 skip

Fig. 3. Application of generalised deforestation algorithm 2T

step, the expression to be transformed is first generalised by replacing all arguments
of unsafe consumers (unsafe sub-terms) with new variables. In addition, all the
other variables (not extracted via generalisation) are renamed. Renaming helps to
faciliate folding. Without it, variables which occur more than once must be properly
synchronised by the fusion method when a fold is required. As an example, consider
the fusion of the RHS of function syn below:

— syn(xs) <= zip(double(xs),second(xs));
---zip(cons(x,xs),cons(y,ys)) <= cons((x,y),zip(xs,ys));
—zip(xs,ys) <= nil;
— second (nil) <= nil;
— second(cons(a,as)) <= second'(as);
— second'(nil) <= nil;
— second'(cons(a,as)) <= cons(a,second(as));

If the identical variables of zip(double(xs),second(xs)) are not renamed, then fusion
could fail because the two occurrences of xs could not be synchronised by the
transformation. Renaming the variables at each define & unfold step helps to avoid
this problem. It allows the intermediate sub-terms to be eliminated, without the need
to synchronise the duplicated variables.

The procedure for generalisation and renaming, called 'S, will ensure that (i)
no unsafe sub-terms are fused, and (ii) the expression is linear. This procedure
helps ensure transformation algorithm's termination. Given an expression, t, the ^
procedure will return a tuple of five items, namely:

( t A , t e i . . . t e s , v e t . . . v e s , v o t . . . v o k , v n j . . . v n k )

where tA is a notation to represent the generalised (and renamed) expression of
t; tej ...tes is a list of unsafe sub-terms extracted from t; vej ...ves are the new
variables in tA to replace tei ...tes; voi ...vok is a list of variable occurrences in t
that do not belong to unsafe sub-terms, vni ...vnk are the new unique variables in
tA to replace voi ...vou-

As an illustration of the new transformation algorithm, consider the expression
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revJt(double(as)®,double(w)e) which uses only e-treeless functions. This expression
can be transformed by the new algorithm, as shown in Fig. 3.

An important characteristic of this transformation algorithm is that it preserves the
lazy semantics of its transformed programs. In Runciman et a/.(1989), it was shown
that the instantiation step (on g-type functions) can alter the strictness behaviour
under certain circumstances. To avoid this, each variable to be instantiated must lie
in a strict location before it is safe to instantiate. Our algorithm chooses only g-type
calls, which lie in a nesting of outer g-type function calls, for instantiation. This
chosen call is always in a strict location relative to the context of the expression.
As a result, our transformation algorithm preserves the non-strict behaviour of its
transformed programs.

4.3 Consumer I producer annotations

The extended deforestation theorem can be related in a natural way to the pro-
ducer/consumer model proposed earlier. This relation is used to help explain the
safe fusion method and its further improvements later. In particular, the syntactic
criteria used for classifying the consumers and producers as either safe or unsafe will
be used to help functions/expressions conform to the e-treeless (with constant) form.

Our annotation scheme is simple to compute, safe to use, and extensible to further
enhancements. The initial annotation scheme is monovariant, in the sense that every
call to the same function definition will have consistently annotated parameters
(consumers) and results (producers) throughout the entire program. In section 8, we
shall also consider a polyvariant extension.

4.3.1 Handling consumers

We define the non-accumulating parameter criterion here.
Definition 5: Non-accumulating parameter criterion
Given a set of mutually recursive functions, hi,...,hk, where k > 1. The jth

parameter, Vj, of the ith function, hi, with definitional equations of the form:

wherep ::=t> \ c(v,,...,vm)

is considered to be non-accumulating if each recursive call of the form
hi(t\,...,tj,...,tn) in the RHS of functions, h\,...,hk, has the jth-argument,
tj, as a variable or a constant.
Also, all parameters of non-recursive functions are trivially regarded as
non-accumulating, since there are no recursive calls in their definitions.

To illustrate the non-accumulating parameter criterion, consider a recursive func-
tion, h, with a single recursive call in its RHS:

---h(c(vi),v2,Vi,V4,vs,v6) <= ..h(vi,v2,v4,v3,const,acc(v6))..

This function has six parameters. The first parameter is a constructor pattern
argument which gets smaller§ with each recursive call. The second parameter is

§ This criterion of structurally smaller arguments for the successive recursive calls is also
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unchanged across recursion. The third and fourth parameters are swapped around
with each recursive call. The fifth parameter becomes a constant with subsequent
recursive calls. These five parameters are non-accumulating because their sizes are
bounded across recursion. The last parameter is accumulating because each succes-
sive recursive call can accumulate up a sub-expression of the form acc(.).

Another useful parameter criterion is linearity, as defined below.

Definition 6: Linear parameter criterion
A parameter of a function is linear if its variable(s) occurs only once in each
RHS term of its function.

Based on the above two parameter criteria, we could now define a safe consumer
as follows:

Definition 7: Safe/unsafe consumers
A parameter of a function definition is classified as a safe consumer if it is
linear and non-accumulating; otherwise it is classified as an unsafe consumer.

The linearity criterion is used to help avoid loss of efficiency by not duplicating
large non-linear arguments (to avoid redundant evaluation) during deforestation.
This duplication risk of non-linear arguments is already a well considered issue by
the partial evaluation community (Sestoft, 1988).

Non-accumulating parameters are considered to be safe parameters (for fusion)
because their arguments will not grow in size during transformation. In contrast,
accumulating parameters may result in successively larger expressions during trans-
formation and cause non-terminating transformation.

As an example, consider the fusion of h(vi,v2,v3,v4,v5,double(v6)) where the
last parameter is assumed to be a list of numbers. The first unfold on h will
instantiate vt = c(u; ) and result in h(v, 1,v2,v4,vs,const,acc(double(v6))). A further

unfold on h will instantiate vj =c(vt ) and result in an even larger expression
h(vi2,v2,v3,v4,const,acc(acc(double(v6)))) that is to be further transformed. Notice that
the last argument experiences an increasing size. This process to fuse the last ar-
gument of h will go on forever without any success because it is an accumulating
parameter.

Another way of viewing the non-accumulating parameter criterion is that it helps
to ensure that all arguments of the current recursive functions conform to the
e-treeless with constant form.

4.3.2 Handling producers

We formally define safe/unsafe producers as follows:

known as the inductive parameter criterion. It was used in Sestoft (1988) to ensure that
infinite unfolding of calls with one or more such known arguments cannot happen. The
reason is that known inductive arguments will get smaller with each unfolding and this
cannot happen forever with finitely-sized structures. The inductive parameter is a special
case of the non-accumulating criterion.
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Definition 8: Safe/unsafe producers
A set of mutually recursive functions is classified as safe producer(s) if none
of its recursive calls (in the RHS of their definitions) are currently lying in
safe parameter positions; otherwise it is classified as unsafe producer(s).

An example of safe producer is the function, double. Its single recursive call is
lying within a constructor term and not in a safe argument position. When it is
regarded as a safe producer, its recursive call satisfies the e-treeless form. Not all
functions are safe producers. An example is the function, revJIatten:

dec revJIatten: list(list(A)) -> list(A);
— re vJla tten (nil) <= nil;
— rev-flatten(cons(as,ass)) <= append(revJJatten(assfc,a^c);

This function is not considered as a safe producer because its recursive call,
revJlatten(ass), is presently lying in a safe consumer of the append function. This is
a violation of e-treeless grammar because only variables or unsafe producers may
appear in the positions of safe consumers. However, if revJIatten is regarded as an
unsafe producer, then this violation disappears. Note that this happens only after
revJIatten has been regarded as an unsafe producer.

As illustrated above, this definition of safe/unsafe producer is meant to help all
functions conform to the e-treeless form, so that they may be safely handled by
the extended deforestation algorithm. One way to handle unsafe producers is not to
unfold them, as producers, during fusion. Unsafe producers can be seen as producing
function calls, in addition to constructor terms. For example, the revJIatten function
can be viewed as a recursive function which produces append function calls during
unfolding. These generated append calls cannot be readily consumed by most outer
functions. Using pattern-matching equations, we could guarantee that constructors
are safely consumed but not the produced functions. We refer to functions produced
by unsafe producers (like append calls from revJIatten) as obstructing function calls
because they may obstruct safe fusion. In particular, obstructing function calls
may result in successively larger expressions when attempts are made to fuse their
producers with safe consumers.

To illustrate this phenomenon, consider an expression length(revJlatten(ass)) which
contains an unsafe producer within a safe consumer. An unfold on the unsafe
producer will use the instantiation ass=cons(asj,assj) before resulting in a new
expression length(append(revJtatten(ass]),asj)). This expression can be further unfolded
using the instantiation, assj=cons(as2,ass2), to result in an even larger expression
Iength(append(append(revjlatten(ass2),as2),asj)). This fusion involving revJIatten as a
producer will not terminate because the obstructing append calls cannot be consumed
by the equation of the outer length function. As a result, the expression to be
transformed gets successively larger.

In our transformation algorithm, all unsafe producers in safe and unsafe con-
sumers are generalised out prior to each fusion sequence. This conservative strategy
can avoid non-termination by preventing all unsafe producers from being unfolded,
as producers. (A slightly less conservative strategy is to generalise out only those
unsafe producers which are about to be unfolded as producers. To support this,
a small change to the double annotation scheme is required whereby a term is
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annotated as unsafe if it lies in an unsafe consumer or it is an unsafe producer that
is about to be unfolded. However, we shall not consider this strategy here because
it may render an improvement technique in section 8 inapplicable.)

Even though unsafe producers should not be unfolded as producers, there is
nothing to stop them from being unfolded as safe consumers. For example, the
parameter of rev-flatten is a safe consumer because it is linear and non-accumulating.
In an expression like revJlatten(append(xs,ys)) where append(xs,ys) is a safe sub-term,
our algorithm is allowed to unfold revJlatten. This treatment helps to maximise the
opportunities for safe fusion.

4.4 First-order functions

Presently, the transformation algorithm is formulated to transform expressions which
are composed from e-treeless (with constant) functions. However, our real aim is to
use it to transform all first-order functions. To do that, the transformation algorithm
can be applied to the RHS terms of each first-order function. The procedure for
converting each function to e-treeless (with constant) form is as follows.

Procedure 9: Fusion on first-order programs

1. Apply the transformation algorithm according to the bottom-up order,
so that functions lower in the calling hierarchy are transformed before
those above them.

2. Transform each set of mutually recursive functions, say f,..fj, simul-
taneously and regard the recursive calls of f\..fj as potentially unsafe
producers and consumers.

3. After transformation, analyse the set of recursive functions to provide
appropriate consumer/producer annotations. These annotations will
ensure that the functions are in the e-treeless with constant form.

4. (Option) If we re-apply the deforestation algorithm to the RHS of each
function again, we could now convert the functions from e-treeless with
constant form to equivalent e-treeless form.

The bottoms-up order is used to ensure that each child (or auxiliary) function
is transformed before its parent function(s). A function, f\, is considered to be a
child function of another function, fj, if fi calls f\ but not vice-versa. If f\ also
calls J2, then we have sibling or mutually recursive functions. (Indirect calls through
intermediate functions are also included by taking a transitive closure of the calling
relationship.)

As an example of the bottoms-up order, consider the following program with a
set of five functions:

--q(-) ^..p(..)..r(..)..;
— r(..) <=....;

At the bottom of the calling hierarchy of the above program is the function {/)
which is non-recursive. Its parents are {/"} which is self-recursive and {p,q} which is
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a set of two mutually recursive (or sibling) functions. The last function {m} is the
top-most function of the call graph. A possible bottoms-up order for transforming
the four functions is {/•}, followed by {/"}, then {p,q}, before {m}. Bottoms-up order
ensures that child functions are always converted to e-treeless (with constant) form
before their parent functions. This approach helps to meet the requirement that
expressions to be fused is composed from only e-treeless (with constant) functions.

The second step requires that each set of sibling (mutually recursive) functions
must be simultaneously transformed and regarded as potentially unsafe producers
and unsafe consumers. As potentially unsafe functions, their function calls will not
be unfolded during their functions' transformation. For example, when we transform
the RHS terms of the two mutually recursive functions, say {p,q}, from the earlier
example, we must regard all recursive p and q function calls as unsafe producers and
consumers. After the set of sibling functions have been transformed to the e-treeless
(with constant) form, we can use the static analyses of sections 4.3.1 and 4.3.2 to
determine if the newly transformed functions are safe or unsafe producers, and their
parameters are safe or unsafe consumers.

This analysis can be used later when we transform the RHS of their parent
functions (e.g. function m). We apply static analyses to each function after transfor-
mation because syntactic properties are often changed (from unsafe to safe) by the
transformation.

Under the bottoms-up order for transforming program, our analysis and transfor-
mation are interleaved. In particular, each set of functions that has been transformed
will have to be analysed before their parent functions are transformed. With this
interleaving, is our method considered an on-line or an off-line transformation
method? An on-line method performs analysis during transformation, while an
off-line method has its analysis done before the transformation. We feel that this
interleaved analysis is basically still an off-line method. This is because the analysis
is always performed separately before the transformation on each set of sibling
functions. Interleaving merely help us achieve a better result using just a simple
annotation scheme.

The bottoms-up order for transforming functional programs was originally pro-
posed by Feather (1982). Apart from the fact that it gives better transformation
result, it also reduces transformation time. This is because the body of each function
is optimised only once. In contrast, the top-down approach (typically used by partial
evaluation transformations) may apply the same optimisation to the body of a
function more than once, depending on the number of times the function is called.

5 Termination proof

In this section, we present the termination proof of the extended deforestation algo-
rithm for first-order programs. The algorithm terminates if, for any given expression,
the number of recursive 9~ applications is finite. This termination property of 9~
can be stated as the following theorem:

19 FPR4
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Theorem 10: Termination of 9~
Given an expression, e, the number of transformation steps used by &~[e] is
always finite.

Proof
In general, the recursive ST applications branches out in a tree-like fashion. This
tree has finite branching factor because we are dealing with programs of finite sizes.
As a result, we need only show that each sequence of 3~ applications (in the tree) is
finite. There are two main steps in this proof.

Firstly, we shall show that the number of define steps by $~7>c, 4c, 5b, 6b (which
have corresponding fold steps) in any sequence of ST applications is finite. Secondly,
we shall show that the number of the other steps (5~2,3a, 3b, 4a, 4b, 4d, 5a, 5c, 6a, 6c),
called the non-define steps, which can occur between each pair of the define steps is
finite.

With these two proofs, the proposed algorithm is terminating because finite
numbers of non-define steps, between a finite number of define steps, implies that
the total number of steps in each sequence of 9~ applications is also finite. The next
two sub-sections cover these two proof steps in detail.

5.1 Finite number of define steps

Our first proof step for the termination theorem can be stated as follows:
Proof Step 1: Given an expression e, the total number of define steps

($~3c,4c,5b,6b) in any sequence of &~[e] application is finite.

The number of define steps {2T3c, Ac, 5b, 6b) can be proved to be finite by showing
that there exists an upper bound on the size of expressions used to define new
functions. An upper bound means that there can only be finitely many different new
functions (formed from a finite set of function and constructor symbols) and hence
a finite number of define steps as all re-occurring expressions will be folded instead
of repeating the define steps.

To prove that an upper bound exists for the size of new function definitions, we
prove the following three statements, namely:

1. Consider a nesting measure Jf which computes the maximum depth of func-
tion nesting for safe subterms, as follows:

JT[v] = 0
= o

jr\f{ti,...,tn

jf\g(to,...,tn

where
safe(tm)
safe(te)
unsafe (t)

)] — max(l + max{^[tt] \ie l..n,safe(t,)}
,max{js~[ti] | i 6 l..n,unsafe(t,)})

)] = max(l + max{^V[ti] \ i e O..n,safe(t,)}

= true
= false
= not (safe ft))

,max{jV[t,] | i £ O..n,unsafe(t,)})

Each expression encountered by the 5" rule is bounded by the nesting measure,
Jf, as provided by the following lemma.
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Lemma 1: Nesting measure Jf is bounded by 9~
For each transformation rule, i7~[t\ => ....^"[t,]...., we have:

Vi. Jf[t] > Jf[tt]

Proof
According to the definition of Jf, sub-expressions always have smaller or
equal measures. Hence, rules ^"2,3b,4b,4d,5a,5c,6a,6c satisfy Lemma 1. Also,
the Jf measure is bounded whenever an e-treeless (with constant) function
call, with variables as unsafe arguments, is unfolded. Hence, rules &~3a,3c,
4a,4c,5b,6b also satisfy Lemma 1.

2. Each expression being transformed by ST satisfies a grammar form, called eft,
as stated by the following lemma.

Lemma 2: Grammar form eft{Q} is preserved by ST
For each transformation rule: 2T\i\ => ....^~[t,]...., we have:

Jf[t] e eft{Q) => Vi. Jf[t,] e eft{Q}
The grammar rule for eft is given below. It is parameterised by a number, called
Q, which represents the maximum number of levels allowed for contiguous
nesting of constructors between function calls:

eft ::=eft{Q}
eft{x} ::= eft{x - 1} | c(eft{x - l},,...,eft{x - l}n)
eft{0} ::= v \ f(eft1,...,eftn) \ g(eft,,...,eftn)

The grammar form eft represents a class of grammars where Q is the maximum
level of contiguous nesting allowed for constructors. In any finite program,
this maximum level is a finite number. Given that a number, Q, is currently
observed by an expression and each of its e-treeless functions, we can prove
that this maximum level will not be breached by the 2T transformation rules,
as outlined below.
Proof
According to the grammar definition of eft{Q}, sub-expressions of eft {£2} al-
ways satisfy eft {Q}. Hence, rules 2T2,3b, 3b,4b, Ad, 5a, 5c, 6a, 6c satisfy Lemma 2.
Also, rules 2T3a, 3c, 4a, Ac, 5b, 6b satisfy Lemma 2 because of the following re-
sult. Each e-treeless (with constant) function call, with variables as unsafe
arguments and eft{Q) as safe arguments, could result in an eft{£2} expres-
sion when unfolded. For this, we assume that the e-treeless (with constant)
grammar form contains additional identity function calls, id(v), in the place
of variables, v, to prevent variables from lying directly inside data construc-
tors. For example, an expression c(vi,g(v2)) is assumed to be in the form
c(id(vi),g(v2)):

et ::=et{Q}
et{x} ::= et{x - 1} \ c(et{x - l},,...,et{x - l}n)
et{0} ::= id(v)\ f(arg,,...,argn)\ g(arg,,...,argn)
arg ::= v® \ f(f \ ete

The id functions are presumed to be added to help maintain the eft{Q} form
during unfolding. It need not be physically inserted because whenever each

19-2
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of these functions is encountered by the deforestation algorithm, it will be
removed by either a direct unfold or a fold (as a specialised argument). As
a result, the final outcome of the transformation is the same with or without
these identity functions.

3. For each RHS of new functions, - - - new, (...) <= tft, the actual size measure, y, of
(/, is bounded by its nesting measure, Jf, as follows: Vi. y[tft] <fn{jV[tfi])
where fn is some linear function. The actual size measure, Sf, computes the
maximum depth of an expression (including constructors) and is directly
proportional to the size of its expression (assuming finite branching). This
measure is defined as:

y[v] = 0
= 0

,..., tn)] =\+max{jr[tx],...,jr[tn]}

ST\g(to,...,tn)] = l+max{jr[to],...,jV[tn]}

Each new RHS of function definition introduced by STZc, 4c, 5b, 6b is a gener-
alised version of the grammar form eftA. This generalised grammar form can
be defined as:

eft* ::=eft{Q}*
eft{x}* ::= eft{x - 1 } * | c(eft{x - 1 } A , , . ..,eft{x -1}\)
eft{0}A ::=v \ f(arg,,...,argn) \ g(arg,,... ,argn)
arg ::=ve \eft{Q}*e

To prove that the size of new functions introduced by the define steps is
bounded, we merely have to prove that Sf is bounded by Jf for each expression
of the form eft*. This proof is sufficient because Jf is already bounded by 3~
and all RHS introduced by the define step satisfy the eft* grammar form. We
formulate this requirement as Lemma 3 below.

Lemma 3: The y measure is bounded by the Jf measure for
each expression from the grammar eft{Q}A, as follows:

Ve.ee eft {Q}A=> Sf\e\ < (Q+ 1) + (Q+ 1) * Jf\e\

Proof
The above lemma can be proved inductively over each production rule of the

form eft{x}A ::= something by using a tighter formula:

y[efi{x}A] < {x + 1) + (fi + 1) * ^K[e/t{x}A]

This proof is straightforward and is left to the reader.

These three statements prove that there is a finite number of define steps. In
particular, Jf is bounded by &~ and the grammar form of eft is preserved by 3~.
Furthermore, the size (£f measure) of the RHS of new functions (of form eft*) is
itself bounded by Jf. Hence, there exists an upper bound on the size of expressions
used for each new function introduced by the define steps. As a result, the number
of define steps is finite as all re-occurring expressions will be folded.
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5.2 Finite number of non-define steps

Our second proof step for the termination theorem can be stated as follows:
Proof Step 2: Between each pair of define steps (&"ic, 4c, 5b, 6b), there could

only be a finite number of the other non-define steps
I, 3a, 3b, 4a, 4b, Ad, 5a, 5c, 6a, 6c).

Between each pair of the define steps, there may be an unknown number of
non-define steps. This can cause non-termination unless we can show that there are
only finite numbers of them.

We show this by proving that there is a well-founded decreasing measure for
these non-define rules. We observe that rules ^"2,3b,4b,4d,5a, 5c,6a,6c operate on
successively smaller expressions, while rule ST4a unfolds non-recursive functions, and
ST3a consumes a constructor by unfolding a g-type function call. A well-founded
decreasing measure may thus be formed by a combined measure of expression
size, constructor numbers and function hierarchy number. The function hierarchy
number (obtained by a function named H) is a positive number associated with each
function to indicate where the function lies in the calling hierarchy. Functions at the
top of the calling hierarchy will have bigger numbers, while those at the same level
(e.g. sibling functions) will have identical numbers. The combined measure, called
J(, is actually a multi-set (set where duplicates are allowed). It must be collectively
decreased by each of the non-define steps and is defined as follows:

Jl{x,y)[v] ={}

J/(x,y)[c(t,,..., tn)] ={(x,y + l,O)}u\JI_1J
..,tn)} ={(x+l,0,H(f))} U 1X,{«*(* + 1.0)M \safe(u)}

u U L , { # , 0 ) [ ! i ] \unsafe(ti)}
..,tn)] ={(x + /,0,H(g))}u {Ji

Notice that this measure provides a triple (a tuple of three integers) for every
subterm which is either a constructor or function call. The triple consists of a
function nesting level (among safe sub-term), a constructor nesting level (from the
last function call) and a function hierarchy number (for the current function).

The Jt measure has a finite largest measure (for each expression) and a finite
smallest measure. It has a finite largest measure because the definition of M results in
a finitely-sized multi-set for each finitely-sized expression. Also, the smallest measure
for the multi-set is {}. To prove that JI also decreases for each of the non-define
steps, we have the following lemma:

Lemma 4: Bag measure Ji is decreasing for the non-define steps of 9~
For each non-define step, 27~[t] => ....9~[ti\....,
We have: Vi,x,y.Jt(x,y)[t] > Ji(x,y)[t,]

Proof
Using this measure, proper sub-terms of an expression will always have a smaller
measure. Hence, 3~ 2,3b, 4b, 4d, 5a, 5c, 6a, 6c satisfy Lemma 4. Also, each e-treeless
(with constant) expression, e, satisfies Jt{x,y)[e] < {(x + 7,7,0)}. As a result, the
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direct unfolds of 3"!>a, 4a (with variables for unsafe arguments and arbitrary linear
safe arguments) will not increase the multi-set Jt measure. In addition, the Jl
measure is actually decreased because 3?~7>a loses a constructor and ST4a gets a
smaller function hierarchy number during these direct unfoldings.

6 Fusion of higher-order programs

Higher-order functional languages treat functions as first-class citizens where they
are allowed to be passed as arguments and be returned as results. This facility
increases the expressive power of the language and permits more succint and reusable
program codes to be written. However, the facility comes at a price. Higher-order
programs, being more general, are more difficult to analyse for optimisations and
transformations.

Our approach to handling higher-order programs is to use another transformation
technique, called higher-order removal (Chin, 1990; Chin & Darlington, 1992), that
is capable of converting most higher-order expressions to either first or lower order.
Some residual higher-order features may remain, but the new expression form is
simpler and easier to handle (by optimisation and transformation techniques) than
the full higher-order expression form.

Consider the following grammar for higher-order expressions:

t ::=v\c{t1,...,tn) \t{t,,...,tn)\f\g\lambda(v,,...,vn)^tend

Compared to the grammar for first-order expressions, some new language features
that have to be handled include applications, t(ti,...,tn), lambda abstractions,
lambda (v/,.. .,vn)—> tend, and in general, function-type arguments and function-
type results. Of particular interest are two specific classes of higher-order expressions
that can be eliminated, namely: curried applications and instantiated function-type
arguments that are non-accumulating.

C u r r i e d a p p l i c a t i o n s i n c l u d e al l a p p l i c a t i o n s e x c e p t function calls, f(t/,..., tn) o r
g ( t o , . . . , t n ) , and variable applications, va(ti,...,tn), where:

va ::= v \ ua(t/,...,tn)

Curried applications can always be eliminated by a technique, called lump uncurry-
ing, which replaces each curried application by an equivalent uncurried function call.
Instantiated function-type non-accumulating arguments, on the other hand, can be
eliminated by a function specialisation transformation which works in a similar way
to deforestation's elimination of safe sub-terms. Both techniques can be combined
into a higher-order removal algorithm, named 2̂ (Chin, 1990; Chin & Darling-
ton, 1992), which has been proven to be terminating, as long as only well-typed
higher-order programs are used. Well-typed programs are programs which pass the
Hindley-Milner type-checking algorithm (Milner, 1978). This property is needed to
ensure that the higher-order removal algorithm terminates. In a well-typed program,
each expression can always be given a finite type. As the order of an expression
can be defined in terms of its type, each well-typed expression will always have a
finite order to start with. Higher-order removal attempts to lower this order via
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transformation. This can be shown not to go on forever for expressions that have
finite orders.

Using ^ , each higher-order expression can be transformed to an equivalent
expression of the following restricted higher-order form:

Definition 11: Higher-order specialised form
An expression is said to be higher-order specialised (or HO-specialised) if it
satisfies the grammar below:

t ::=v\c(t,,...,tn) \rapp\f \g\lambda(vi,...,vn)-> tend

rapp ::=va(t,,...,tn) \ f(t,,...,tm,v®h
+l,...,vfh)

\g(to,...,tm,v®h
+l,...,vf-)

where variables v®+,,...,vfk are the non-accumulating
function-type arguments annotated with ©>, and / , g are
HO-specialised functions.

Correspondingly, a function is said to be HO-specialised, if each of its
definition's RHS term(s) is HO-specialised.

A new type of annotation, ©/,, has been introduced to mark function-type ar-
guments which are non-accumulating (identical to the syntactic criterion given in
section 4.3.1). All instantiated versions of such arguments will have been removed
by the transformation algorithm, 3%, as shown in the above restricted grammar
form. Also, some residual higher-order features are still present in the above form.
However, they are easier to handle than the full higher-order form. Let us show how
these residual higher-order features can be handled by the deforestation algorithm.

Firstly, in each of the function calls of the form:

f(ti,-..,tm,v®h
+l,...,v®h)org(to,...,tm,v®>+u---,vfh)

we may still have function-type sub-terms and variable applications as arguments.
These higher-order sub-terms need not be removed by deforestation. They can be
handled by marking them as unsafe.

Secondly, four additional 9~ rules (^"7 — 10 of Fig. 4) are needed to directly handle
the residual higher-order features. These rules simply skip over each encountered
residual feature.

Lastly, during deforestation, it is possible for new (non-residual) higher-order ex-
pressions to re-appear. These can appear when the deforestation algorithm attempts
to eliminate intermediate data constructor terms which contain function-type argu-
ments. Such constructor terms are residual features that were not eliminated by the
higher-order removal method. Instead, they can be eliminated by deforestation but,
in the process, they may result in new higher-order expressions. To remove these
new non-residual higher-order expressions, we use 9~\\ of Fig. 4 to re-apply the ^
rule.

The above set of new rules have been shown in Chin (1990) not to affect the
termination property of &~. As an illustration of this extended set of 9~ rules,
consider the following higher-order program:

dec main: (list(int),int) -* list(int);
dec mapJio: (list(A -> B),A) -> list(B);
dec add Jive: list(int) —> list(int —» int);
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(7) <T
(8) ST
(9) ST
(10) T(10)
(11)*-

lambda (vi,...,vn)—> t end\=> lambda (vi,...,vn)—> 2T\i\ end
• ho-exp •••] => ^"[- • • @[ho.exp] •

where ho-exp is either a curried application or a function call
with non-accumulating non-variable function-type arguments
Fig. 4. Additional !T Rules for higher-order programs.

— main(xs,y) <= 9~[mapJio(addJive(xs),y) ]
— main(nil,y) <= 9~[mapJio(nil,y) ]

<^3T[nil] ;2T2
<= nil

— main(cons(x,xs),y) <= ST[mapJio(cons(\ambda z —» z+5*x end,addJive(xs)),y) ]

<= 3~[cons(lambda z —> z+5*x end (y),mapJio(addJive(xs),y)) ]
\2T2

<= cons(2T[lambda z —* z+5*x end(y) ]
,ST [map.ho(addJive(xs),y) ]) ;ST\ 1,5«

<= cons(3~ [y+5*x ],main(xs,y)) ;ST\,2M
<= cons(y+5*x,main(xs,y))

Fig. 5. An Example of higher-order deforestation.

—main(xs,y) <= mapJio(addJive(xs),y);
—mapJio(nil,y) <= nil;
—mapJio(cons(f,fs),y)<= cons(f(y),mapJio(fs,y));
— addJive(nil) <= nil;
— addJive(cons(x,xs)) <= cons(lambda z —* z+5*x end, addJive(xs));

This program contains a function, addJive, which builds up a list of functions
and another function, mapJio, which applies each function from its list of functions
(as its first parameter) to its second parameter. The above program is already in
the HO-specialised form. Using the new (higher-order) deforestation algorithm, the
intermediate list (of functions) from main can be removed by transforming main to
the following first-order function:

—main(nil,y) <= nil;
—main(cons(x,xs),y) <= cons(y+5*x,main(xs,y));

The transformation steps to achieve this is illustrated in Fig. 5. Notice the in-
vocation of rule ^"11 in order to remove a new higher-order expression that has
re-appeared.

Wadler (1988) has also considered higher-order extension for deforestation. How-
ever, his solution is not general, as it relies on a restricted higher-order facility, called
higher-order macro, whose use must be converted to first-order equivalent before de-
forestation. Higher-order macros essentially correspond to higher-order functions
with fixed function-type parameters that do not change across recursion. They can
neither return function-type results, nor support constructor terms which contains
functions. The advantage of the higher-order macro scheme is its simplicity, but it
requires the user to adopt a restricted higher-order language.
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7 Are the syntactic criteria adequate?

Our generalisation of the deforestation algorithm relies primarily on sufficient syn-
tactic properties for classifying producers and consumers as either safe or unsafe.
The advantage of using syntactic (as opposed to semantic) properties is that they are
simple. However, there is also a potential danger that these properties can be easily
changed via seemingly harmless syntactic manipulations! This section presents some
real, as well as perceived, dangers posed by syntactic differences in our program, and
shows why they may not be so serious after all. Nevertheless it must be noted that
the syntactic criteria proposed in this paper are based on safe approximations. They
do not detect all possible opportunities for effective fusion, merely a sub-class of
them. In fact, section 8 contains further techniques which could be used to uncover
more opportunities for safe fusion. These could be considered as enhancements to
compensate for the inadequacies of our simple syntactic analysis scheme.

In an earlier work by the author (Chin, 1990, 1991), unsafe producers were
syntactically changed to pseudo-safe equivalent. This was done by using the let
construct to abstract out each sub-term (unsafe recursive call) that did not conform
to the e-treeless form. As an example, the revJlatten function can be converted to this
pseudo-safe form, by extracting out the recursive revJlatten call with let, as shown
below:

— re vJla tten (nil) <= nil;
— revJlatten(cons(as,ass)) <= let v= revJlatten (ass) in append(v®',as®c);

The newly introduced let construct is not allowed to be substituted by deforesta-
tion. In addition, new rules (for deforestation) must be added to handle this let
construct. With these additional considerations, the original unsafe producer now
appears pseudo-safe. In particular, notice that the two safe arguments of the append
call are now variables. The new function definition is e-treeless even after it has been
regarded as a safe producer. It can therefore be unfolded safely as a producer but
this will not result in real fusion. This is because the pseudo-safe sub-term will be
abstracted by the let construct, rather than eliminated, during deforestation. Apart
from the added complication of a new let construct, a minor problem of pseudo-safe
sub-terms is that they tend to result in larger transformed programs. Another prob-
lem of the let construct is that it is not compatible with an improvement technique
which uses laws to handle unsafe producers (see section 8.6).

Similarly, let constructs can also be used to trivially convert non-linear and/or
accumulating parameters to linear and non-accumulating parameters. This results
in pseudo-safe consumers but does not cause any further effective fusion.

Simple syntactic changes can also convert safe consumers or producers to equiv-
alent pseudo-unsafe ones. This is more alarming because less fusion than ought
to, may occur! A very simple syntactic change is to use the identity function,
---id(x) <= x, to wrap around appropriate sub-terms; so that safe producers be-
come pseudo-unsafe, or non-accumulating parameters become accumulating. An
example of this is the following modified definition of double which is now a
pseudo-unsafe producer and has a pseudo-unsafe consumer:

— double(nil) <= nil;
— double(cons(a,as)) <= cons(2*a,id(double(id(as)));
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Fortunately, the extended deforestation algorithm is able to remove these simple
wrapping functions by direct unfoldings (using 2T\d). This is done during the
transformation of each of the functions. As the static properties are analysed after
each function's transformation, these simple wrapping functions do not cause any
real problem.

However, more elaborate wrapping functions that are g-type, such as the one
shown below, can cause problems to our algorithm:

— id (nil) <= nil;
— id(cons(x,xs)) <= cons(x,xs);

Unlike non-recursive /-type function calls which could be directly unfolded by
rule 9~Aa, there is presently no equivalent rule to directly unfold non-recursive g-type
function calls. As a result, our current algorithm is unable to cope with these more
elaborate wrapping functions. Given the rather contrived technique used to deceive
the algorithm, this is a shortcoming we could tolerate. (Nevertheless, some enhanced
techniques in section 8 for handling g-type functions could overcome even these
more elaborate wrapping functions.)

Another potential problem of the syntactic criteria is that they rely heavily
on the use of pattern-matching equations. However, most functional languages also
support conditional expressions, together with the associated programming style. For
example, the double function can be expressed in the conditional style as follows:

---double(xs) <= if(null(xs), nil, cons(hd(xs)*2,double(tl(xs))));
— tl(cons(x,xs)) <= xs ;
— hd(cons(x,xs)) <= x ;
— null (nil) <= true ;
— null(cons(x,xs)) <= false ;
— if(true,x,y) <= x ;
— if(false,x,y) <= y ;

The conditional construct, if, is defined as a function using pattern-matching
equations instead of a language primitive. Similarly, functions to manipulate the
list structure, such as hd, tl and null, can be defined using equations. A noticeable
concern is that this alternative definition of double now has the syntactic form of
both an unsafe producer and an unsafe consumer! Does this means that we have to
change our syntactic criteria or can we change this function back to the earlier safe
form? Fortunately, it is still possible to transform the above definition of double back
to its earlier safe form. This is so because null is a safe producer and the parameters
of if are safe consumers. However, because of the renaming procedure (to rename
the multiple variables of xs), the deforestation algorithm would initially obtain the
following:

— double(xs) <= double'(xs,xs,xs)
— double'(nil,ys,zs) <= nil;
— double '(cons(x,xs),yx,zs) <= cons(hd(ys)*2,double(tl(zs)));

The renaming procedure was introduced to help ensure safe fusion for re-curring
expressions. However, in the above example, the expression used to define the
intermediate function double' did not re-occur (no fold back to double' occurred).
Hence, this intermediate function is not actually needed but we presently do not
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have a way of predicting this in advance. In section 8.3, we shall introduce a post-
processing technique to enhance safe fusion by removing unnecessary intermediate
mutual recursion. In the above example, the double' call could be eliminated by a
direct unfold (followed by further transformation) to obtain the following:

— doublefnilj <= nil;
— double(cons(x,xs)) <= cons(x*2,double(xs));

Hence, the extended deforestation algorithm and its associated enhancements
could help us convert some (unsafe) conditional-style functions to the (safe) pattern-
matching form.

8 Further improvements

Further improvements to our safe fusion method are possible. These improvements
can help remove more intermediate data structures from user programs. In the last
section, we saw that the syntactic criteria used are merely approximations which
conservatively estimate where safe fusion is possible. There are therefore scope for
further improvements.

One obvious avenue for improving fusion is to improve the analysis scheme so
that more producers/consumers can be classified as safe. Specifically, we could
try to formulate a semantic-based analysis rather than the syntactic one that was
presented. However, this could complicate the fusion method and may also involve
significant changes to the transformation algorithm.

To keep things simple, we will adhere closely to the current syntactic analysis and
instead use new transformation and re-annotation techniques to help convert more
functions to safe producers/consumers. Seven of these techniques are described next.
These techniques are safe (terminates with no loss of efficiency) and deterministic
(not heuristic).

8.1 Parameter linearisation

Some non-linear pattern-matching parameters could be made safe by linearising
the parameters. This technique can be used to convert certain unsafe consumers to
equivalent safe ones. Consider the function:

dec square: list(int) —> list(int);
— square(niPc) <= nil;
— square(con^x, xs)e' }*= cons(x*x,square(xs));

The parameter of this function is presently unsafe because the auxiliary variable,
x, occurs twice in the RHS of the second equation. This makes the whole pattern-
matching parameter unsafe (accordingly annotated above), even though the main
recursive variable, xs, is linear and non-accumulating. A simple technique that can
make such a pattern-matching parameter safe (or linear) is to abstract out the
non-linear auxiliary variable with an intermediate function, call it fJnt, as follows:

— square(cons{x, xs)@c) <=• fJnt(x,xs);
s9) <= cons(x*x,square(xs));
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This linearisation technique can be applied to each non-accumulating pattern-
matching parameter that is non-linear because of auxiliary variables. Once linearised,
the pattern-matching parameter can be classified as a safe consumer for fusion
purpose. Alternatively, we could also use the let construct to abstract out each
non-linear auxiliary variable. However, this is not done here because, for exposition
purpose, we would like to keep our transformation algorithm simple by using a
smaller language without let. (Note: The intermediate function introduced here will
be marked as an essential intermediate that will not be removed by the technique
of section 8.3.)

8.2 Unfolding non-recursive g-type calls

A second possible way to obtain more safe consumers is to convert some of the
accumulating parameters to non-accumulating ones. In section 7, we showed that
some pseudo-unsafe consumers (wrapped with the id function) can be converted to
safe ones through the direct unfolding of non-recursive /-type functions. If non-
recursive g-type functions could also be unfolded in a similar way, it may result in
more safe consumers. Consider the following function, rem, which is used to return
the remainder of a list after the first n elements have been removed:

dec rem: (int,list(A)) -> list(A);
— rem(O,ys) <= ys ;
— rem(n+l,ys) <= rem(n,tl(ys)) ;

Currently, the second parameter of this function is an accumulating parameter
because it has a non-recursive g-type function call (tl) wrapped around the second
argument of its recursive call. If a direct unfold can be performed on this tl call,
there may be a chance that this parameter can be changed to a non-accumulating
one. An unfold on this tl call can be carried out as follows:

---rem(n+l,ys) <= rem(n,tl(ys)) ; !define frem & fold
<= frem(n,ys) ;

—frem(ys,n) <= rem(n,tl(ys)) ; ! unfold tl
—frem(cons(y,ys),n) <= rem(n,ys) ;

We introduce an intermediate function, called frem, before performing an unfold
on tl. Such intermediate functions are required when unfolding each g-type function
call which needs to have its pattern-matching argument instantiated. This is to
help ensure that the transformed functions remain g-type, i.e. single simple pattern-
matching parameter per function.

In addition, each non-recursive g-type function call can only be so unfolded if
it presently lies in a strict context. Consider an expression ...t... where the ellipses
represent an arbitrary context, and t is a term in the hole of the context. This
context is said to be strict if the term t will be evaluated when the whole expression
is evaluated. This requirement is needed in order to preserve the lazy semantics of
the transformed code. Specifically, if t is a non-recursive g-type call of the form
g(v,ti,...,tn), then applying an unfold on this g-type call̂ J will cause its pattern-

]̂ Unfolding a g-type call within a context has essentially the same effect as float-
ing out a case construct over a context, namely ...case v of {pi -• ti; ..; pn-» tn}... <=>
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matching argument, v, to be instantiated and thus made strict. This should only be
allowed if the g-type call is lying in a strict context; otherwise the lazy semantics of
this code may be altered (Runciman et a/.,1989).

Hence, more safe consumers can be obtained by directly unfolding non-recursive
g-type function calls that lie in strict context. This step could be selectively applied on
non-recursive g-type function calls which are the cause of accumulating parameters.

8.3 Removing unnecessary mutual recursion

Unnecessary non-recursive function calls are currently handled by &'^a (for /-type
calls) and section 8.2 (for g-type calls). Their removal by unfolding can help obtain
more efficient programs with better opportunities for fusion. Similarly, it is also
advantageous to remove unnecessary intermediate mutual recursive function calls
from the original and transformed programs.

An example of unnecessary mutual recursive /-type function is shown below:

— revJt(nil,w) <= w;
— revJt(cons(a,as),w) <= intm(as,cons(a,w));
—intm(as,w) <= revJt(as,w);

The two functions, intm and revJt, are mutually recursive. However, intm is
an unnecessary intermediate in the RHS of revJt. In this definition, the second
parameter of revJt can be considered as non-accumulating; however its original
accumulating condition has merely been transferred to the second parameter of
the intermediate function, intm. This intermediate function is undesirable because it
makes the program larger and results in only pseudo-safe form.

We shall attempt to remove, where possible, intermediate mutual recursive function
that are not self-recursive. A function definition is said to be not self-recursive if it
does not contain any calls back to itself in its RHS. For example, the function, intm,
is not self-recursive because its RHS does not contain calls to intm. Self-recursive
functions cannot be completely eliminated by unfolding because its RHS contains
another similar call. To remove the unnecessary intermediate call in the RHS of
revJt, we could perform a direct unfold on intm to obtain the following program.

— revJt(nil,w) <= w;
— revJt(cons(a,as),w) <= revJt(as,cons(a,w));
— - - intm(as,w) <= revJt(as,w);

This direct unfold results on a smaller, more efficient self-recursive revJt function.
Also, intm is now a non-recursive function. Further calls to intm by functions
higher-up in the calling hierarchy could be similarly unfolded to call revJt directly.

Some unnecessary mutual recursive functions may prevent fusion from taking
place. Consider the function:

case v of {pi -. ...ti...;..; pn-> ...tn...}. To preserve lazy semantics, this step should only be
allowed if the case construct is currently lying in a strict context. Thanks to Lennart
Augustsson for pointing this out.
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—prog(nil,w) <= w;
—prog(cons(a,as),w) <= progJnt(as,doubk(w));
— - -progJnt(as,w) <= prog(as,double(w));

When the deforestation method is applied to the above functions, the intermediate
recursive call, progJnt, will not be unfolded because it is a potentially unsafe
producer/consumer. However, this intermediate function is currently preventing a
safe sub-term, double(double(w)) from being discovered. The safe sub-term is exposed
after we apply a direct unfold on the progJnt call, as shown below:

—prog(nil,w) <= w;
—prog(cons(a,as),w) <= prog(as,double(double(w)));

This elimination of unnecessary mutual recursive /-type function calls can help us
obtain more efficient program with better opportunities for optimisation. However,
we must ensure that no large arguments are duplicated.

More formally, a /-type function call, f(t],...,tn), could be directly unfolded if it
satisfies the following:

1. There is no self-recursive / function call in the RHS of the function. This is
to avoid infinite unfolding of self-recursive functions.

2. All non-linear arguments of the call must be trivial expressions (i.e. variables
or constants). This is to avoid loss of efficiency via code duplication.

Similarly, it is also desirable to eliminate unnecessary mutual recursive g-type
function calls. As an example, consider the transformed program from section 7:

— doublefxs) <= double'(xs,xs,xs)
— double '(nil,ys,zs) <= nil;
— - - double'(cons(x,xs),yx,zs) <= cons(hd(ys)*2,double(tl(zs)));

An intermediate double' call was introduced which contains three identical occur-
rences of the variable xs. This intermediate g-type function is currently contributing
to the accumulating condition of the parameter of double. As this call is lying in a
strict context, we could perform a direct unfold to eliminate the unnecessary inter-
mediate function and at the same time propagate the multiple variable xs forward.
Doing so results in the following:

— double(nil) <= nil;
— double(cons(x,xs)) <= cons(hd(cons(x,xs))*2,double(tl(cons(x,xs)));

After unfolding away the hd and tl calls, we obtain a double function which is

both a safe producer and has a safe consumer.
In general, it is advantageous to eliminate a mutually recursive g-type function

call, g(v,ti,...,tn), if one or more of the following extra conditions are present.

1. The to-be-instantiated variable v occurs more than once. This condition can
facilitate further optimisation as shown above.

2. One or more of the safe arguments of tj,...,tn must be non-trivial. This
condition could help reveal safe sub-terms which are hidden by the mutual
recursion.

3. The g-type call is lying in a strict context. This allows the removal of an
intermediate g-type function call by direct unfolding.
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8.4 Re-annotating unsafe producers

Presently, a function is considered to be an unsafe producer if it has obstructing
function calls (see section 4.3.2 for a definition) that contain some recursive producer
calls as their safe arguments. Such a producer is unsafe because there is a chance
that the obstructing function calls may be accumulated during transformation
(since pattern-matching equations cannot consume them). However, the wholesale
treatment of functions with obstructing calls as unsafe producers may be more
stringent than necessary. This is because some consumers may disregard certain
parts of unsafe producers. To illustrate this phenomenon, consider the following
unsafe producer:

dec fp: list(int) -» list(int);
— fp(nil) <= nil;
— fp(cons(a,as)) <= cons(sum(fp(as)),fp(as)) ;

This function is an unsafe producer because one of its recursive calls is lying
in the safe consumer of sum. Hence, the sum function call is an obstructing call
that may be accumulated when fp is used as a producer. However, some consumers
may actually bypass the obstructing calls and avoid the accumulation of these calls
during fusion. As an example, consider another function:

dec lfp,length: list(int) —» int;
— - - lfp(as) <= length(fp(as)) ;
---length (nil) <= 0;
— length(cons(x,xs)) <= l+length(xs);

In the RHS of the Ifp function, the length function call is nested with the unsafe
producer, fp. According to our annotation scheme, this nesting is unsafe to fuse.
However, this is not quite true because the length call will actually ignore the ob-
structing sum calls from fp during fusion. Application of the deforestation algorithm
to the above function results in the following fused function:

---lfp(nil) < = 0 ;
— lfp(cons(a,as)) <= l+lfp(as) ;

This example suggests that it may be too conservative to label the whole function
as an unsafe producer so that its definition become e-treeless. On closer inspection,
it is the obstructing function calls which are the principal cause of non e-treeless
form. If we can change the annotations on these obstructing function calls, we
may change the unsafe producers to safe ones. In fact, this can be very simply
achieved by annotating all occurrences of obstructing calls as unsafe producers and
unsafe consumers. (This treatment makes them look like constructors which cannot
be consumed. Primitive functions are also treated in this way.) The idea of this
re-annotation is to prevent these obstructing calls from being fused with the outer
calls (the consumers) as well as the inner calls (the earlier unsafe producers). This
indirectly prevents the accumulation of obstructing calls during fusion. To mark
these calls uniquely, we place a small o subscript on each obstructing function call.
With this suggestion, the earlier function fp can be re-annotated as follows:

— fp(nil) <= nil;
— fp(cons(a,as)) <= cons( sumo(fp(asfcf',fp(as)) ;
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An intended consequence of this re-annotation is that the fp function is now e-
treeless even when it is regarded as a safe producer. This re-annotation technique can
be applied to all functions which were originally unsafe. Instead of marking these
functions as unsafe, the re-annotation technique has transferred the unsafe markings
to the obstructing function calls. In this way, all the original unsafe producers can
now be made safe. We call these re-annotated functions (which contain obstructing
calls) the re-annotated producers.

The re-annotation technique requires a small but fundamental change to the
original annotation scheme. In our initial monovariant scheme, the producer and
consumer annotations are associated with each function definition so that all calls to
the same function have identical annotations. However, with this new re-annotation
technique, our scheme has to be generalised to a polyvariant scheme that permits
different annotations for distinct function calls. In particular, the obstructing calls
might be annotated differently from that suggested for their function definitions.

This re-annotation technique is useful because re-annotated producers can now be
safely unfolded as producers. In some cases (e.g length(fp(as))), more real fusion may
result. In other cases, the obstructing calls may stand in the way of outer consumers
but the transformation algorithm will still terminate. One possible disadvantage is
that the transformed program may be larger than before, but no loss of efficiency
(measured in terms of reduction steps) results.

8.5 Fusion within re-annotated producers

Re-annotated producers contain obstructing function calls. Occasionally, it may be
possible to remove these obstructing calls by the fusion method itself, in order to
obtain genuine safe producers. The obstructing function calls are nested with unsafe
producers. We could apply the deforestation algorithm to such nested compositions
in an attempt to fuse them. If the attempt succeeds, then the obstructing calls will
disappear; otherwise some obstructing calls may still be present.

An example of this is the earlier function fp with sum as its obstructing call. We
could make a tentative attempt to remove this obstructing call by safe fusion. If the
attempt succeeds, we keep the new program. If it fails, we revert back to the original
form of the re-annotated producer.

To make this fusion attempt on fp, we initially define a new function containing
a composition of the obstructing function (without the unsafe annotations) and the
re-annotated producer, as follows:

— nfp(as) <= sum(fp(as)) ;

Safe fusion is then applied to see if all obstructing calls can be removed. In the
above case, the new function which results, shown below, do not contain any more
obstructing calls.

---nfp(nil) <=0;
—nfp(cons(a,as)) <= nfp(as) + nfjp(as) ;

As a result, we allow this fusion to be committed by applying a fold to the body
of fp, as follows.
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- fp(cons(a,as)) <= cons(sum(fp(as)),fp(as)) ;
<= cons(nfp(as),fp(as));

This technique of fusing the obstructing calls with the re-annotated producers may
succeed or fail. Successful fusion results in new producers without the obstructing
calls. Such safe producers could help facilitate more fusion. An important character-
istic of this technique is that it is decidable and terminating. It is decidable because
success or failure is solely determined by the absence or presence of obstructing
function calls in the final transformed program. This can be syntactically deter-
mined. It is terminating because it is based on the extended deforestation algorithm
which has already been shown to terminate.

8.6 Laws for re-annotated producers

Another way to improve the fusion method is to make use of laws, in addition to the
equations of user-defined functions. Laws can help improve fusion by allowing some
of the (remaining) re-annotated producers to be successfully fused as producers.
Consider the program:

data tree(A) = leaf (A) ++ node(tree(A),tree(A));
dec sizet: tree(A) —> int;
dec Batten: tree(A) -* list(A);
---sizet(f>c) <= length(flatten(t));
---Mtten(leaf[af') <= cons(a,nil);
---Batten(node(lt,rtfe) <= appendo(Hatten(lt),flatten(rt));

Presently, the expression length(fiatten(t)) cannot be effectively fused. The reason is
that obstructing append0 function calls (produced by flatten) cannot be consumed by
the pattern-matching equations of the outer length call. Applying the deforestation
algorithm to the RHS of sizet could only result in the following program:

- - - sizet(leaf\af<) <= 1+0;
- - - sizet(node{lt, rifc) <= length(appendo(n"atten(lt),flatten(rt));

Notice that pattern-matching equations can consume constructors but not ob-
structing function calls. However, laws do not have this inhibition. In fact, most
laws (on user-defined functions) can be viewed as rewrite rules which happily con-
sume functions! An example is the following distributive law of length:

length (append (xs,ys)) = length (xs)+length(ys)

This law can be used as a rewrite rule to replace an expression matching the
LHS by its RHS. Used in this manner, it can be viewed as an equation of length
whose linear and non-accumulating parameter, append(xs,ys), is a safe consumer of
append calls. Consequently, it can be used to successfully fuse function length with
any producers with obstructing append calls. In particular, this law can be used to
transform sizet to the following more efficient function:

- - - sizet (lea f(a)) <= 1+0;
- - - sizet(node(lt,rt)) <= sizet(lt)+sizet(rt);

Laws on user-defined functions can either be provided by users (in the same way
as equations are provided) and/or be derived via some synthesis techniques (see
Chin, 1992b, for a method to synthesize distributive laws). Given that these laws
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can be made available, we simply have to add them to the set of equations used
to perform unfolding. In particular, these laws will be used by rule STZ, with the
obstructing function calls taking the place of constructors. The termination property
of our transformation algorithm is not compromised, as long as we ensure that the
RHS of laws are e-treeless (with constant) in form. This can be assured by applying
the deforestation algorithm and appropriate annotations to the laws themselves!

This improvement technique using laws may not work if the pseudo-safe let
construct (illustrated in section 7) was used to capture the re-annotated (unsafe)
producers. This is so because folding transformation step might be hindered by let
construct.

8.7 Re-annotating unsafe consumers

The re-annotation and associated techniques for handling unsafe producers (sec-
tions 8.4, 8.5, 8.6) could also be applied to unsafe accumulating parameters, in order
to make them safe. In particular, one of the reasons for marking a parameter as
unsafe is to avoid the possibility of accumulating sub-terms during transformation.
However, this annotation can be transferred to the accumulator (c.f. obstructing
call) rather than the parameter to stop the accumulation.

As an example, the parameter of the following fuse function from Dijkstra (ex-
pressed using even/odd view of integer) is currently an accumulating parameter:

data bint = zero ++ one ++ even(bint) ++ odd(bint);
dec fuse : binint —* int;
dec succ : binint —> binint;
— fusc(zero) <= 0;
— fusc(one) <= 1;
—fusc(even(n)) <= fusc(n);
— - - fusc(odd(n)) <= fusc(succ(n))+fusc(n);
— succ(zero) <= one;
— succ(one) <= even(one);
— succ(even(n)) <= odd(n);
— succ(odd(n)) <= even(succ(n));

Ignoring the linearity criterion for the moment (which does not affect non-
termination), this parameter can be made safe by marking the accumulator, succ, as
an unsafe function call, as shown below. (A non-linear parameter may duplicate sub-
terms during transformation. However, if the duplicated sub-terms are eventually
eliminated, no loss of efficiency results in the final program.)

— fusc(odd( n)9) <= fusc(succo{ nec)@p )+fusc(n);

Such a re-annotation helps to localise the unsafe marking to the accumulator
rather than the parameter. Notice that the above function remains e-treeless even
after the accumulating parameter is considered as safe.

A good thing about the re-annotated consumer is that we can now attempt to
remove the accumulator by safe fusion! In a similar technique to section 8.5, we
could define a new function, called sfusc, where fuse is nested with succ:

— sfusc(n) <= fusc(succ(n));
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Applying the fusion procedure to this new function results in a transformed
function which no longer has the accumulator, as follows.

— sfuscfzero) <= 1;
— sfusc(one) <= 1;
— sfusc(even(n)) <= sfusc(n)+fusc(n);
— sfusc(odd(n)) <= sfusc(n);

The original accumulator in fuse could now be removed by folding with sfusc. The
transformed function's parameter is now non-accumulating and could be fused with
any safe producer. Similar to the technique for re-annotated producers, this removal
of accumulators works for only a sub-class of functions but it is decidable.

Laws can also be used to help remove accumulators. This could result in either
total elimination of accumulators or the replacement of one accumulator by another
(hopefully cheaper one). Consider a function f where there is an accumulator, called
ace, in one of its parameters.

This accumulator can be absorbed by safe fusion transformation if laws of
the form, shown below, exist. Examples of such laws include acc(acc(x))=acc(x) for
idempotent functions.

accPfv) = accPfv) where n> m

Alternatively, if this function is used in an expression, like f(..,g(v),..X and laws
of the form shown below exist, then we could successfully fuse the nested f and g
function calls.

acc(g(v)) = g(acc2(v))

In the process, a new accumulator acc2 may be introduced which is hopefully
cheaper than the original accumulator, ace. Some automatic complexity analysis
methods for functional programs (such as Sands, 1990) could be used to help decide
if it is advantageous to replace an old accumulator with a new one.

9 Related work

Over the years, there have been a number of different proposals for techniques which
can remove unnecessary intermediate data structures from user programs. These
proposals differ in name, scope, sophistication and the extent of their automation.
Some of these techniques are briefly described and compared below.

One of the earliest proposal is given in the seminal paper by Burstall & Darlington
(1977), where loop combination (fusion) of programs was shown as a transformation
encompassed under the unfold/fold framework for optimising functional programs.
The unfold/fold framework is very general but the transformation examples given
(at that time) are largely handcrafted. Subsequently, Martin Feather (1982) built a
system, called ZAP, which was able to derive low-level unfold/fold transformation
sequences from higher-level pattern-directed transformations given by the users.
The pattern-directed transformation contains a number of ways for expressing the
desired target program form. They can be used to express certain transformations
covered by the tupling, generalisation and composition (fusion) tactics. One large
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example illustrated was the transformation of a multi-pass compiler into a two-pass
compiler for a toy language. However, these pattern-directed transformations have
to be manually specified. Our work is based on the same unfold/fold framework
but we have now developed an automatic transformation algorithm for the fusion
(with generalisation) tactic.

The predecessor of Wadler's (1984, 1985) deforestation is the listless transformer
(1984; 1985). The first listless transformer (Wadler, 1984) is a semi-decision procedure
which could convert each recursive program with bounded evaluation property (needs
bounded internal storage to perform computation) to an equivalent listless machine
(c.f. flowchart schemata with finite number of states). This transformer was able to
eliminate intermediate lists (including list of lists) and achieve the effect of tupling
transformation to eliminate multiple traversals of lists (from non-linear parameters).
A subsequent modification to obtain a decision procedure (Wadler, 1985), requires
programs to be also pre-order (single traversal of inputs and production of outputs
in a left-to-right manner). Given two pre-order listless functions g and / , the new
listless transformer is able to automatically generate a new pre-order listless function
for their composition, g o / where o is the function composition operator. The pre-
order requirement rules out certain programs which return more than one lists. As
a result, tupling transformation (possible in the earlier listless transformer) is now
prevented from happening. The extended deforestation algorithm is also a decision
procedure. It is able to eliminate data structures apart from lists (e.g. trees) and
selectively apply generalisation to avoid fusing subterms that are unsafe. In addition,
the transformed program is in the source language and can thus be more easily
subjected to further transformation. However, tupling capability (which requires
non-linear parameters to be handled) is not present. This is not necessarily a bad
thing if one considers the advantages of modularisation for program transformation.
In particular, the tupling tactic can be formulated separately. In Chin (1990), we
presented a range of transformation tactics (e.g higher-order removal, tupling and
fusion) which are more convenient to specify individually. Some of these tactics
have been appropriately combined (e.g. fusion and higher-order removal) to achieve
better transformation. Other combinations of tactics (e.g. fusion and tupling) are
still under investigation.

The predecessor of listless transformer is Turchin's supercompiler (1986). Here,
driving (unfold using normal-order strategy) and generalisation techniques are used
to obtain finite graphs of configurations (or states) from the symbolic evaluation of
user programs. The graphs of configurations obtained are then used to compile more
efficient programs. Turchin's supercompiler is basically a program specialiser which
can perform both fusion and partial evaluation transformations. It is based on the
REFAL language which is first-order and uses a special list data structure that could
be accessed from both ends. While we have relied on a simple off-line generalisation
technique (using an annotation scheme which is able to identify unsafe sub-terms),
Turchin made use of sophisticated techniques which look back at the history of
configurations in order to perform on-the-fly (or on-line) generalisation. The off-line
strategy is simpler to implement, but the on-line strategy could potentially discover
more opportunities for fusion. In particular, the on-line strategy does not require
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renaming to be performed during fusion (unless generalisation is forced). As a result,
it could sometimes perform both fusion and the elimination of multiple traversals
of common variables. As an example, consider the program:

— mainl(xs) <= zip(double(xs),double(xs));
— zip(cons(x,xs),cons(y,ys)) <= cons((x,y),zip(xs,ys));
---zip(xs,ys) <= nil;

The supercompiler could transform the mainl function to the following equivalent
where both intermediate data structures and multiple traversal of the variable xs are
eliminated:

— mainl (cons(x,xs)) <= cons((2*x,2*x),mainl(xs));
— mainl (xs) <= nil;

Our fusion method is not able to perform such a combined transformation because
it is used solely for the elimination of intermediate data structures. (A different
transformation method, called tupling (Chin, 1993) will be needed to eliminate
multiple traversals of data structures.) However, the power of the on-line strategy is
dependent on the generalisation technique used. The on-line generalisation proposed
by Turchin (1988) maintains a sequence function calls encountered for each step
of supercompilation. This sequence of encountered calls, say gig2-gn, corresponds
to the nesting of g-type calls of the form, g/(g2(- -gn(c, ..)•••,..),..), where c is a
call that is about to be unfolded by normal-order evaluation. Turchin showed
that supercompilation will terminate if generalisation is performed whenever the
current sequence of g-type calls encountered is a sub-sequence of some previous
configuration. However, this strategy may generalise pre-maturely for certain types of
programs. In particular, functions with swapping parameters may not be successfully
fused by the on-line strategy. As an example, consider the program:

—main2(xs,ys,zs) <= fswap(xs,p(ys),q(zs));
— fswap(nil,ys,zs) <= ..ys..zs...;
— fswap(cons(x,xs),ys,zs) <= cons(x,fswap(xs,zs,ys));

The on-line generalisation strategy proposed in Turchin, (1988) is not able to
fuse the RHS of main2. The reason for this is that a pre-mature generalisation
has occured because the sub-sequence of encountered calls does not include p and
q. In contrast, our off-line strategy will detect that the two swapping parameters
are non-accumulating and could therefore contain arguments that are safe to fuse.
Hence, Turchin's on-line generalisation strategy is better in some aspect but worse
in others, when compared to our off-line generalisation strategy.

Recently, Richard Waters (1991) has proposed a transformation technique for
fusing expressions using series (various sequences, e.g. vectors, lists, which may
be unbounded) so that unnecessary intermediate series data structures could be
eliminated. He identified a sub-class of expressions which could be transformed,
namely those which are statically analyzable, pre-order and on-line cyclic. Water's
technique cannot handle tree-like structures (including sequence inside sequence).
However, the on-line cycle restriction allows fusion of functions which take multiple
inputs originating from common variables (thus, forming cycles) with the on-line
characteristic (lockstep production of one output for every input consumed). This
has the same effect as fusing multiple-inputs functions composed with a set of
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synchronizable producer calls. The pre-order restriction is more limiting that the
safe-unsafe criteria of our generalised deforestation, but the on-line cyclic restriction
is something extra. An example of this is the expression zip(double(xs),double(xs)) of
function mainl above where all the three function calls used are on-line (i.e. produces
one output for every input consumed) and the common xs forms a cycle. Direct
fusion of such expressions has the same effect as combining the tupling and fusion
transformation together (see Chin & Khoo, 1993).

Another related area is partial evaluation (Consel, 1990; Bjorner et al., 1988; Jones
et al., 1989). The primary mechanism used in partial evaluation is the specialisation
of function calls which have some or all of their arguments known (or partially
known). (A known argument is a grounded term without any free variables.) Such
calls can be transformed to equivalent but more efficient functions which exploit
the context of their known arguments. Traditionally, an analysis technique called
binding-time analysis (Jones, 1988) has been used to analyse functions to find out
which of the arguments are known or unknown (also called static vs. dynamic).
However, this analysis cannot be used to guarantee the termination of the partial
evaluation process itself. Lately, Hoist (1991) has proposed an additional analysis,
called finiteness analysis to determine which known arguments can preserve the
termination property of partial evaluation. This analysis is used to identify in-situ
non-increasing parameters which can be viewed as a semantic derivative of our syn-
tactic non-accumulating criterion. Presently, Hoist's analysis is only applicable to
strict, first-order functional languages. In contrast, our safe fusion scheme (using
syntactic analysis) is applicable to lazy, higher-order languages. It will be interesting
to see if similar semantic analysis can be formulated for lazy and/or higher-order
languages. Whilst partial evaluation specialises the known or partially known argu-
ments, the deforestation technique appears to be more general as it also specialises
symbolic arguments which are unknown. (Symbolic arguments refer to arguments of
non-trivial expressions which may have free variables.) However, partial evaluation
also employs reduction and simplification techniques which are currently ignored by
deforestation.

Recently, Proietti & Pettorossi (1991) formulated a transformation procedure,
called the elimination procedure (in short), for eliminating unnecessary variables
from logic programs. This procedure is based on an iteration of unfold, define
followed by fold steps and uses a syntactic criterion for clauses, called non-ascending
criterion. This criterion is very similar to our linear, non-accumulating parameter
criterion but was independently discovered at about the same time (for different
languages). The non-ascending criterion is applied to the whole clause rather than
to individual parameters. Those clauses which do not satisfy this criterion could be
made to do so by parameter extraction/generalisation.

One interesting aspect of the elimination procedure is that it does not need a
separate analysis for producers. This is so because in logic programs, parameters
of relations could be used for both input and output. However, though relations
are more general than functions, certain transformations are not possible without
functional mode analysis. For example, the procedure to eliminate redundant calls
(for tupling transformation) in Proietti & Pettorossi (1991) requires this analysis.
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10 Conclusion

The basic idea of annotating terms, in order to distinguish between sub-terms
which can be eliminated from those sub-terms which cannot, is essentially similar to
Wadler's blazing technique. Our main contribution is the extension of deforestation
so that it is applicable to a much wider range of expressions. This extension is
made possible by the adoption of the producer-consumer view of functions and
the discovery that syntactic properties could be used to classify functions and their
parameters into either safe or unsafe producers and consumers. This discovery
led to the use of a double annotation scheme to identify safe sub-terms which
could be fused. It allowed us to apply deforestation to all first-order programs.
In addition, with the help of another transformation technique, called higher-order
removal, we are able to extend deforestation to all well-typed higher-order programs,
and thus have more intermediate terms eliminated. Furthermore, we are also able
to improve deforestation even further by augmenting the syntactic analysis with
additional improvement techniques. These techniques help us obtain more cases of
safe consumers and safe producers.

Like Wadler's original deforestation algorithms, our extension remains fully au-
tomatic and is guaranteed to terminate. As a result, it is very suitable for use in the
optimisation phase of any purely functional language compiler.

Much further work remains to be done in the area of safe fusion. One immediate
task, currently being undertaken, is to implement the above generalised deforestation
algorithm into a functional language compiler. When completed, we shall be able
to measure the improvements provided by this optimisation in terms of average
reductions in processor and storage utilization. We shall also be measuring the
cost of this optimization, in terms of time taken to perform the transformation
together with new code sizes of transformed programs. Code size is of particular
concern because it is theoretically possible to get exponential increase with certain
types of programs. However, we suspect that this would only happen with contrived
programs. More formal analysis to identify speed-up achievable together with time
complexity of the transformation algorithm could also be done.

Another possible avenue for future work is to enhance the safe fusion method even
further. Two immediate areas which could be looked at are better analysis techniques
(perhaps using semantic-based ones) together with methods for combining fusion
with tupling. These improvements are likely to make safe fusion even more attractive.
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