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1. Introduction. Let X be a completely regular Hausdorff space. A Nachbin family
of weights is a set V of upper-semicontinuous positive functions on X such that if u,v e V
then there exists w e V and t > 0 so that u, v^tw. For any Hausdorff topological vector
space E, the weighted space CV0(X, E) is the space of all £-valued continuous functions
/ on X such that vf vanishes at infinity for all v e V. CV0(X, E) is equipped with the
weighted topology cov = (»V{X, E) which has as a base of neighbourhoods of zero the
family of all sets of the form

N(v, W) = {/ e CV0(X, E) : vf(X) c= W},

where v e V and W is a neighbourhood of zero in E. If E is the scalar field, then the space
CV0(X, E) is denoted by CV0(X). The reader is referred to [4,6,8] for information on
weighted spaces.

The approximation by functions with finite dimensional ranges is a very important
problem while studying spaces of vector-valued functions. It is well known that if X is
locally compact and E is locally convex, then the algebraic tensor product CV0(X) <8> E is
eov-dense in CVQ(X, E). (CV0(X) <8> E is the subspace of CV0(X, E) spanned by the
functions of the form ip <8> e (V ® e(x) = ty(x)e), where xp e CV0(X) and e eE.) In fact
CC(X) <8> E is dense in CV0(X, E), where CC(X) is the space of functions whose supports
are compact. If E is not locally convex then, though it is possible to prove a)v-density of
CV0(X) <8> E in CV0{X, E) making some restrictions on A' or E (see [3,4,9]), the
approximation problem is open.

In this paper we consider a "convexified" version of the approximation problem. We
prove that if X is locally compact then CV0{X) <8> E is always weakly dense in CV0(X, E).
This implies that CV0(X) <8> E is dense in CV0(X, E) equipped with the locally convex
topology coy associated to a>v (i.e., the strongest locally convex topology on CV0(X, E)
which is weaker than (ov). Moreover, we show that a)c

v(X, E) coincides with the topology
induced on CV0(X, E) by the weighted topology cov(X, Ec) of the space CV0(X, Ec),
where Ec is the locally convex space associated to E. Using this last result we obtain a
representation of a>v-continuous linear functional on CV0(X, E).

Let us note some special cases which are covered by our results.
(a) If V = {Xx}> where Xx 1S the characteristic function of X, then CV0(X, E) is the

space of all continuous functions vanishing at infinity and cov is the uniform topology. If X
is compact, then the weak density of C(X) <8> E in C(X, E) was proved by N. J. Kalton

[2]-
(b) If V is the set of all non-negative upper-semicontinuous functions on X which

Glasgow Math. J. 31 (1989) 59-64.

https://doi.org/10.1017/S0017089500007540 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007540


60 MAREK NAWROCKI

vanish at infinity, then CV0(X, E) is the space of all bounded continuous functions and (ov

is the strict topology. This case was studied in my earlier paper [6].
It is worthwhile to note the following two examples.
(c) If V = {XK • K is a compact E AT}, then CV0(X, E) is the space of all continuous

functions from Xto E and a>v is the compact-open topology.
(d) If X = W, V = {|p| : p is a polynomial}, then CV0(X, E) is the space of functions

rapidly decreasing at infinity.

2. Convergence with respect to submeasures and weights. Throughout this paper
we will denote by Z{X) the family of all zero and by cZ(X) the family of all cozero
subsets of a completely regular Hausdorff space X. B{X) is the algebra generated by
Z(X) and 1{X) is the set of all continuous functions on A'with values in the interval [0,1].
We refer to [1] for information on zero and cozero sets.

If/is a scalar or vector-valued function on X and U e cZ(X), then F «U means that
there exists a Z e Z(X) such that N(f) c Z c £/, where N(f) = {x : f(x) * 0 } . For a subset
A of X we write A « U if XA « U, where XA is the characteristic function of A.

Let S(X) be the family of all set functions m : cZ(X)-* [0, oo] satisfying:
(51) m(0) = O,
(52) m(ai)«/i!(I/2)if l / ,c{/2 ,
(53) m(f/! U U2) « m ^ ) + m(U2),
(54) for every U e cZ(X) and an £ > 0 there is a Z e Z{X) such that Z c U and

It easily follows from (S1)-(S4) that the family of all subsets of X satisfying

for every £ > 0 there are U e cZ(X) and Z e Z{X)
( ' such that Z c B c [ / a n d m(U\Z)« £

is an algebra containing Z(X). Therefore, (*) holds for any set B belonging to B(X).
The family S(X) appears naturally while studying continuous linear functionals on

CV0(X, E). Indeed, we have the following result.

LEMMA 2.1. Let N = N(v, W) be an (ov-neighbourhood of zero in CV0(X, E), where
W is balanced. If T is a linear functional on CV0(X, E) which is bounded on N, then the
function m defined on cZ(X) by

m(U) = sup {\Tf\:fsN,f«U}

belongs to S(X).

Proof. Properties (SI), (S2) are obvious. We shall show that m satisfies (S3).
Fix Uu U2ecZ(X), e>0 and feN such that N(f)cZc UxU U2, for some

Z e Z{X). vf vanishes at infinity so there is a compact subset Ke of X such that
vf(X\KE) c eW. Let K = ZnKe. t/, is a cozero set, so we can find a function tyt e I(X)
such that N(\pj) = Uh i = l,2. K is compact, so inf{(i/>,:V il>2)(x) • x e K} = a >0. Let

\ \ * = 1,2, and Vo -=hxx- (hxx A VI A ^2). Moreover, let
for i = 0,l,2. We define / , : = # , / for i = 0,1,2. Then
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/ =/o+/i +fi, fi G N, fi« Ui for i = 1,2 and /„ e eN. Therefore,

\Tf\ ^ |r/o| + |r/,| + |r/2| *£ e8 + m(Ux) + m(U2),

where 6 = sup{|T/| :f eN}. This implies (S3).
If (S4) fails to be true then for some £ > 0 we can find, by induction, a sequence

{/„} c N such that N(fn) D N(/m) = 0 for n * m and Tfn > e, n,m = 1, 2, . . . . However,
the functions gn : = fx + . . . +/„, neN, belong to TV and Tgn > en. This means that T is
unbounded on N. The proof is finished.

If meS(X) we denote by m* the outer measure defined on X by m; i.e.,
m*(A) = inf {m(f/) : U e cZ{X), A « U} for AczX.

Let us fix a Nachbin family of weights on X. We denote by pv the vector topology on
CV0(X, E) which has as a base of neighbourhoods of zero the family of all sets of the form

M{m, v, W, e) = {fe CVQ{X, E): m*({x e X : vf(x) $ W}) ^ e},

where m e S(X), v eV, W is a balanced neighbourhood of zero in E and e > 0.
Let yv be the strongest vector topology on CV0(X, E) which is weaker than fiv on all

e<v-bounded subsets of CV0(X, E).

LEMMA 2.2. Let T be such a linear functional on CV0(X, E) that lim Tfa = 0for every

net {fa} c CV0(X, E) which is cov-bounded and fiv-convergent to zero. Then T is
Yv-continuous.

Proof. It is easily seen that the weakest vector topology on CV0(X, E) for which T is
continuous is weaker than fiv on every ov-bounded set.

PROPOSITION 2.3, For every Nachbin family V the topology Yv is stronger than the
weak topology a = o(Y, Y') of the space Y = (CV0(X, E), <ov).

Proof. Let us fix an ov-continuous linear functional T on CV0(X, E). We can find an
flV-neighbourhood of zero N = N(v, W) such that W is balanced and |T/|=£l for all
f eN. Using Tand N we define m eS(X) as in Lemma2.1. Proposition 2.3 will be proved
if we show that T is yK-continuous.

Let {/„} be a (unbounded and ^-convergent to zero net in CV0(X, E) (cf. Lemma
2.2). Fix £>0. For every a there are UaecZ(X) and ZaeZ(X) such that Aa : =
{x : vf(x) $ eW} c Za c Ua and m(Ua) ^m*(Aa) + e. There is ipaeI(X) such that
Va«Ua and xpa{Za) = {\}. Let ha:=ipafa and ka :=(1 - ya)fa. The net {fa} is
bounded, so there is d > 1 such that {fa} c 6N. Thus, 8~lha e N and ha « Ua, so that
\Tha\ ^ 6m{Ua) < 6{m*(Aa) + e). Moreover, ka e eN, and so \Tfa\ « d(m*(Aa) + e) + e.
This implies that lim Tfa = 0. The proof is finished.

3. Yv and weak approximation. Throughout the remaining part of this paper we
will denote by CV0(X) <8>d E the subset of CV0(X, E) consisting of all functions of the
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form £ V, ® eh where V,- e CV0(X), N(ipt) D N(ty-) = 0 if i ¥=/, e, e A', t, y = 1, . . . , n,
i

THEOREM 3.1. Let V be a Nachbin family of weights on a locally compact Hausdorff
space X. For every balanced neighbourhood of zero W in E and v eV the yv-closure of
N(v, 2W) n CV0(X) <8> dX contains N(v, W).

In particular, CV0(X) ® E is yv and weakly dense in CV0(X, E).

Proof. Let us fix v, W and / e N(v, W). The set

Af := {tpf : if; e I{X), supp i/> is compact}

is av-bounded and contained in N(v, W). Moreover, / can be ov-approximated by
elements of Af (see [4, Theorem 3.1]). The topology \iv is weaker than cov, and so yv is
weaker than cov on Af. This implies that/belongs to the yv-closure of Af. Therefore, for
the proof of the theorem we may assume that supp/ = : K is compact.

Let us fix some relatively compact neighbourhood U of K and let D be the set of all

functions of the form £ V,-®/(*«)» w h e r e V.-e/pQ, N(\t>i)cU, % , • ) n % • ) = 0 if

i ¥=j, Xj e U, i, j = 1 , . . . , n, n e N. The set f(U) is bounded in E and each function v eV
being upper-semicontinuous is bounded on U, so D is av-bounded. We shall show that /
can be //^-approximated by elements of D fl N(v, 2W).

Fix a //^-neighbourhood of zero M = M(m, v', W, e), where W is balanced. We may
assume that sup{u'(x): x € U) =: a >0. The set f(K) is compact, so there exists a finite

n

family {fl1( . . . , £ „ } of pairwise disjoint subsets of X such that K s U B,f c U, fl, e B(X),

and f(x) -f(x')ea~lW for every x, x' e fl,, i = l,. . . , n. The submeasure m satisfies
(*), so we can choose cozero sets Uu .. . , Un and zero sets Zu ... , Zn such that
ZjQBjcUicU and m(L^\Z,)«e/n, i = 1 , . . . , n. Obviously Z, is compact for i =
1 , . . . , n. Using the upper-semicontinuity of v we can find pairwise disjoint cozero sets
Ox,...,On such that Z, c O, c [/, and sup{u(;t) : x e O,} < 2 sup{u(;t): x 6 Z,} for / =
1, . . . ,« . Choose jr, e Z, satisfying sup{v(x): A: e 0,} <2u(x,) and V/ e I(X) s u c n that

Â (V,-) = Oi and V,-(Z,-) = {1}, i = 1 , . . . , n. We define g := £ i/;, (8>/(A:,). Then g e D and

v(x) ipi(x) < 2v(Xi) for every x e Oh i = 1, . . . , n. Thus g e D f l N(u, 2W). Moreover,

{x e X: v'if - g)(x) e W) s JJ {x e U,: v'(f - g)(x) « W'}

cU{Jce^:(/-g)(jc)«fl-|W'}cL

Therefore,
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and so f—geM. The proof of the first part of this theorem is finished. The second
assertion immediately follows from the first one and Proposition 2.3.

REMARK 3.2. The author does not know whether Theorem 3.1 holds if X is non
locally compact.

4. The locally convex space associated with (CV0(X, E), cov).

THEOREM 4.1. Let V be a Nachbin family on a locally compact Hausdorff space X. For
every Hausdorff t.v.s E the locally convex topology associated with the weighted topology
(OV(X, E) coincides with the topology induced on CV0(X, E) by the weighted topology
cov(X, Ec) of the space CV0(X, Ec), where Ec = (E, xc) is the locally convex space
associated with E = (£, T).

Proof. The topology rc is weaker than r, so that CV0(X, E) c CV0(X, Ec) and the
inclusion mapping is continuous. Therefore, CDC

V(X, E) > a>v(X, Ec) \cv^x,Ey For the
proof of the converse inequality let us fix a convex weakly closed coc

v(X, E)-
neighbourhood G of zero in CV0(X, E). We can find v eV and a balanced neighbourhood
W of zero in E such that conv N(v, W) c G. The set N := {f € CV0(X, E): vf{X) c
1/2 conv W} is an cov(X, Ec) \cvo(x,^-neighbourhood of zero, which is cov(X, £)-closed.
Therefore, N is closed in the weak topology o of (CV0(X, E), mv). Let

Nd := N(v, ^^W)D (CV0(X) <8> dE))

and

Ndm := {/ e CV0(X) <g> dE : vf(X) c WJ

where WC := U Wn and Wn := 2~" E?li W. Since a « yK, Theorem 3.1 shows that
« = 1

N = N°^Na
d. (1)

Wa, is r-dense in conv W, and so Nda, is coK-dense in Nd. Consequently,

Ndai is weakly dense in Nd. (2)

Let us observe now that

Nda>cconvN(v, W). (3)

Indeed, if / e Nda> then we can find t//1; . . . , %pk e CV0(X) and elt . .., ek e Wa such that
N(ipi) n N(ipj) = 0 if i # / , sup{vipj(x) :xeX}^l, i,j = l,...,k. T h e r e a r e eUj e W,

m

i = l,...,k, ) = 1, . . . , m, m e N, such that e, = m~l E eu for i = 1, . . . , k. Put fi : =

S V<®ei,/> / = 1, •••,»». Then it is easily seen that vfj(X)cW and / = m~1 E JJ.

Therefore, / e conv N(u, W).
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Combining (1), (2), (3) we have N^Nd = Nda,ccon\aN(v, W)cG. Finally, G is an
(ov(X, Ec) |CVi)(A- ^-neighbourhood of zero. The proof is finished.

It is obvious that (ov(X, E) and a>v(X, Ec) \CV0(X,E) produce the same spaces of
continuous linear functionals on CV0(X, E). Moreover, CV0(X, E) is dense in CV0(X, Ec).
Therefore, we can identify the dual spaces of CV0(X, E) and CV0(X, Ec). Indeed, the
restriction mapping CV0(X, Ec)' BT^-T ICVMA-.E) e CV0(X, E)' is an algebraic isomorph-
ism. Therefore, using Theorem 4.1 and the known representation of the dual space of
CV0(X, E), where E is locally convex (see [8, Theorem 5.42]) we obtain the following
result.

PROPOSITION 4.2 Let X be a locally compact Hausdorff space, V any Nachbin family
on X and E a t.v.s. whose topological dual separates the points of E. The dual space of
(CV0(X, E), 0)v) is isomorphic to

VMb(X, E') = {vm : v e V, m e Mb(X, E')),

where Mb(X, E') is the space of all (£ ' , o(E', E))-valued Radon measures on X with finite
p-semivariation, for some continuous seminorm p on E.

The reader is referred to [8] for the exact definition of Mb(X, E').
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