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Abstract

Quasi-stationary distributions, as discussed in Darroch and Seneta (1965), have been
used in biology to describe the steady state behaviour of population models which,
while eventually certain to become extinct, nevertheless maintain an apparent stochastic
equilibrium for long periods. These distributions have some drawbacks: they need not
exist, nor be unique, and their calculation can present problems. In this paper, we give
biologically plausible conditions under which the quasi-stationary distribution is unique,
and can be closely approximated by distributions that are simple to compute.
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1. Introduction

The logistic growth model of Verhulst (1838) was the first to describe mathematically the
evolution of a population to a nonzero equilibrium, contrasting with the Malthusian law of
exponential growth. Its stochastic version, a Markov chain X in continuous time in which
X(t) represents the number of individuals at time t in a population in a prescribed area A, has
transition rates

qi,i+1 = bi and qi,i−1 = di + ei2

A
for i ≥ 1, qij = 0 otherwise, (1.1)

where b and d are the per capita rates of birth and natural mortality, and there is an additional
per capita death rate ex, due to crowding, at population density x = i/A. The stochastic model
has the drawback that its equilibrium distribution assigns probability 1 to the state 0, population
extinction, irrespective of the initial state. This apparently negates the most valuable property
of Verhulst’s model, its ability to allow an equilibrium other than extinction. However, if b > d

and A is large, the population density X(t)/A can be expected to remain near the ‘carrying
capacity’ κ := (b − d)/e for a very long time, in an apparent (and often biologically relevant)
nonextinct stochastic equilibrium.

Darroch and Seneta (1965), building on the work ofYaglom (1947) in the context of branching
processes, introduced the concept of a quasi-stationary distribution, in an attempt to reconcile
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Quasi-stationary distributions 935

these at first sight inconsistent properties of the model. In a discrete-time Markov chain X

consisting of an absorbing state 0 together with a single finite transient aperiodic class C, the
limiting conditional probabilities

mj := lim
t→∞ Pi[X(t) = j | X(t) ∈ C], i, j ∈ C, (1.2)

exist, and are the same for each i ∈ C. The mj , j ∈ C, also determine a quasi-stationary
distribution, in the sense that

mk =
∑
j∈C

mjpjk

/ ∑
j∈C

mj

∑
k∈C

pjk, (1.3)

where P := (pjk) denotes the one-step probability transition matrix. If, however, C is
countably infinite, the situation is much less satisfactory; there may be no quasi-stationary
distribution, or exactly one, or infinitely many, and determining which of these is the case
may be a difficult problem. Even when there is a unique quasi-stationary distribution, its
calculation can pose substantial problems, unless equations (1.3) happen to have an obvious
solution, because the probabilistic definition (1.2) involves conditioning on an event which, in
the limit as t → ∞, has probability 0. This appears to make the quasi-stationary distribution
unsatisfactory for typical biological applications.

In this paper we give conditions, simply expressed in terms of the properties of the process X,
under which things are in fact much simpler. Under the conditions of Theorem 2.1, there is
exactly one quasi-stationary distribution, and it can be approximated to a specified accuracy
by the equilibrium distribution πµ of a ‘returned process’ Xµ. What is more, under slightly
more stringent conditions, the distribution of X(t) is shown in Theorem 2.2 to be close to the
quasi-stationary distribution for long periods of time.

The returned process, introduced in Bartlett (1960, pp. 24–25) and used in Ewens (1963),
(1964) in a population genetics setting, is a Markov process that evolves exactly like X, up to
the time at which 0 is reached, but is then instantly returned to a random state in C, chosen
according to the probability measure µ. The mapping µ �→ πµ, studied in the paper of
Ferrari et al. (1995), is contractive under our conditions, and iterating the mapping leads to the
unique quasi-stationary distribution m on C, which satisfies m = πm. In many practical
applications, including the stochastic logistic model of (1.1) when A is large, iteration is
unnecessary, inasmuch as any distribution πµ is extremely close to m. Furthermore, since
πµ is a genuine equilibrium distribution, its computation does not involve conditioning on sets
of vanishing probability, and is hence typically much simpler.

The main results, Theorems 2.1 and 2.2, are proved in Section 2. In Section 3, as an
illustration, we discuss the application of the theorems to birth-and-death processes, of which
the stochastic logistic model (1.1) is an example. Because of their relatively simple structure,
birth-and-death processes have already been widely studied; in a biological context, Cattiaux et
al. (2009) discussed their quasi-stationary distributions, as well as those of analogous diffusion
models, which were also examined in detail in Steinsaltz and Evans (2004). In this context,
the key quantities appearing in our theorems can be relatively easily estimated. However, our
theorems are equally applicable to processes with more complicated structure.

2. A general approximation

Let X be a stable, conservative, and nonexplosive pure-jump Markov process on a countable
state space, consisting of a single transient class C together with a cemetery state 0. For any
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936 A. D. BARBOUR AND P. K. POLLETT

probability distribution µ on C, define the modified process Xµ with state space C to have
exactly the same behaviour as X while in C, but, on reaching 0, to be instantly returned to C

according to the distribution µ. Thus, if Q denotes the infinitesimal matrix associated with X,
and Qµ denotes the infinitesimal matrix belonging to Xµ, we have

q
µ
ij = qij + qi0µj for i, j ∈ C. (2.1)

In this section, under a rather simple set of conditions, we show that the quasi-stationary
distribution m of X is unique, and can be approximated in total variation to a prescribed
accuracy by the stationary distribution of Xµ, for an arbitrary choice of µ. We give a bound
on the total variation distance between m and πµ that is expressed solely in terms of hitting
probabilities and mean hitting times for the process X, and which is the same for all µ. The
bound is such that it can be expected to be small in circumstances in which the process X

typically spends a long time in C in apparent equilibrium, before being absorbed in 0 as a result
of an ‘exceptional’ event. If the bound is not, as it stands, small enough for practical use, it can
be improved geometrically fast by iteration of the return mapping µ �→ πµ.

Our basic conditions are as follows.

Condition A. There exist s ∈ C, p > 0, and T < ∞ such that, uniformly for all k ∈ C,

(i) pk := Pk[X hits s before 0] ≥ p;

(ii) Ek[τ{s,0}] ≤ T < ∞.

Here, Pk and Ek refer to the distribution of X conditional on X(0) = k, and

τA := inf{t > 0 : X(t) ∈ A, X(s) /∈ A for some s < t},
the infimum over the empty set being taken to be ∞. Condition A(i) can be expected to be
satisfied in reasonable generality; Condition A(ii), although satisfied by the stochastic logistic
model, is not so immediately natural.

We now introduce the quantity

U :=
∑
k∈C

qk0

qk Ek(τ{k,0})
, (2.2)

where, as usual, qk := −qkk = ∑
j∈C∪{0}\{k} qkj , and qk < ∞ because X is conservative. To

interpret the meaning of U , observe that a renewal argument for Xµ, with renewal epochs the
visits to any specific j ∈ C, shows that

πµ(j) = q−1
j

Ej (τ
µ
{j})

≤ 1

qj Ej (τ{j,0})
. (2.3)

In particular, if X has a quasi-stationary distribution m, it follows from (2.2) that

U ≥
∑
i∈C

πm(i)qi0 =
∑
i∈C

m(i)qi0 = λm,

where λm is the rate at which the X-process, starting in the quasi-stationary distribution m,
leaves C: Pm[X(t) ∈ C] = e−λmt . Thus, U acts as a computable upper bound for any λm.
Note that p, T , and U are all quantities that can reasonably be bounded using a knowledge of
the process X.
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In the remainder of this section, we show that the quasi-stationary distribution m exists, is
close to any πµ, and well describes the long-time behaviour of X prior to absorption in 0, as
long as UT/p is small enough. Our first main result is the following.

Theorem 2.1. Suppose that Condition A is satisfied, and that 2UT/p < 1. Then X has a
unique quasi-stationary distribution m, and, for any probability measure µ on C, we have

dTV(m, πµ) ≤ 2UT

p
.

Remark. Of course, for the theorem to imply that πµ is a sharp approximation to m, we need
U to be small enough (and, therefore, certainly finite). In many applications, X can only jump
to 0 from a small number of states in C, and, if the quasi-equilibrium really behaves like a
genuine equilibrium for long periods of time, the quantity Ek(τ{k,0}), for each such k, can be
expected to contain a large contribution from paths that, after leaving k, spend a very long time
‘in equilibrium’ in other states of C, before either returning to k or being absorbed in 0. In such
applications, as in the next section, these two features combine to make U small.

To prove the theorem, we first need some preparatory results. We first show that, under
Condition A, the mean time to hitting the state s is uniformly bounded for all return processes
Xµ and all initial states.

Lemma 2.1. Under Condition A, for all probability measures µ on C and all r ∈ C, we have

Er τ
µ
{s} ≤ T

p
< ∞,

where τ
µ
A is defined similarly to τA, but with the process Xµ in place of X.

Proof. Recursively define

τ
µ,1
{s,0} := τ

µ
{s,0},

τ
µ,j
{s,0} := inf{t > τ

µ,j−1
{s,0} : Xµ(t) ∈ {s, 0}, Xµ(u) /∈ {s, 0} for some τ

µ,j−1
{s,0} < u < t}

for j ≥ 2, and, for j ≥ 1, let Zj := 1[Xµ(τ
µ,l
{s,0}) = 0, 1 ≤ l ≤ j ], taking Z0 = 1. Then it

follows that
τ

µ
{s} =

∑
j≥1

(τ
µ,j
{s,0} − τ

µ,j−1
{s,0} )Zj−1.

Now Er τ
µ,1
{s,0} ≤ T by Condition A(ii), and, for j ≥ 2,

E[(τµ,j
{s,0} − τ

µ,j−1
{s,0} )Zj−1 | F

τ
µ,j−1
{s,0}

] = Zj−1

∑
k∈C

µk Ek τ{s,0} ≤ T Zj−1

by Condition A(ii), where F
τ

µ,j−1
{s,0}

denotes the σ -field of events up to the stopping time τ
µ,j−1
{s,0} .

Then, for j ≥ 1,
E[Zj | F

τ
µ,j−1
{s,0}

] ≤ (1 − p)Zj−1

by Condition A(i). Hence, for j ≥ 1 and any r ∈ C, it follows that

Er [(τµ,j
{s,0} − τ

µ,j−1
{s,0} )Zj−1] ≤ T (1 − p)j−1,

and so Er τ
µ
{s} ≤ T/p, as required.
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It follows in particular from Lemma 2.1 that Es τ
µ
{s} ≤ T/p < ∞, so that Xµ is positive

recurrent on C; denote its stationary distribution by πµ. Then, for any f : C → R bounded,
set

h
µ
f (j) := −

∫ ∞

0
{Ej f (Xµ(t)) − πµ(f )} dt, j ∈ C.

To show that the integral is well defined, note that

|hµ
f (j)| ≤

∫ ∞

0
2‖f ‖dTV(L(Xµ(t) | Xµ(0) = j), πµ) dt,

where‖·‖denotes the supremum norm. The latter integral is finite provided that Es[(τµ
{s})2]<∞,

by the coupling inequality (see Lindvall (2002, Equation (2.8))) and from Pitman (1974,
Corollary 1, Equation (1.23) with r = 2). That this is the case follows from the next lemma.

Lemma 2.2. Under Condition A, for all probability measures µ on C, we have

Es[(τµ
{s})

2] < ∞.

Proof. Writing τ := τ
µ
{s}, note that

τ 2 =
(∫ ∞

0
1[τ > t] dt

)2

= 2
∫ ∞

0
1[τ > t]

(∫ ∞

t

1[τ > u] du

)
dt. (2.4)

Now, from Lemma 2.1 and by the Markov property, we have

E

[∫ ∞

t

1[τ > u] du

∣∣∣∣ F
µ
t

]
≤

(
T

p

)
1[τ > t],

where F
µ
t denotes the history of Xµ up to time t . Hence, taking expectations in (2.4), it follows

that

Es[τ 2] ≤ 2

(
T

p

)
Es τ ≤ 2

(
T

p

)2

,

again from Lemma 2.1, completing the proof.

It is shown in the proof of Theorem 2.2 below that the distribution of τ
µ
{s} actually has an

exponential tail.
The functions h

µ
f are central to the argument to come. First, we show that they are bounded

and Lipschitz, with appropriate constants.

Lemma 2.3. For all j ∈ C,

|hµ
f (j) − h

µ
f (s)| ≤ 2‖f ‖T

p
.

Proof. For any j ∈ C \ {s}, we can write

−h
µ
f (j) =

∫ ∞

0
Ej [(f (Xµ(t)) − πµ(f )) 1[τµ

{s} ≤ t]] dt

+
∫ ∞

0
Ej [(f (Xµ(t)) − πµ(f )) 1[τµ

{s} > t]] dt. (2.5)
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Then, by the strong Markov property, we have

Ej [(f (Xµ(t)) − πµ(f )) 1[τµ
{s} ≤ t]] = Ej [Es[(f (Xµ(t − τ

µ
{s})) − πµ(f )) 1[τµ

{s} ≤ t]]]

=
∫ t

0
g

µ
js(v) Es[f (Xµ(t − v)) − πµ(f )] dv,

where g
µ
js denotes the probability density of the random variable τ

µ
{s} for the process started at

j 
= s. Hence, it follows that∫ ∞

0
Ej [(f (Xµ(t)) − πµ(f )) 1[τµ

{s} ≤ t]] dt

=
∫ ∞

0
dt

∫ ∞

0
dvg

µ
js(v) Es[f (Xµ(t − v)) − πµ(f )]1{v ≤ t}.

Now, since ∫ ∞

0
1{v ≤ t}| Es[f (Xµ(t − v)) − πµ(f )]| dt

≤ 2‖f ‖
∫ ∞

0
dTV(L(Xµ(t) | Xµ(0) = s), πµ) dt

< ∞,

we can use Fubini’s theorem to conclude that∫ ∞

0
Ej [(f (Xµ(t)) − πµ(f )) 1[τµ

{s} ≤ t]] dt

=
∫ ∞

0
g

µ
js(v)

{ ∫ ∞

v

Es[f (Xµ(t − v)) − πµ(f )] dt

}
dv

=
∫ ∞

0
g

µ
js(v)h

µ
f (s) dv

= h
µ
f (s).

Hence, from (2.5) and Lemma 2.1, it follows that

|hµ
f (j) − h

µ
f (s)| ≤ 2‖f ‖Ej [τµ

{s}] ≤ 2‖f ‖T
p

,

as required.

In particular, the function h
µ
f is itself bounded.

A similar argument, by conditioning on the time of the first jump, shows that

h
µ
f (j) = −q−1

j {f (j) − πµ(f )} +
∑

k∈C, k 
=j

q−1
j q

µ
jkh

µ
f (k), (2.6)

and the sum in (2.6) is absolutely convergent because h
µ
f is bounded. This can be rewritten in

the form
(Qµh

µ
f )(j) = f (j) − πµ(f ), j ∈ C, (2.7)

so that, for any bounded f and any probability measures µ and ν on C, we have

πµ(Qνhν
f ) = πµ(f ) − πν(f ). (2.8)
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In the terminology of Stein’s method, (2.7) determines h
µ
f to be the solution h of the Stein

equation (Qµh)(j) = f (j) − πµ(f ) for the distribution πµ, corresponding to the given
function f . Also, by Dynkin’s formula we have

πµ(Qµh) = 0 (2.9)

for any bounded function h (for the special case h = h
µ
f , this follows from (2.8)). We are now

in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Take any probability measures µ and ν on C. Then (2.8) gives

πµ(Qνhν
f ) = πµ(f ) − πν(f ),

whereas (2.9) gives πµ(Qµhν
f ) = 0. Taking the difference, we obtain

πµ(f ) − πν(f ) = πµ(Qνhν
f − Qµhν

f ). (2.10)

Now, for bounded h and any i ∈ C,

(Qνh − Qµh)(i) =
∑
k∈C

qν
ik(h(k) − h(i)) −

∑
k∈C

q
µ
ik(h(k) − h(i)),

with both sums absolutely convergent, and, from (2.1), it then follows that

(Qνh − Qµh)(i) = qi0

∑
k∈C

(ν(k) − µ(k))(h(k) − h(i))

= qi0

∑
k∈C

(ν(k) − µ(k))(h(k) − h(s)),

since
∑

k∈C ν(k) = ∑
k∈C µ(k) = 1. Hence, from (2.10), we have

πµ(f ) − πν(f ) =
∑
i∈C

πµ(i)qi0

∑
k∈C

(ν(k) − µ(k))(hν
f (k) − hν

f (s)),

and, from Lemma 2.3, this gives

|πµ(f ) − πν(f )| ≤
∑
i∈C

πµ(i)qi02‖f ‖
(

T

p

)
‖ν − µ‖TV.

Thus, it follows that

‖πν − πµ‖TV ≤ 2T

p

∑
i∈C

πµ(i)qi0‖ν − µ‖TV,

and (2.3) then implies that

‖πν − πµ‖TV ≤ 2UT

p
‖ν − µ‖TV.

This, by the Banach fixed point theorem, establishes the first part of the theorem, and the
second part follows by taking ν = m, and using the fact that, for probability measures F and
G, dTV(F, G) = 1

2‖F − G‖TV.
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We now turn our attention to the distribution of X(t) for fixed values of t , starting from any
initial distribution, and compare it to m, the distribution at any time of the return process Xm

started in the quasi-stationary distribution m. We begin by taking the initial state of X to be s,
and remark later that this restriction makes little difference, provided that s is hit at least once.

Theorem 2.2. Let B := T qs/p ≥ 1. Then, under Condition A and if also 2UT/p < 1, there
is a constant K such that

dTV(Ls(X(t)), m) ≤ Ut + KB

√
T

pt
+

(
2

e

)pt/16T

=: η(t).

Remark. Hence, if UB2T/p � 1, the distribution Ls(X(t)) is close to m for all times t such
that

B2T

p
� t � U−1.

Proof of Theorem 2.2. The argument is based on coupling two copies X(1) and X(2) of the
return process Xm, with X(1) in equilibrium and with X(2) starting in s. The coupling is
achieved by forcing X(1) to follow the same sequence of states as X(2) after the first time that
it hits s, and to have identical residence times in all states other than s. Define

τ 0{s}(1) := inf{t ≥ 0 : X(1)(t) = s}, τ 0{s}(2) := 0,

and let
τn{s}(l) := inf{t ≥ τn−1

{s} (l) : X(l)(t−) 
= X(l)(t) = s}, l = 1, 2,

denote the nth return time of X(l) to s. Then, if τ 0{s}(1) = v, we have τn{s}(1) = v + W + Tn,s(1)

and τn{s}(2) = W + Tn,s(2), where W denotes the common time spent in states other than s

between the first and nth visits to s, and Tn,s(l) denotes the total time spent in s by the process
X(l) on its first n visits there. Note that Tn,s(l) ∼ q−1

s G(n, 1), l = 1, 2, where G(n, 1) is the
gamma distribution with shape parameter n and unit scale parameter, and that the Tn,s(l) are
independent of W and τ 0{s}(1). Hence,

dTV(L(τn{s}(1) | τ 0{s}(1) = v), L(τn{s}(2)))

= dTV(δv ∗ q−1
s G(n, 1), q−1

s G(n, 1))

≤ cGqsvn−1/2

for a suitable constant cG, where δv denotes the point mass at v. Hence, for any n ≥ 1, we
can couple X(1) and X(2) by arranging that τn{s}(1) = τn{s}(2), with the two processes to be run
identically thereafter, and the probability of this coupling failing, conditional on τ 0{s}(1) = v, is
at most cGqsvn−1/2. Thus, in particular,

dTV(L(X(1)(t)), L(X(2)(t))) ≤ P[τn{s}(2) > t] + cGqsn
−1/2T

p
, (2.11)

using Lemma 2.1. It now remains to show that we can reach the bound given in the theorem
by choosing n almost as a multiple of t .

Now τn{s}(2) is a sum of n independent random variables, each with distribution Ls(τ
m{s}),

where τm{s} is defined as in Lemma 2.1. By that lemma and Markov’s inequality, it follows that

Pr

[
τm{s} ≥ 2T

p

]
≤ 1

2
, r ∈ C,
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and, hence, that

Ps

[
τm{s} ≥ 2kT

p

]
≤ 2−k = exp

{
− p log 2

2T

2kT

p

}
for all k ≥ 1.

Thus, the distribution Ls(τ
m{s}) is stochastically bounded above by that of

2T

p

(
1 + 1

log 2
E

)
,

where E has a standard exponential distribution. Hence, the distribution of τn{s}(2) is stochas-
tically bounded above by that of

2T

p

(
n + 1

log 2
Gn

)
,

where Gn ∼ G(n, 1). The inequality P[Gn ≥ 2n] ≤ (2/e)n thus implies that

P

[
τn{s}(2) >

2T n

p

(
1 + 2

log 2

)]
≤

(
2

e

)n

.

So, for any fixed t , using 1 + 2/ log 2 ≤ 4, we take n = nt := 
tp/8T � in (2.11), giving

dTV(L(X(1)(t)), L(X(2)(t))) ≤
(

2

e

)nt

+ cGqsn
−1/2
t T

p
,

from which it follows that, for t ≥ 16T/p,

dTV(L(X(1)(t)), L(X(2)(t))) ≤
(

2

e

)pt/16T

+ 4cG

(T qs/p)3/2

√
qst

. (2.12)

We first observe that L(X(1)(t)) = m for all t . Then we have

P[τ{0}(1) ≤ t] = 1 − e−λmt ≤ Ut,

where τ{0}(1) := inf{t ≥ 0 : X(1)(t) = 0}. On the event that X(1) and X(2) are successfully
coupled at τ

nt{s} ≤ t , it thus follows that the event that neither hits 0 before t has probability at
least 1 − Ut , and, on this event, X(2)(t) is also the value of an X-process starting in s, since
X(2) has had no visits to 0 before t . This, together with (2.12), completes the proof.

Remark. Denoting by A({s}, {0}) the event that X hits s before 0, the same argument can
be used to show that dTV(Lk(X(t) | A({s}, {0})), Ls(X

m(t))) is at most η(t) for any k ∈ C,
under the conditions of Theorem 2.2. Hence, conditional on the event that X hits s before
reaching 0, the distribution of X(t) starting from any k ∈ C is also close to m for all times t

such that
B2T

p
� t � U−1,

provided that UB2T/p � 1. Thus, the quasi-stationary distribution m is then indeed the
appropriate long-time approximation to the distribution of X in C, for times t � U−1.

Note also that the coupling used in Theorem 2.2 may be very pessimistic, only making use
of the residence times in s. For most processes, the variability in the remaining residence times
and in the possible sequences of states can be exploited to get sharper bounds. However, in the
examples for which we make computations below, the quantity B2T/p is of only polynomial
order in the size of the system, whereas U−1 is exponentially large; hence, even this crude
estimate is more than adequate.
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3. Birth-and-death processes

Consider now a birth-and-death process with C = {1, 2, . . . , N} (for C = N, replace N by
∞ in what follows) having birth rates bj > 0, 1 ≤ j < N , with b0 = 0 and bN = 0 if N < ∞,
and with strictly positive death rates dj , j ∈ C. It is convenient to introduce the quantities
(αj , j ∈ C), where α1 = 1 and, for j > 1,

αj = b1 · · · bj−1

d2 · · · dj

.

The return process with µ = δ{1}, equivalent to redefining d1 to be 0, is then recurrent if
α+ := ∑

j≥1 αj < ∞, in which case πµ(j) = αj/α+, so that its computation is very easy.
We now wish to investigate when this distribution can be used as a reasonable approximation
to the effective steady state behaviour of the process.

In order to apply Theorems 2.1 and 2.2, we need to choose a state s ≥ 1, and find values
for p, T , B, and U . For p, let rk, k ≥ 1, be the probability that the process starting in k hits s

before it hits 0, where s ≥ 1. If k > s then rk = 1. Otherwise, r0 = 0, rs = 1, and

(bk + dk)rk = bkrk+1 + dkrk−1, k = 1, 2, . . . , s − 1,

leading to rk = σk/σs , where

σ0 = 0 and σk =
k∑

j=1

1

djαj

for k = 1, . . . , s.

Since σk is nondecreasing in k, we can take

p = r1 = 1

d1σs

(3.1)

for any state s ∈ C.
For T , we first note that, for 1 ≤ k ≤ s, Ek[τ{s,0}] is bounded above by the expected time it

takes the process, modified so that d1 = 0, to reach s starting from k, and (see Anderson (1991,
Chapter 8))

Ek[τ{s}] =
s−1∑
j=k

Ej [τ{j+1}] =
s−1∑
j=k

1

bjαj

j∑
i=1

αi

for the modified process. As this quantity is decreasing in k,

T1 := max
1≤k≤s

Ek[τ{s,0}] ≤
s−1∑
j=1

1

bjαj

j∑
i=1

αi < ∞. (3.2)

For k > s,

Ek[τ{s,0}] = Ek[τ{s}] =
k∑

j=s+1

Ej [τ{j−1}] =
k∑

j=s+1

1

djαj

∞∑
i=j

αi

(again see Anderson (1991, Chapter 8)). Since the latter quantity is increasing in k, we may
take

T := max(T1, T2), where T2 :=
∞∑

j=s+1

1

djαj

∞∑
i=j

αi . (3.3)
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Note that then Condition A(ii) holds if T2, the so-called ‘D series’, converges, and that T2 < ∞
is a necessary and sufficient condition for a birth-and-death process to have a unique quasi-
stationary distribution (see van Doorn (1991, Part 2 of Theorem 3.2)). Note also that B :=
T qs/p can be bounded using (3.1)–(3.3), together with the fact that qs = bs + ds .

Finally, the quantity U can be evaluated as

U = d1

(b1 + d1) E1[τ{1,0}] = d1

1 + b1 E2[τ{1}] = d1∑N
j=1 αj

, (3.4)

because, also from Anderson (1991, Chapter 8),

Ei[τ{i−1}] = 1

diαi

N∑
j=i

αj = 1

bi−1αi−1

N∑
j=i

αj ,

and, in particular, since α1 = 1,

1 + b1 E2[τ{1}] = 1 +
N∑

j=2

αj =
N∑

j=1

αj .

In order to apply Theorems 2.1 and 2.2 in practice, we need to be able to bound the quantities
p, T , B, and U by assigning concrete expressions in terms of the bj and dj to replace (3.1)–(3.4).
Simple estimates can be derived under the assumptions that the death rates dj are increasing
in j , and that the ratios bj /dj are decreasing, with b1/d1 > 1. If this is the case, define s ≥ 1
in such a way that bs/ds ≥ 1 > bs+1/ds+1, and let 1 ≤ s1 ≤ s < s2 be such that

bs1

ds1

=: ρ1 > 1 > ρ2 := bs2

ds2

.

Then

xj := dj+1αj+1

d1
=

j∏
l=1

bl

dl

is maximal at j = s, and

xj ≥ ρ
s1∧j
1 , 0 ≤ j ≤ s,

xj

xl

≤ ρ
j−l
2 , j ≥ l ≥ s2. (3.5)

Hence, from (3.1), we have the bound

p = 1
/ s−1∑

j=0

x−1
j =

{ s1−1∑
j=0

x−1
j +

s−1∑
j=s1

x−1
j

}−1

≥
{

ρ1

ρ1 − 1
+ (s − s1)ρ

−s1
1

}−1

,

the final inequality following from (3.5). Then, by (3.5) and because dj is increasing in j ,
ds1αj+1 ≥ dj+1αj+1 ≥ d1ρ

j
1 for 0 ≤ j < s1, and so (3.4) implies that

U ≤
{ s1∑

j=1

αj

d1

}−1

≤ ds1(ρ1 − 1)ρ
−s1
1 .
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For T2, we note from (3.5) that

diαi

djαj

= xi−1

xj−1
≤ ρ

(i∨s2)−(j∨s2)
2 , i ≥ j ≥ s + 1,

so that, from (3.3),

T2 =
∞∑

j=s+1

1

djαj

∞∑
i=j

αi =
∞∑

i=s+1

1

di

i∑
j=s+1

xi−1

xj−1
≤

∞∑
i=s+1

1

di

{
s2 − s + 1

1 − ρ2

}
.

A similar argument based on (3.2) then gives

T1 ≤
s−1∑
j=1

1

biαi

i∑
j=0

αj ≤
{
s − s1 + ρ1

ρ1 − 1

} s−1∑
i=1

1

bi

.

Thus, if, for instance, dj grows at most polynomially fast in j , with the sum
∑

j≥1 d−1
j < ∞,

and if s1 and s − s1 are large and of comparable size, then T/p is roughly of order s2 and
B = T qs/p of polynomial order in s, whereas U is geometrically small with s, making UT/p

very small indeed.
More precise calculations for the stochastic logistic model of (1.1) as A → ∞, with

s = 
κA�, give

T = O(log A), p ≥ 1 − d

b
, U ≤

{
1 + b − d

b + d

}−κA/2

, B = O(A log A),

so that UT/p is geometrically small in A as A → ∞. Thus, for the stochastic logistic model, the
unique quasi-stationary distribution can be very closely approximated by any return distribution,
as long as A is large. Entirely similar estimates are true for the SIS epidemic model, which
models the number of susceptibles in a closed population of size N , to be thought of as large
but finite. The process is a birth-and-death process on {0, 1, . . . , N} having rates

bi := λi

(
1 − i

N

)
and di := µi, 0 ≤ i ≤ N;

in this case, UT/p is geometrically small in N if µ < λ, and there is a quasi-stationary
distribution close to s := 
N(1 − µ/λ)�.
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