ON THE LOGARITHMIC COEFFICIENTS OF CLOSE-TO-CONVEX FUNCTIONS

M. M. ELHOSH

(Received 20 May 1991; revised 7 April 1992)

Communicated by P. C. Fenton

Abstract

Logarithmic coefficient bounds for some univalent functions are given in this paper. 1991 Mathematics subject classification (Amer. Math. Soc.): 30C45, 30C50, 30C55.

Let S denote the usual class of univalent functions $f(z)$ normalized so that $f(0)=$ $f^{\prime}(0)-1$ in $|z|<1$. Let C denote the set of functions $f(z)$ normalized as above and which satisfy the condition $\operatorname{Re} z f^{\prime}(z) / g(z) \geq 0$ in $|z|<1$, where $g(z)$ itself is subject to the conditions $\operatorname{Re} z g^{\prime}(z) / g(z) \geq 0, g(0)=0$ and $\operatorname{Re} g^{\prime}(0)>0$ in $|z|<1$. Then $f(z)$ is called close-to-convex relative to the starlike function $g(z)$. We denote this set of functions $g(z)$ by S^{*}. Now let K denote the set of functions $Q(z)$ which satisfy the conditions: $Q(0)=0, \operatorname{Re} Q^{\prime}(0)>0$ and $\operatorname{Re}\left(z Q^{\prime \prime} / Q^{\prime}+1\right) \geq 0$ in $|z|<1$. Such $Q(z)$ are called convex. It is well known that each $z Q^{\prime}(z) \in S^{*}$ and $K \subset S^{*} \subset C \subset S$ (see for example [6, pp. 40-46]; [11, pp. 11-18]; [14, p. 361]).

Now, as in [6, p. 151], each $f(z) \in S$ has a logarithmic expansion

$$
\begin{equation*}
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n} \tag{1}
\end{equation*}
$$

in $|z|<1$ where γ_{n} are known as the logarithmic coefficients. The problem of the best upper bounds for $\left|\gamma_{n}\right|$ is still open. In fact even the proper order of magnitude is still not known. It is known, however, for the starlike functions that the best bound
is $\left|\gamma_{n}\right| \leq 1 / n \quad(n \geq 1)$ and that this is not true in general [6, p. 151]; [5, p. 898]; [1, p. 140] and [7].

The importance of this problem in relation to the Bieberbach conjecture was pointed out by Milin in his conjecture (see [1, p. 141]; [6, pp. 155-156]; [5, p. 899]) that

$$
\sum_{m=1}^{n} \sum_{k=1}^{m}\left(k\left|\gamma_{k}\right|^{2}-\frac{1}{k}\right) \leq 0
$$

which led De Branges, by proving this conjecture, to the proof of the Bieberbach conjecture [2]. Milin has shown [6, p. 151] that $\sum_{k=1}^{n}\left(k\left|\gamma_{k}\right|^{2}-1 / k\right) \leq \delta$ where $\delta<0.312$.

It is known that δ cannot be reduced to zero in general [6, p. 155]. However, its exact value remains unknown. In this note we show that $\left|\gamma_{n}\right| \leq 1 / n \quad(n \geq 1)$, for $f \in C$, and consequently $\delta=0$ as for the starlike functions. We shall use $\sum a_{n} z^{n} \ll \sum b_{n} z^{n}$ to mean $\left|a_{n}\right| \leq b_{n}$ for $n \geq 1[12$, p. 52] and $f \prec F$ to mean that $f(0)=F(0)$ and $f(z:|z|<1) \subset F(z:|z|<1)$ or equivalently $f(z)=F(\phi(z))$, where $\phi(0)=0$ and $|\phi(z)|<1[6$, p. 190].

THEOREM 1. Let $f \in C$ so that (1) holds. Then for $n \geq 1$ we have

$$
\begin{equation*}
\left|\gamma_{n}\right| \leq \frac{1}{n} \tag{2}
\end{equation*}
$$

Proof. For $f \in C$ let $\left\{f_{k}\right\}$ be a sequence in C which converges uniformly on compact subsets to $f \in C$. Let also for a fixed $n, J(g)=\left|\gamma_{n}\right|$ where $g(z)=$ $\log (f(z) / z)=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n}$ and let $\log \left(f_{k}(z) / z\right)=2 \sum_{n=1}^{\infty} \gamma_{n}^{(k)} z^{n}$. Then, using the coefficient formula we deduce for $z=r e^{i \theta}, 0<r<1$, that

$$
\begin{aligned}
\left|\left|\gamma_{n}^{(k)}\right|-\left|\gamma_{n}\right|\right| & \leq\left|\gamma_{n}^{(k)}-\gamma_{n}\right| \\
& =\left|\frac{1}{2 \pi i} \int_{|z|=r}\left(\log \frac{f_{k}(z)}{z}-\log \frac{f(z)}{z}\right) \frac{d z}{z^{n+1}}\right| \\
& \leq r^{-n} \max _{|z|=r}\left|\log \left(f_{k}(z) / f(z)\right)\right| \\
& \rightarrow 0
\end{aligned}
$$

since $f_{k} \rightarrow f$ uniformly on $|z|=r$ as $k \rightarrow \infty$ [11, p. 40]. Thus we see that $\left|\gamma_{n}^{(k)}\right|^{2} \rightarrow\left|\gamma_{n}\right|^{2}$ so that $J(g)$ is continuous.

Now let $h(z)=\log \left(f_{1}(z) / z\right)=2 \sum_{n=1}^{\infty} \gamma_{n}^{\prime} z^{n}, \phi(z)=\log \left(f_{2}(z) / z\right)=2 \sum_{n=1}^{\infty} \gamma_{n}^{\prime \prime} z^{n}$ in $|z|<1$ where $f_{1}, f_{2} \in C$. Let also $g=t h+(1-t) \phi, 0 \leq t \leq 1$. Then by [11, Lemma 5.6] we have

$$
\begin{aligned}
J(g)=\left|\gamma_{n}\right|^{2} & =\left|t \gamma_{n}^{\prime}+(1-t) \gamma_{n}^{\prime \prime}\right|^{2} \\
& \leq t\left|\gamma_{n}^{\prime}\right|^{2}+(1-t)\left|\gamma_{n}^{\prime \prime}\right|^{2} \\
& =t J(h)+(1-t) J(\phi)
\end{aligned}
$$

which implies that $J(g)$ is convex.
Thus, in view of [11, Theorem 4.6], we need only prove Theorem 1 for the extreme points of the closed convex hull of C, denoted by $E H C$, since $\max \{J(f): f \in E H C\}$ $=\max \{J(f): f \in C\}$ in this case.

Functions $f \in E H C$ are of the form

$$
\begin{equation*}
f(z)=\left(z-\frac{1}{2}(x+y) z^{2}\right) /(1-y z)^{2} \tag{3}
\end{equation*}
$$

where $x \neq y$ and $|x|=|y|=1$.
With a suitable rotation (see [11, p. 83]), this can be written in the form

$$
f(z)=\left(z-b z^{2}\right) /(1-z)^{2}
$$

where $|b-1 / 2|=1 / 2$.
Writing $\psi(z)=(1-b z) /(1-z)$ we see that

$$
\operatorname{Re} \psi(z)=\frac{1}{2}+\frac{1}{2}\left(\frac{1+(1-2 b) z}{1-z}\right) \geq \frac{1}{2}
$$

We also see that $\operatorname{Re}\left(z \psi^{\prime \prime} / \psi^{\prime}+1\right)=\operatorname{Re}((1+z) /(1-z)) \geq 0$ which implies that ψ is convex and consequently starlike of order $1 / 2$ (see [4, p. 418];[6, p. 251]). Thus, as in [4, p. 417] and [16, p. 722], using Herglotz's formula (see [6, pp. 22-40]; [11, pp. 27-30])

$$
p(z)=\int_{0}^{2 \pi}\left(\frac{1+e^{-i t_{z}}}{1-e^{-i t_{z}}}\right) d \mu(t)
$$

where $p(0)=1, \operatorname{Re} p(z) \geq 0, d \mu(t) \geq 0$ and $\int_{0}^{2 \pi} d \mu(t)=1$, we obtain

$$
\begin{aligned}
\log \psi(z) & =\int_{0}^{2 \pi} \log \left(\frac{1}{1-z e^{-i t}}\right) d \mu(t) \\
& =\sum_{n=1}^{\infty}\left(\int_{0}^{2 \pi} e^{-i n t} d \mu(t)\right) \frac{z^{n}}{n} \\
& \ll \sum_{n=1}^{\infty} \frac{z^{n}}{n}=\log \frac{1}{1-z} .
\end{aligned}
$$

Hence we see that

$$
\begin{aligned}
\log \frac{f(z)}{z} & =\log \frac{1}{1-z}+\log \frac{1-b z}{1-z} \\
& \ll 2 \log \frac{1}{1-z}
\end{aligned}
$$

This gives (2) by the definition of \ll above.

Corollary 1. For $f \in C$ we have

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2} d \theta & =1+4 \sum_{n=1}^{\infty} n^{2}\left|\gamma_{n}\right|^{2} r^{2 n} \\
& \leq 1+4 \sum_{n=1}^{\infty} r^{2 n} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{z K^{\prime}(z)}{K(z)}\right|^{2} d \theta
\end{aligned}
$$

where $z=r e^{i \theta}, 0<r<1$, and $K(z)=z(1-z)^{-2}$.
Theorem 2. For $f \in E H C$ we have

$$
\begin{equation*}
\log \frac{f(z)}{z} \prec \log \frac{K(z)}{z} \tag{4}
\end{equation*}
$$

or equivalently

$$
\frac{f(z)}{z} \prec \frac{K(z)}{z}
$$

where $K(z)$ is as defined above.
Proof. This theorem follows from the fact that $\operatorname{Re}((1-b z) /(1-z)) \geq 1 / 2$ is equivalent to $(1-b z) /(1-z) \prec 1 /(1-z),[11, \mathrm{p} .53]$, and this is equivalent to $\log ((1-b z) /(1-z)) \prec \log (1 /(1-z))[17$, p. 23]. Thus we have

$$
\begin{aligned}
\log \frac{f(z)}{z} & =2\left(\frac{1}{2} \log \frac{1}{1-z}+\left(1-\frac{1}{2}\right) \log \frac{1-b z}{1-z}\right) \\
& \prec 2 \log \frac{1}{1-z}
\end{aligned}
$$

as required.

Corollary 2. For $f \in E H C$ we see from [11, Theorem 3.3]; [6, Theorem 6.1] and (4) that

$$
\int_{0}^{2 \pi}\left|\log \frac{f(z)}{z}\right|^{q} d \theta \leq \int_{0}^{2 \pi}\left|\log \frac{K(z)}{z}\right|^{q} d \theta
$$

where $z=r e^{i \theta}, 0<r<1$, and $q>0$. This extends [10, Theorem 1] for $f \in E H C$.
Corollary 3. For $f \in C$ and γ_{n} as defined in Theorem 1 we see from [6, p. 212 (Exercise 7)], (4) and (2) that

$$
\sum_{k=1}^{n} k\left|\gamma_{k}\right|^{2} \leq \sum_{k=1}^{n} 1 / k
$$

THEOREM 3. Let $f \in C$ and $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$. Then for $n \geq 2$ we have

$$
\left|\left|a_{n}\right|-\left|a_{n-1}\right|\right| \leq 1
$$

PROOF. For some choice of ξ on the boundary, with $|\xi|=1$, we have

$$
(1-\xi z) \frac{f(z)}{z}=\exp \left\{\sum_{n=1}^{\infty}\left(2 \gamma_{n}-\frac{\xi^{n}}{n}\right) z^{n}\right\}
$$

Applying the Lebedev-Milin inequality $\left|\beta_{n}\right|^{2} \leq \exp \left\{\sum_{k=1}^{n} k\left|\alpha_{k}\right|^{2}-\sum_{k=1}^{n} 1 / k\right\}$ for the expansion $\sum_{k=0}^{\infty} \beta_{k} z^{k}=\exp \left\{\sum_{k=1}^{n} \alpha_{k} z^{k}\right\}, \quad \beta_{0}=1$ [6, p. 143]; [5, p. 897], we deduce by using the triangle inequality that

$$
\begin{equation*}
\left|\left|a_{n}\right|-\left|a_{n-1}\right|\right| \leq \exp \left\{2 \sum_{k=1}^{n}\left(k\left|\gamma_{k}\right|^{2}-\operatorname{Re}\left(\xi^{k} \gamma_{k}\right)\right)\right\} \tag{5}
\end{equation*}
$$

We now write $\xi=e^{i t}$ and choose t such that $k t+\arg \left(\gamma_{k}\right)=0$. We see that $e^{k i t} \gamma_{k}=\left|\gamma_{k}\right|$. Using this and (2) in (5) we deduce Theorem 3 since

$$
\sum_{k=1}^{n}\left(k\left|\gamma_{k}\right|^{2}-\operatorname{Re}\left(\xi^{k} \gamma_{k}\right)\right)=\sum_{k=1}^{n}\left(k\left|\gamma_{k}\right|^{2}-\left|\gamma_{k}\right|\right) \leq 0
$$

Remark 1. The case $n=3$ has been proved by Koepf [13]. For the full class S the author [9, p. 13] obtained $\left|\left|a_{3}\right|-\left|a_{2}\right|\right|<1.411$.

REMARK 2. It has been shown by Pearce [15] that functions of the form (3) are extreme points of S whenever $0<|\arg (-x / y)| \leq \pi / 4$ and consequently Theorems 2 and 3 hold for these functions. Our results give a partial answer to the questions raised in [8] and [3, Problem 6.71; p. 558].

REMARK 3. The Koeke function $K(z)=z(1-z)^{-2}$ and its rotations show that our results are the best possible.

REMARK 4. Let $\left(z f^{\prime} / f\right)^{q}=1+\sum c_{n}(q) z^{n}$ and $[(1+z) /(1-z)]^{q}=1+\sum D_{n}(q) z^{n}$ where n, q are positive integers. Then we have $\left|c_{n}(q)\right| \leq D_{n}(q)$ since $\left(z f^{\prime} / f\right)^{q} \ll$ $[(1+z) /(1-z)]^{q}$ in this case. (See [12, Lemma 2.4 .1, p. 53].) We now easily see that

$$
\int_{0}^{2 \pi}\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2 q} d \theta \leq \int_{0}^{2 \pi}\left|\frac{z K^{\prime}(z)}{K(z)}\right|^{2 q} d \theta
$$

and this extends Corollary 1 when q is a positive integer.

The author would like to thank the referees for their useful comments to improve the first version of this paper.

References

[1] J. Anderson, K. Barth and D. Brannan, 'Research problems in complex analysis', Bull. London Math. Soc. 9 (1977), 129-162.
[2] L. De Branges, 'A proof of the Bieberbach Conjecture', Acta Math. 154 (1985), 137-152.
[3] D. Brannan and J. Clunie, Aspects of contemporary complex analysis (Academic Press, 1980).
[4] L. Brickman, D. Hallenbeck and T. MacGregor, 'Convex hulls and extreme points of families of starlike and convex mappings’,Trans. Amer. Math. Soc. 185 (1973), 413-428.
[5] P. Duren, 'Coefficients of univalent functions', Bull. Amer. Math. Soc. (5) 83 (1977), 891-911.
[6] ——Univalent functions (Springer, New York, 1983).
[7] P. Duren and Y. Leung, 'Logarithmic coefficients of univalent functions', J. Analyse Math. 36 (1979), 36-43.
[8] M. M. Elhosh, 'On the logarithmic coefficients of close-to-convex functions', Math. Japon. (2) 31 (1986), 201-204.
[9] ——, 'On mean p-valent functions', Rev. Roumaine Math. Pures Appl. 34 (1989), 11-15.
[10] D. Girela, 'Integral means and BMOA norms of logarithms of univalent functions', J. London Math. Soc. 33 (1986), 117-132.
[11] D. Hallenbeck and T. MacGregor, Linear problems and convexity techniques in geometric function theory (Pitman, London, 1984).
[12] E. Hille, Ordinary differential equations in the complex domain (Wiley, New York, 1976).
[13] W. Koepf, 'On the Fekete-Szego problem for close-to-convex functions', Proc. Amer. Math. Soc. 101 (1987), 89-95.
[14] T. MacGregor, 'Applications of extreme point theory to univalent functions', Michigan Math. J. 19 (1972), 36I-376.
[15] K. Pearce, 'New support points of S and extreme points of KS', Proc. Amer. Math. Soc. 81 (1981), 425-428.
[16] B. Pinchuk, 'On starlike and convex functions of order α ', Duke Math. J. 35 (1968), 721-734.
[17] R. Robinson, 'On the theory of univalent functions', Ann. of Math. 37 (1936), 1-35.

Department of Mathematics
The University College of Wales
Aberystwyth
Dyfed
UK

