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Abstract

Logarithmic coefficient bounds for some univalent functions are given in this paper.

1991 Mathematics subject classification (Amer. Math. Soc): 30C45, 30C50, 30C55.

Let S denote the usual class of univalent functions /(z) normalized so that /(0) =
/'(0) — 1 in |z| < 1. Let C denote the set of functions /(z) normalized as above and
which satisfy the condition Rez/'(z)/g(z) > 0 in \z\ < 1, where g{z) itself is subject
to the conditions Rezg'(z)/g(z) > 0, g(0) = 0 and Reg'(0) > 0 in |z| < 1. Then
/(z) is called close-to-convex relative to the starlike function g(z). We denote this
set of functions g(z) by 5*. Now let K denote the set of functions Q(z) which satisfy
the conditions: Q(0) = 0, Re Q'(0) > 0 and Re (zQ"/Q' + 1) > 0 in |z| < 1. Such
Q(z) are called convex. It is well known that each zQ'(z) e S* and A" C 5* C C C 5
(see for example [6, pp. 40-46]; [11, pp. 11-18]; [14, p. 361]).

Now, as in [6, p. 151], each /(z) e S has a logarithmic expansion

(1)

in \z\ < 1 where yn are known as the logarithmic coefficients. The problem of the
best upper bounds for \yn \ is still open. In fact even the proper order of magnitude is
still not known. It is known, however, for the starlike functions that the best bound
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is \yn\ < l/« (n > 1) and that this is not true in general [6, p. 151]; [5, p. 898];
[l,p. 140] and [7].

The importance of this problem in relation to the Bieberbach conjecture was pointed
out by Milin in his conjecture (see [1, p. 141]; [6, pp. 155-156]; [5, p. 899]) that

n m

EE
m=\ k=\

which led De Branges, by proving this conjecture, to the proof of the Bieberbach
conjecture [2]. Milin has shown [6, p. 151] that Yl"k=\ (̂ lK*l2 ~ 1/^) < & where
S < 0.312.

It is known that S cannot be reduced to zero in general [6, p. 155]. However,
its exact value remains unknown. In this note we show that \yn\ < \/n (n > 1),
for / € C, and consequently S = 0 as for the starlike functions. We shall use
^anz

n < J2bnz" t o m e a n M < bn for n > 1 [12, p. 52] and / < F to mean that
/(0) = F(0) and f(z : \z\ < 1) C F(z : \z\ < 1) or equivalently /(z) = F(<f>(z)),
where 0(0) = 0 and |</>(z)| < 1 [6, p. 190].

THEOREM 1. Let f eC so that (1) holds. Then for n > 1 we have

(2) \Yn\ < ^-

PROOF. For / e C let [fk] be a sequence in C which converges uniformly on
compact subsets to / e C. Let also for a fixed n, J(g) = \yn\ where g(z) =
log(/(z)/z) = 2]Tn°t1 ynz" and let \og{fk(z)/z) = 2 £ ~ , y^zn. Then, using the
coefficient formula we deduce for z = re'e, 0 < r < 1, that

\z\=r

^ 0 ,

since / * - > • / uniformly on \z\ = r as k ->• oo [11, p. 40]. Thus we see that
\Ynk)\2 ""*• ly«l2 s o t n a t J(8) is continuous.

Now let h(z) = log(/,(z)/z) = 2 £ ~ , yn'z", 0(z) = log(/2(z)/z) =
in |z| < 1 where / i , f2 e C. Let also g = th + (1 - f)0, 0 < f < 1. Then by [11,
Lemma 5.6] we have
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which implies that J(g) is convex.
Thus, in view of [11, Theorem 4.6], we need only prove Theorem 1 for the extreme

points ofthe closed convex hull of Cdenotedby £ / /C , since max{/(/) : / e EHC}
= max{/(/) : / e C} in this case.

Functions / e EHC are of the form

(3) /(z) = ( z - i ( x + v)z 2 ) / ( l -yz) 2

where x ^ y and |JC| = |y| = 1.

With a suitable rotation (see [11, p. 83]), this can be written in the form

/(z) = (z - Z>z2)/(1 - z)2

where \b - 1/2| = 1/2.
Writing \jr(z) — (1 - bz)/(l — z) we see that

We also see that Re W'/f + 1) = Re ((1 + z)/(l - z)) > 0 which implies that f
is convex and consequently starlike of order 1/2 (see [4, p. 418];[6, p. 251]). Thus,
as in [4, p. 417] and [16, p. 722], using Herglotz's formula (see [6, pp. 22-40]; [11,
pp. 27-30])

2n

where p(0) = 1, Rep(z) > 0, dn(t) > 0 and f^" dfi(t) - 1, we obtain

logir(z)=[ logf-—1—n)dfi(t)Jo \\-ze-J

Hence we see that

\-bz
log = log h log

z 1 z
log h log

z 1 — z 1 — z

1-z

This gives (2) by the definition of <g above.
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COROLLARY 1. For f eCwe have

i r2"
2 ^ Jo f(z) n=l

=-f
2TT JO

where z = rew, 0<r <\,and K(z) = z(l - z)~2.
THEOREM 2. For f e EHCwe have

zK'iz)

K(z)
dd

(4)

or equivalently

log -, log

/(z) *(z)

where K{z) is as defined above.

PROOF. This theorem follows from the fact that Re ((1 - bz)/{\ - z)) > 1/2 is
equivalent to (1 — bz)/{\ — z) < 1/(1 — z), [11, p. 53], and this is equivalent to
log((l - bz)/(l - z)) -< log(l/(l - z)) [17, p. 23]. Thus we have

2 log
1 - z

as required.

COROLLARY 2. For f e EHC we see from [11, Theorem 3.3]; [6, Theorem 6.1]
and (4) that

n2

Jo
log

/(z)
log

K(z)

where z = rew, 0 < r < 1, > 0. This extends [10, Theorem I] for f € £ / /C.

COROLLARY 3. For f e C and yn as defined in Theorem 1 we see from [6, p. 212
(Exercise 7)], (4) and (2)
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THEOREM 3. Let f eC and f(z) = z + a2z
2 + a3z

3 H . Then for n > 2 we have

K | - k , - l l | HI-

PROOF. For some choice of £ on the boundary, with |f | = 1, we have

Applying the Lebedev-Milininequality \pn\
2 < exp { £ L i k\ak\2 ~ E*=i l/k] f o r

the expansion TZo^k = exP {ELi «*z*}> A> = 1 [6, p. 143]; [5, p. 897], we
deduce by using the triangle inequality that

(5) \an\ - \an~i\ <exp
k=\

We now write f = eu and choose t such that kt + argCy*) = 0. We see that
eki'yk — \Yk\- Using this and (2) in (5) we deduce Theorem 3 since

- \Yk\) < 0.

REMARK 1. The case n = 3 has been proved by Koepf [13]. For the full class S

the author [9, p. 13] obtained ||<z3| - |<z2|l < 1.411.

REMARK 2. It has been shown by Pearce [15] that functions of the form (3) are
extreme points of 5 whenever 0 < | arg(—x/y) \ < n/A and consequently Theorems 2
and 3 hold for these functions. Our results give a partial answer to the questions raised
in [8] and [3, Problem 6.71; p. 558].

REMARK 3. The Koeke function K{z) — z{\ — z)~2 and its rotations show that our

results are the best possible.

REMARK4. Let (zf/f)" = l + ^cn(^)z" and[(l+z)/(l-z)]<? = 1 + J2 Dn(q)zn

where n, q are positive integers. Then we have |cn(<5r)| < Dn(q) since (zf'/f)q <C
[(1 + z)/(l - z)]q in this case. (See [12, Lemma 2.4.1, p. 53].) We now easily see
that

zK'(z)
/ •2

Jo fiz) K(z)
and this extends Corollary 1 when q is a positive integer.
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