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ABSTRACT

In the present paper, we study error bounds for approximations to multivariate
distributions. In particular, we discuss some general versions of compound
multivariate distributions and look at distributions of dependent random vari-
ables constructed by linear transforms of independent random variables or
vectors. Special attention is paid to the case when the support of the original
distribution is restricted. We also look at some applications with multivariate
Bernoulli distributions.

1. INTRODUCTION

Dhaene and De Pril (1994) presented a framework for approximations to uni-
variate aggregate claims distributions, and within this framework they developed
general results for error bounds. Some of these results were reformulated in
terms of De Pril transforms and discussed by Dhaene and Sundt (1998).
Dhaene and Sundt (1997) discussed some error bounds without introducing
the De Pril transform. Sundt (20006) extended some of the approximations
and error bounds of these papers to the multivariate case, utilising the multi-
variate De Pril transform introduced in Sundt (2000a).

In this paper, we study some error bounds for approximations to multivari-
ate distributions, extending the framework of Sundt (20006) and using the same
measure for the distance between the exact distribution and the approximation.

In Section 2, we present some notation and conventions.
In Section 3, we introduce the distance measure as defined in Sundt (20006)

and deduce an alternative expression that can be more convenient in some
cases when the exact distribution or the approximation has a finite support.

Linear transforms are often used to construct dependent random variables
from independent random variables or vectors. In Section 4, we discuss error
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58 B. SUNDT AND R. VERNIC

bounds for approximations to multivariate distributions when the approxima-
tion is constructed by the same linear transform as the exact distribution.

Sundt (20006) discussed multivariate compound distributions in the case
with univariate counting distribution and multivariate severity distribution.
In this case, he showed that if we approximate the compound distribution by
approximating the counting distribution and keeping the severity distribution
unchanged, then the distance between the counting distribution and its
approximation is an upper bound for the distance between the compound dis-
tribution and its approximation. In Section 5, we show that this result holds
for a much more general class of compound distributions.

Finally, in Section 6 we apply the theory developed in the earlier sections
to some examples with multivariate Bernoulli distributions.

2. NOTATION AND CONVENTIONS

A column vector will be denoted by a bold letter, and its elements will nor-
mally be denoted by the corresponding italic with the number of the element
indicated by a subscript; the subscript • indicates the sum of the elements
of the vector. For a positive integer m, let Nm denote the set of m x l vectors
where all elements are non-negative integers. By 0 we denote the mxl vector
consisting of only zeros and by e, thejth m x l unit vector; for convenience, we
do not indicate the dimension m in the notation for these vectors, hoping that
this will not cause confusion. We also introduce Nm+ = Nm\ {0}. For x, y e Nm,
by y < x we shall mean that x - y e f̂ lm.

In this paper, we shall represent probability distributions by their probabil-
ity functions. Therefore, for convenience, we shall refer to probability functions
as distributions.

By Pm and Tm, we denote the classes of distributions and functions, respec-
tively, on Î Jm; by <Pm0 the class of distributions in !Pm with a positive mass at zero,
and by Tm+ the class of distributions on Nm+.

F o r / e ?m, we let Pf denote the signed measure induced by/, that is,

XGA

Furthermore, we introduce v(f) = P/(Nm) and the marginal means fij (f) =
2 x e N Xjf(x) forj= 1, ..., m. When appearing in a formula, we assume that
these quantities exist and are finite. I f / e ^ , then v(f) = \.

We use the notation x+ = max (x, 0) for any real number x.

3. A DISTANCE MEASURE

Like in Sundt (20006), we apply the measure

s(f,g)=Tt\f(x)-g(x)\ (3.1)
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for the distance between functions / and g in Jm. This is a metric on fm- The
following theorem gives an alternative expression for e(f, g). As we shall see
later, this new expression will be convenient in some cases when one of the
functions has restricted support.

Theorem 3.1. Iff, g^7m satisfy v(|/|) < °° and v(\g\)<*>, then

-g&)\-v(f)+»<g)- (3-2)

xeNm

Proof. We have

e(f,g) = S |/(x)-g(x)|= 2(2(/(x)-g(x))+-(/(x)-g(x))),
x<=Nm xeNm

from which we obtain (3.2). •

The following corollary follows easily from Theorem 3.1.

Corollary 3.1. Under the assumptions of Theorem 3.1, we assume that g(x) > /(x)
when x & Nm \ A for some A c Nm. Then

e(f,g)=2j](f(x)-g(x))+-V(f)+v(g).

We now turn to the case when/,g E Tm.
As a distribution is non-negative and sums to one, the two following corol-

laries follow easily from Theorem 3.1 and Corollary 3.1.

Corollary 3.2. Iff g e <Pm, then

j:-g(x))+. (3.3)

Corollary 3.3. Iff, g e <Pm andf(x) = 0 when x e Nm \ A for some A c Nm, then

xeA

Corollary 3.4. Iff, g s <Pm, then

e(f,g)=2sup(Pf(A)-P(A))= sup \Pf(A)-Pg(A)\.
AcN A<zNf
AcNm A<zN

Proof. The first equality follows from (3.3), and as s(f,g) = e(g,f), we obtain
the second equality. •
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4. CONSTRUCTION OF DEPENDENT RANDOM VARIABLES
BY LINEAR TRANSFORMS

4A. In insurance mathematics, one has traditionally assumed that risks within
an insurance portfolio are independent. However, there is a growing interest
for modelling dependent risks. One way of doing this, is to construct depen-
dent random variables by using a linear transform of a vector of independent
random variables, cf. e.g. Ambagaspitiya (1999). In the present section, we shall
work in a somewhat more general framework as we consider linear transforms
of vectors of independent sub-vectors of random variables. We approximate
the distribution of such a vector by another distribution constructed in the
same way, using the same linear transform.

4B. We recall that the convolution f*g of two functions/ g e fm is defined by

0<y<x

By Theorem 4.1 in Sundt (20006) we have that if/, gt e(Pm (i = 1,..., 0, then

In Theorem 4.1 we shall give a generalisation of this result. To prove that theo-
rem, we shall need the following lemma.

Lemma 4.1. Let/, § e % and define f, g &Jmby

f/(n) (x
10 (otherwise)

J£() (
[0, (otherwise)

where A is an mxr matrix with non-negative integer-valued elements and full
rank r<m. Then s(f, g) =s(f, g).

Proof. We have

which proves the lemma. •

The impact of Lemma 4.1 is more easily seen in the case of distributions;
if the r x 1 random vector U has distribution / then AU has distribution / .

To more easily see the impact of the following result, we express it in terms
of random variables.
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Theorem 4.1. Let U = (itf1)',..., U«') ' and V = (V*1)',..., V«') ' be r x 1 random
vectors of mutually independent sub-vectors \J^\ ...,UW ^ ^
pectively. For i= 1,...,/, U^ andY® are of dimension r, x 1 ( i
?/!«> distributions are f and gj respectively, both in %r Let f and g denote the
distributions of the random vectors X = AU and Y = AV respectively, where A =
(A^), ...,AW) is an mxr matrix with non-negative integer-valued elements;
for i=l, ..., t, the sub-matrix A^ is of dimension m x r, and full rank rt<m.
Then

ile(fi,gi)- (4-3)

Proof. For / = 1, .. . ,?, l e t / and gt denote the distributions of X® =
and YW = A^V^ respectively. Lemma 4.1 gives that e(Jh g,) = e(/J, g,). How-
ever, we also have that X^, ..., X^ are mutually independent, and that Y'1),
..., Y« are mutually independent. Furthermore, X = 2)=1X(/) and Y = 2|=1Y(0.
Thus,/= *'i=xfi and g = *'i=x gh and application of (4.2) gives

,g) = el*fi,*g)j<'te(fi,§l)=j]e(fi,gi),
\'~ l~l I i=\ i=l

which proves the theorem. D

4C. Let us now look at some special cases:

i) For each /, we let r, = m and let A, be the mxm identity matrix. Then
/ = *'i=l f and g = *'i=l gh and (4.3) reduces to (4.2).

ii) We now consider a method that is often applied for obtaining multivariate
distributions from univariate distributions. Let U= (UQ, U\, ..., Um)' be a
vector of independent non-negative integer-valued random variables, and
let X = (Xu ..., XJ' with Xt= Uo + Ut for i= 1, ...,m. The distribution of
X is denoted by/and the distribution of Ut byf (i = 0,1, ...,m). The ran-
dom vectors V and Y are defined correspondingly, and we denote by g the
distribution of Y, and by gt the distribution of V{ (i = 0, 1, ..., m). Then
X = AU and Y = AV with A = (2T e,, e,,..., em), and Theorem 4.1 gives that

In the particular case when the g,s are Poisson distributions, there exist
recursions for evaluating g, or, more generally, compound distributions of
Type 2 of subsection 5A where g is the counting distribution, cf. Sundt
(2000c).

iii) We now assume that r = m, and that A is the mxm identity matrix. Then
X = U and Y = V, and we have

f ) ; g(x)=flgj(x
(')) (xeNJ (4.4)
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with x® = (x^i-i r. + i,..., x-£< r V for / = 1,...,/. We see that if X can be split

into mutually independent sub-vectors and the corresponding sub-vectors
of Y are also mutually independent, then the distance between the distri-
butions of X and Y is bounded by the sum of the distances within each
pair of distributions of corresponding sub-vectors. This property becomes
even more interesting if all of these sub-vectors are of the same dimen-
sion. Then the bound given by Theorem 4.1 for the distance between the
distributions of U and V, is the same as the bound given by (4.2) for the
distance between the distributions of 2 '=1 U® and 2 '=] V®. As we have found
the same upper bound for these two distances, it is natural to ask what
relation is there between them. From the following theorem, we obtain
that the distance between the distributions of U and V is greater than or
equal to the distance between the distributions of 2'_, U® and 2 ' V®.

Theorem 4.2. For i - 1,..., t, let /J, g,
(4.4) with m = tr. Then

Proof. We have

and let f, g &Jtr be defined by

- , **,«

2
xeM,

2 - 2

D
xeNr

By combining Theorems 4.1 and 4.2, we see that if/, g, e % for / = 1,2,...,
r, then

Thus, as a bound, 2j=oe(/I-, ft) is sharper for e (/", g) than for e(*'i=lft, *'=]
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5. COMPOUND DISTRIBUTIONS

5A. In the univariate case, a compound distribution is the distribution of the
sum of independent and identically distributed random variables, where the
number of terms is itself a random variable assumed to be independent of
the terms. Denoting by p e 9X the distribution of the number of terms (the
counting distribution) and by h e <PX the distribution of the terms (the severity
distribution), the compound distribution p v his given by

(pVh)(x)=Zp(n)h"\x). (veN,) (5.1)
neN1

In the actuarial literature, the concept of compound distributions has been
extended to the multivariate case in two different ways:

1. The counting distribution is still univariate, but the severities are m-dimen-
sional. In this setting, we have

(pVA)(x)= 2 > (")*"* (x) ( x e N J " (5.2)

with p € !?[ and h e Pm. In an actuarial setting, we can interpret the count-
ing variable as the number of claim events in an insurance portfolio, and
the ith severity vector as the vector of claim amounts incurred by the rth
claim event for the m policies within the portfolio.

2. The counting distribution is m-variate, and there are m univariate severity
distributions. In this setting, we have

/(*,), ( x £ N J (5.3)
7=1

where p e 2>m and h = (/zb ..., hm) is the vector of the m severity distributions
hx, ..., hm &TX. In an actuarial setting, we can interpret they'th counting
variable as the number of claims for the yth policy in an insurance portfolio
and the y'th severity distribution as the severity distribution of that policy.

Sundt (2000c) discusses the second setting and gives references for both
settings.

A natural combination of the two models would be to assume that the
counting distribution is multivariate like in the second setting, but now
assume that the severity distributions could also be multivariate. Keeping m
as the dimension of the aggregate severity vector, we denote by k the dimen-
sion of the counting vector, so that/? e <£k, and let h = (hu ..., /?<.) where /z, e rPm

foTj=\,...,k with 2 .=.mj=m. We obtain

p(n)t\hn/\xw). (XGNJ (5.4)
7=1

Here we have split the m x 1 vector x into k sub-vectors so that x = (x^' , . . . , x^ ' ) '
where xW is w^-dimensional.
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5B. To allow for approximations to distributions, it is natural to extend the
definitions given in the previous subsection so that we obtain compound func-
tions where we allow for the counting distributions and severity distributions
to be replaced with functions that are not necessarily distributions themselves.
In the following, we shall allow for the counting distributions to be replaced
with more general functions, but keep the severity distributions as distributions.

Sundt (20006) showed that if p, q e Jx and h e Pm+ in the first setting in the
previous subsection, then we have

e(pVh,qVh)<e(p,q); (5.5)

in the univariate case (m = 1), this result was shown in Dhaene and Sundt
(1997).

The inequality (5.5) says that if we keep the severity distribution fixed, but
approximate the counting distribution, then the distance between the aggre-
gate claims distribution and its approximation is bounded by the distance
between the counting distribution and its approximation. It is natural to
believe that this result extends to the generalised setting of (5.4). In the next
subsection, we shall prove this conjecture in an even more general setting.

The reason for the constraint h(0) = 0 for (5.5) is to ensure the existence of
(pvh) (x) in (5.2), considering the infinite summation area; under the constraint,
we have hn*(x) = 0 when n > x. so that we get

(pVh)(x)=j}p(n)hn\x), (xeNJ
n = 0

where the summation area is finite. For proper distributions, the constraint
does not represent a real restriction as if it is not satisfied, then we can rede-
fine the severity distribution and counting distribution by

p(n)=p(n)(l-h(0))n. («GN,)

For the more general (5.4), we can reason analogously. When assuming
that hj e Tm. for j= I,..., k, we obtain

and if the assumption is not satisfied, then we can redefine the severity distri-
butions and the counting distribution by
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5C. A key issue for compound distributions as discussed above, is that the
severities (or severity vectors) for a fixed counting variable are mutually inde-
pendent and identically distributed and independent of the counting vari-
ables. In an insurance context, this assumption excludes situations like when,
say, a high number of claims could indicate that the amounts of the individ-
ual claims would tend to be low, or when the claims are positively correlated
so that if some of the claims are large, then the others would also tend to be
large.

Furthermore, in the settings where we assumed that a claim event generated
a vector of claims from the individual policies in the portfolio, we considered
the number of policies to be a fixed non-random number. It is tempting to
allow for a random number of policies that could depend on the number of
claim events and the severities.

We shall now extend our model to allow for such effects.
Let h= {^0}neN , where ha is the joint probability function of a non-negative

integer-valued random variable and a random vector of dimension equal to this
random variable and with non-negative integer-valued elements. For p e %
we define

m,x)= 2>(n)/*n(™>x)> (mGNiSxeNJ (5.6)

assuming that this sum exists. Analogous to what we did at the end of subsec-
tion 5B, we can achieve this by assuming that hB(m, 0) = 0 for all neNk and

If the dimension of the severity vector is a fixed non-random number m > k,
then we drop this dimension as argument in hn. In this case, we have ha e Tm.
The case represented by (5.4) is obtained by letting

K(x)=f[hn/\x&). (xeNJ (5.7)

To be able to compare two compound functions pv H and q v h in the
general setting with a random number of policies, we have to generalise the
distance measure e to functions of vectors of varying dimension. With a natural
extension of the definition (3.1), we let

e(pVH,q\/ £)= 2 2|(pVfi)(/w,x)

We are now ready to generalise the bound (5.5).

Theorem 5.1. For p, q&Jk and h- {^n}neN defined as above, we have

e(pVH,qVfi)<e(p,q).
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Proof. We have

2 2

which proves the theorem. •

6. MULTIVARIATE BERNOULLI DISTRIBUTIONS

6A. In this section, we shall apply the results of the earlier sections to multi-
variate Bernoulli distributions.

A distribution p e fPm is called an m-variate Bernoulli distribution if p(x) = 0
unless all the elements of x are equal to zero or one. In this case, Corollary 3.3
gives that

e(p,q)=2 (6.1)
xg{0,l}™

for any distribution q e fpm.
Multivariate Bernoulli distributions can give fairly transparent illustra-

tions to the theory. Furthermore, the theory for error bounds discussed in the
present paper consists of several building blocks that can be applied together
in various ways, and we believe that the results on multivariate Bernoulli dis-
tributions may also be useful in connection with compound distributions and
convolutions.

6B. Let p e !Pm be a multivariate Bernoulli distribution with

rc0 <P = 0 )

(6.2)

0 (otherwise)

and 7o^
For p, q € rPm with p given by (6.2), (6.1) gives

(6.3)
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Theorem 6.1. If p,q eTm with p given by (6.2) and such that p and q have the
same marginal means, then

(6.4)
7 = 1 y = l

Proof. For j - 1, ..., m, we have

2
neNm+

On the other hand,

7=1 7=1

that is, n0 ^ ?(0). Insertion in (6.3) gives (6.4).

In the univariate case (m = 1), (6.4) gives

e(p,q)=2(nl-q(l)).

This result was proved by Dhaene and Sundt (1997).

•

(6.5)

6C. As discussed in Sundt (2000a, b), any distribution p e fPm0 can be expressed
as a compound distribution p = r v h of Case 1 of subsection 5A with r 6 Pl0

being a (univariate) Bernoulli distribution given by

r (0 )= />(0 )= l - r ( l )

and h e Tm+ given by

If we approximate/? with a # €iPm in the form q = svh with 5 €2^, then (5.5)
gives e(>, ̂ r)<e(r,5).

A natural question is now, how sharp is the bound e(r, 5)? In the following,
we shall consider this question in the special case when p is a multivariate
Bernoulli distribution and s is a Poisson distribution with parameter equal to
A = r(l), that is,

Then

= s(0)=e-x (6.6)
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and for/= 1, ..., m

<6-7)

Furthermore, (6.5) gives

e(r,s)=2(r(l)-s(l))=2(X-Ae-x),

that is,

e(r,s)=22.(l-e~x). (6.8)

Let us first consider the case when p is given by (6.2) with n0 > 0. Then,
insertion of (6.7) in (6.4) gives

Let us now turn to the case with m = 2. Then

q{\, \) = s{\)h{\, 1)+ 2y(2)*(l,0)A(0,1)= e " W , l)+/»(l,0)/»(0,1)),

and by inserting this together with (6.6) and (6.7) in (6.1) and utilising (6.8)
we obtain after some calculus

From this we see that e(r, s) = e(p, q) if p(0,1)> />(l>0), o r /KM) is equal to
zero. The case p{\,\)-0 is the bivariate case of (6.2). The case p(0,1) = 0
corresponds to a situation where an insurance policy can have two sorts of
claims, and a claim of type one can occur only in connection with a claim of
type two, e.g. if type one is a special case of type two.
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