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Abstract. The nonlinear coupling between high-frequency surface plasmons (SPs)
and low-frequency ion oscillations on metallic plasma surfaces with charged nano-
particles is considered. It is shown that a finite-amplitude SP wave is modulation-
ally unstable against the excitation of non-resonant ion oscillations. The growth
rates and thresholds of the modulational instabilities are presented.

Heating as well as ablation of materials by intense light are of significant in-
terest [1–3]. Intense light impinging on a metallic plasma–vacuum/dielectric inter-
face can excite high-frequency surface plasmons (SPs) (also called surface plasma
waves (SPWs)) owing to mode conversion [4] and parametric [5] processes. A large-
amplitude SPW, which is an electron density wave, can ohmically heat electrons,
and produce nonlinear absorption of the wave energy onto the metallic plasma–
vacuum/dielectric interface. Nonlinear SPWs may appear in the form of localized
excitations due to a balance between the medium nonlinearity and wave dispersion.
Surface plasma wave solitons occurring at the interface between a dielectric medium
(air) and a nonlinear material have indeed been observed in laboratory experiments
[6, 7]. The promise [8–10] of plasmonics has been recognized in the context of
its potential applications in improving the resolution of microscopes as well as
in enhancing the efficiency of light-emitting diodes and chemical and biological
sensors/detectors. Plasmonic circuits could help the designers of computer chips to
build fast interconnects that could move large amounts of data across the chips.
In the present letter, we consider the amplitude modulation of a large-amplitude

SPW that is propagating along a metallic plasma–vacuum/dielectric surface coated
with charged nanoparticles. In such a condensed matter Fermi plasma, a quantum
force associated with the Bohm potential [11] acts on the electrons, in addition to
the electromagnetic forces. Thus, the dispersion properties of the high-frequency
SPWs and low-frequency ion oscillations (IOs) are significantly affected by the
quantum force. The SPWs interacting nonlinearly with the IOs would generate
SP sidebands. The latter, in turn, would interact with the SP pump to produce a
low-frequency ponderomotive force, which can eventually reinforce the IOs. As a
result, there appear modulational instabilities [12] due to which the sidebands and
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the IOs grow at the expense of the SP pump energy. The modulational instability
may be responsible for the formation of envelope solitons [13–15].
The dynamics of nonlinearly coupled SPWs and IOs on a metallic plasma–

vacuum/dielectric surface is governed by the continuity equation

∂nj1

∂t
+ nj0∇ · vj = 0, (1)

the momentum equation

mj

(
∂

∂t
+ vj · ∇

)
vj = qjE− kBTFj

nj0
∇nj1 +

�
2

4mjnj0
∇∇2nj1 , (2)

and the Poisson equation

∇ · E= 4π(qini1 + qene1), (3)

where nj1 (�nj0) is a perturbation of the density of the particle species j (j equals e
for electrons and i for ions), nj0 is the unperturbed particle number density, vj is the
fluid velocity perturbation, E = −∇φ is the electrostatic field, φ is the electrostatic
potential, qj = −e (Zie) for the electrons (ions), e is the magnitude of the electron
charge, Zi is the ion charge state,mj is the mass, kB is the Boltzmann constant, and
TFj is the Fermi temperature (in fact, for a condensed Fermi plasma, we have [16]
kBTFj = (�2/2mj )(3π2)1/3n

2/3
j0 , where � is the Planck constant divided by 2π). The

third term on the right-hand side of (2) is the quantum force associated with the
Bohm potential [11], which can cause electron tunneling. At equilibrium, we have
Zini0 = ne0 +Zdnd0 , where Zd is the number of electrons residing on nanoparticles.
The latter are supposed to be immobile, since we are considering surface wave
phenomena on time scales much shorter than the nanoparticle plasma period.
The frequency ω of the SPW on the metallic plasma–vacuum interface can be

obtained from (1)–(3) by supposing that the ions do not participate in the SPW
dynamics. Following the general approach of [17], we obtain

ω ≈
ωpe√

2

(
1 +

kVFe√
2ωpe

√
1 + �2k2/4m2

eV
2
Fe

)
, (4)

where k is the wavenumber (along the direction of the plasma–vacuum/dielectric
interface), ωpe = (4πnee

2/me)1/2 is the electron plasma frequency, and VFe =
(kBTFe/me)1/2 is the Fermi thermal speed. In the limit �k/2meVFe � 1, we have
from (4)

ω ≈
ωpe√

2

(
1 +

�k2

2
√

2meωpe

)
≡

ωpe√
2
(1 + β). (5)

The group velocity and the group dispersion of the SPWs, given by (5), are Vg =
∂ω/∂k = �k/2me and ∂Vg/∂k = �/2me , respectively.
We now consider the amplitude modulation of the SPWs, given by (5). Due to

the nonlinear coupling between the SPW pump and the IOs, one encounters an
envelope of the SPWs whose electric field varies slowly in space and time. The
equation governing the envelope of the SPW in the presence of the IOs is

i

(
∂

∂τ
+ Vg

∂

∂ξ

)
Ez + P

∂2Ez

∂ξ2 −
ωp

2
√

2
nes
ne0

Ez = 0, (6)

where ∂Ez/∂τ � ωEz , ∂Ez/∂ξ � kEz , Ez is the SPW electric field along the
ξ-direction at the surface, P ≈ �/4me, and ωp = (4πne0e

2/me)1/2 is the unperturbed
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plasma frequency. The slowly varying time and space variables in (6) are denoted
here by τ and ξ, respectively. Furthermore, the electron number density perturba-
tion associated with the low-phase speed IOs is denoted by nes (�ne0). It is obtained
from the inertialess electron momentum

e2

meω2
p(1 + β)2

∂|Ez |2 exp(−2kx)
∂ξ

= e
∂ϕ

∂ξ
+

�
2

4mene0

∂3nes
∂3ξ

, (7)

where x is the direction normal to the surface, and ϕ is the electrostatic potential
associated with the IOs. The left-hand side of (7) represents the ponderomotive
force of the SPW. We note that (7) is valid for ∂2nes/∂τ 2 � (�2/4m2

e )∂
4nes/∂ξ4

and kBTFenes � (�2/4me)∂2nes/∂ξ2 , so that the electron inertial and the electron
pressure gradient are neglected, respectively.
The electrons are coupled to the ions via the electrostatic potential ϕ. The

equations governing the ion dynamics supporting IOs are

∂nis
∂τ

+ ni0
∂u

∂ξ
= 0, (8)

and

mi
∂u

∂τ
= − e

∂ϕ

∂ξ
, (9)

where nis (�ni0) is the ion number density perturbation, u is the ion fluid velocity,
and mi is the ion mass. The ion quantum force and the ponderomotive force of the
SPWs acting on the ion fluid are smaller by a factor me/mi (in comparison to that
on the electrons), and therefore ignored in (9).
We now combine (7)–(9) by using the quasi-neutrality condition nes =nis, to

obtain the wave equation for the IOs [18] in the presence of the SPWs,(
∂2

∂τ 2 +
α�

2

4memi

∂4

∂ξ4

)
nes
ne0

=α
exp(−2kx)

4πne0mi(1 + β)2

∂2 |Ez |2
∂ξ2 , (10)

where α =ni0/ne0. We see that the effect of charged nanoparticles appears through
α, which is larger than unity in our plasma.
Equations (6) and (10) are the desired equations for investigating the mod-

ulational instability of a constant-amplitude SP pump. Following the standard
technique [19] of parametric instability investigations, we then obtain the nonlinear
dispersion relation

(Ω2 − Ω2
q )[(Ω − KVg)2 − P 2K4 ] = αPK4 ωp|Ez0 |2 exp(−2kx)

4
√

2πne0mi(1 + β)2
(11)

where Ωq =
√

α�K2/2
√

memi, Ω and K are the frequency and the wavenumber of
the IOs, respectively, and Ez0 is the electric field of the SP pump.
Two comments are in order. First, for Ω � KVg, we have from (11)

Ω4 − Ω2(Ω2
q + P 2K4) + Ω2

qP
2K4 − αPK4 ωp|Ez0 |2 exp(−2kx)

4
√

2πne0mi(1 + β)2
= 0, (12)

which has the solutions

Ω2 =
1
2
(
Ω2

q + P 2K4) ± 1
2

[(
Ω2

q − P 2K4)2 + αPK4 ωp|Ez0 |2 exp(−2kx)√
2πne0mi(1 + β)2

]1/2

. (13)
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Equation (13) admits a modulational instability, and the growth rate is obtained
by letting Ω = Ωr + iΩi, where Ωr and Ωi are the real and imaginary parts of the
modulation frequency. Second, for Ω�Ωq , (11) reduces to

(Ω − KVg)2 = PK4
[
P − α

ωp|Ez0 |2 exp(−2kx)
4
√

2πne0mi(1 + β)2Ω2
q

]
, (14)

which predicts an oscillatory modulational instability if

|Ez0 |2 exp(−2kx) >

√
2πmine0�Ω2

q (1 + β)2

αmeωp
. (15)

To summarize, we have considered the nonlinear coupling between finite-
amplitude SPWs and IOs at metallic plasma–vacuum/dielectric surfaces with
charged nanoparticles. It is shown that such nonlinear interactions lead to mod-
ulational instabilities via which the SPW sidebands and the IOs grow on account
of the SPW pump energy. We expect that modulationally unstable waves will
evolve in the form of envelope SPW solitons. The latter are localized excitations,
which can transport the wave energy at metallic plasma surfaces having charged
nanoparticles.
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