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Abstract

Let BP be the bicyclic semigroup over P = G n [1, oo) where G is a subgroup of the multi-
plicative group of positive real numbers. If + is an addition which makes BP, with its usual
multiplication, into a semiring, then + is idempotent, and P is embedded as a sub-semiring
in BP, and for each x'mP, l ^ x + K x and 1 ^ 1+ x < x. We show that any idempotent addition
on P with these inequalities holding is max, min or trivial. The trivial addition on P extends
trivially. If addition on P is min, then let

U = {(x, y) 6 BP: (x, y) + (l, 1) = (1,1)},

U' = {(x, y) e BP: (1, l)+(x, y) = (1, 1)},

and

*i = {(*> y) e BP: x>y or x = 1 = y}

We characterize all additions on BP in terms of U and V; and, in particular, if U = U' is
a proper subset of Rt, we demonstrate a correspondence between all such additions and certain
homomorphisms of G to (0, oo).

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 16 A 80; secondary 22 A 15.

Keywords: topological semirings, bicyclic semigroup, inverse semigroup.

1. Introduction

Let G be a subgroup of the positive real numbers under ordinary multiplication,
and let P = P{G) = Gn[l,oo). Let BP=PxP together with this multiplication:

, w % / xz(x,y)(z,w) =

where yt\z = min(y,z). If P = {l,x,x2,...}, where x> 1, then BP is the bicyclic
419
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semigroup, whose structure is well known (see, for example, Clifford and Preston
(1961)).

An inverse semigroup is a semigroup S with the property that for any x in S
there is a unique element x~x in S such that xx~1x = x and x-1xx~x = x-1. The
bicyclic semigroup is such a semigroup, and so is BP for any P defined as above.

A (topological) semiring is a non-empty Hausdorff space T together with two
continuous associative binary operations, + and •, such that for any x, y and
zinT,

= (z-x)+{z-y) and (x+y)-z = (x-z)

If T has the additional property that T is multiplicatively a topological inverse
semigroup (one in which the inversion operation as well as the multiplication is
continuous), then we define T to be an inverse semiring.

In this paper we describe the additions which may be placed on BP so that,
together with the given multiplication and the product topology, BP becomes an
inverse semiring, which we will call a bicyclic semiring.

In Section 2, we show that any semiring addition on BP is idempotent; that is,
for any (x,y) in BP, (x,y)+(x,y) = (x,y). We also show that P is embedded in BP

as a subsemiring, and furthermore that on P, for any x, U x + U i and
K 1 +*<;c. For this reason we study in Section 1 those idempotent additions on
P which have this property, and show that there are only four possibilities:

(i) x+y = x for each x,y in P (left trivial addition);
(ii) x+y = y for each x,y in P (right trivial addition);
(iii) x+y = xAy for each x,y in P (minaddition);
(iv) x+y = xvy for each x,y in P (max addition).

This generalizes the result of Pearson (1966) for the case P = [l,oo).
Section 3 is devoted to a characterization of those additions on BP which, when

restricted to P x {1}, are min, and have the property that the set

U = {(x,y)eBP: (x,y)+(l, 1) = (1,1)}

is properly contained in

R1 = {(x,y)eBP:x>yoTx=l=y}.

We show that each such addition corresponds to a homomorphism/: G->(0,oo)
such that graph (/P)£i?x and for each (x,y) in BP, graph (/) meets

D(x,y) = {(ax,ay):a>0}

in a unique point of G x G. We point out that if addition is max on P x {1}, the
situation is symmetrical. All other cases, including the trivial, are discussed in
Section 2.
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The author would like to thank the referee for many helpful suggestions; in
particular, Lemma 1.2 and its use in proving Lemma 1.3 were pointed out by the
referee.

1. Idempotent additions on P

In this section we examine idempotent additions on P. We first remark that
since G is either a cyclic subgroup of (0, oo) or dense in (0, oo), it follows that P is
either a cyclic subsemigroup of [l,oo) or dense in [l,oo).

LEMMA 1.1. Let (R,-,+) be a semiring with an additively idempotent multi-
plicative identity 1. Then

(a) (R, +) is idempotent.
(b) The sets S = {yeR:y+\ = y},S' = {yeR:l+y = y},U = {yeR:y+l = 1},

and U' = {yeR: 1 +y = 1} are closedsubsemirings of R.

PROOF, (a) If xeR, x+x = x(l +1) = x(l) = x.

(b) It is almost immediate that all these sets are closed additive subsemigroups
of R, and that 1 is an element of each. Now let x and y be elements of S. Then
xy+1 = x(y+1) +1 = xy+x+1 = xy+x = x(y+1) = xy, so xyeS. Similarly, S'
is multiplicatively closed. If x and y are in U, then

=Xy+y+l = ( * + 1 ) J > + 1 =y+l = 1,

so xye U; similarly U' is multiplicatively closed.

We now wish to describe the idempotent additions on P with the property that
and 1< 1 +;c«Sx for all JC. First we need a lemma.

LEMMA 1.2. Let Tbe a subsemigroup of([0, oo), +), and let Q be a subsemigroup
of T such that 0 is a limit point of Q. Then T=Q*, the closure of Q in T.

PROOF. Let x be an element of T and let 0 < e < x. Then there is a positive integer
N such that n^N implies that (2n + l)s>x. Hence, ne>x—(n+l)e and so
n(x+e)>(n + l)(x-e), so that (x+e)/(n + l)>(x~e)/n. Thus,

(0,x+e)
N '

Now since 0 is a limit point of Q, there exists some s in Qn(0,(x+e)/N) and
so se((x-e)/n,(x+e)/n) for some n^N. Hence, nseQn(x-e,x+e) and so
Qn(x-e,x+e) ± 0. This shows that xeQ* and so T= Q*.
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Now since ([0,oo), +) is isomorphic to ([l,oo), •) this lemma shows that for
any subsemigroup P of ([l,°o), •) and subsemigroup Q of P having 1 as a limit
point, we have Q* =P.

LEMMA 1.3. Let P be dense in [l,oo), and let + be a semiring addition on P with
the property that for any x in P, U X + K J : and l^l+x4:X. Then either P = S
orP=U. Also, either P = S' or P = U'.

PROOF. If there is some x in P with [l,x]£ U, then P= \Jn^U
so U = P. Hence, if U=£P, then for each x>\, there is a y in (l,x) with y$U.
If j e S t h e n ( l , x ) n S # 0 . If y$S, then 1<^+1<7 so y+le(l,x). Moreover,
(y+l) + l =y+(l + l) = y+l and so y+leS. Hence, in this case also,
(1, x) n Sy 0. Thus (1, x) n 5 / 0 for any x > 1 so 1 is a limit point of S. The above
lemma shows S* = P, and since S is closed, S = P.

We now prove a similar result for the case when P is cyclic. In this case, we are
able to drop the hypothesis that 1 <JC+ K x and K 1 +*< x. We first need the
following technical lemma.

LEMMA 1.4. Let P = Gn[l, oo) for any subgroup G 0/(O,oo), and let + be an
idempotent semiring addition on P. Let xeP, and let y = 1 +x. Ify>x, then

(a) y/x+l = y/x, and hence yn/xn+1 = yn/xn for every positive integer n;
(b) yn/xn + x =yn+1/xnfor every positive integer n;
(c) for every positive integer n and for each p^n such that yp>xn,

PROOF, (a) x(y/x+l) = y+x = 1+x+x = l+x = y and so by cancellation,
y/x+l = y/x. Since S is a multiplicative semigroup, (y/x)n+1 = (y/x)n for every n.

(b) For n = 1, y/x+x = y/x+1 +x = y/x+y = (y/x)(l +x) = {y/x)y = y%/x.
Now suppose that yn~1/xn~1+x = yn/xn~K Then

yn/xn+x = yn/xn +1 + x = yn/xn+y = (y/x) O*"-1/*""1+x)

= (y/x)(yn/xn-1) = yn+1/xn.

(c) Let p = n - i. The statement that yn~i/xn +1 = yn/xn is true for i = 0 by (a).
Now suppose that _y»-<i-1» > xn and that 0>n-(i-1)/xn) +1 = / / x " . Then >>"-* > xn,
we have

y[(yn-i/xn)+1] = cr-w-w/jc'O+.y =

= yn/xn+ l+x = yn/xn+x = yn+^xn = y(yn/xn)
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and so
yn-4jxn+\ ==ynlxnm

LEMMA 1.5. Let P be cyclic, and let + be an idempotent semiring addition on P.
IfS, U, S' and U' are defined as in Lemma 1.1, then P = S or P = U; and similarly,
P = S' orP = V.

PROOF. We show the lemma for S' and U'. Since 5" and U' are multiplicative
semigroups, it is enough to show that l + x = l o r l + x = x where x is the generator
of P. Suppose that 1+ x = y = xm for some integer m > 1, and that x +1 = xn for
some integer n ̂  0. Then

xn = x+l= Cx"1/*7"-1) +1 = (ylx™-1) +1 = (j-"1-1/*"1"1) +1 (by Lemma 1.4(c))

= ym-l/^m-l (by Lemma 1.4(a)) = X™lm-l)-lm-l) = x(m-»\

and hence n = (m—l)2. Now since

(y*/x2)(l +x2) = y*/x*+f = y(ylx*+y) = y(y/x2+1

= y(y*/x*+y) = y*(y/x*+1) = /0>7*2),

we have l+x2 = f, and similarly, JC2+ 1 = (xn)2 = x2n. But

^2 _̂ 2 = y/xm~2 + 1 = y>m-2lxm-2 _ -̂in(»n-2)lx>n-2 _

and hence 2« = (m-l)(m-2) and so 2(w-l)2 = (/n-l)(m-2). Solving this
quadratic equation gives m = 0 or m = ;, contradicting the assumption that m > 1.
Thus /M is either 0 or 1. Similarly, n = 0 or n = 1.

THEOREM 1.6. TfP w Gn [l,oo) wAere G w any subgroup of[0,<x>), and if + is a
semiring addition with the property that/or every xinP,l^x+l^x and K 1 + x < x,
then one of the following describes the addition:

(a) for each x,y in P, x+y = x;
(b) for each x,y in P, x+y = y;
(c) for each x,y in P, x+y = xvy;
(d) /or eacA x.j' in P, x+y =

PROOF. Lemmas 1.3 and 1.5 show that exactly one of the following is true for
every x in P:

(i) x+\=xand 1+x = 1;
(ii) x+1 = 1 and l+x = x;
(iii) * + l = 1+*==*;
(iv)
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If (i) is true, then for each x and y in P,

x+y = (x+l)+y = x+(l+y) = x+l = x,

and similarly, if (ii) is true, then for each x,y in P,

x+y = y.
If (iii) is true, and if x<y, then

x+y = x(l +y/x) = x(y/x) = y,
while if x>y, then

x+y = (x/y+l)y = (x/y)y = x

and so in either case x+y = JC wy. Similarly, if (iv) is true then

REMARK 1.7. We conjecture that the hypothesis l < x + l < x and U
may be omitted from the dense case for P. The work of Pearson (1966) and Lemma
1.5 above show that it may be omitted if P = [l,oo) or if P is cyclic.

2. Additions on Bp with t /2 Rr

In this section we first show that all semiring additions on BP are idempotent
and that the subset P x {1} is a subsemiring isomorphic to P and that for each x
in P, l < l + x < ; c and l < x + l < x . Thus, Theorem 1.6 applies and Px{l} is
additively max, min or trivial. We show immediately that the trivial addition on
Px{l} can only extend trivially and assume that Px{l} has the min addition.
In this case, we show that the set {(x,y)eBP: x<y) is contained in both S and S',
where these are defined for BP as in Lemma 1.1, and we describe the additions
in which U contains the set {(x,y)eBP: x>y or x = y=l}.

We remark for the reader that (1,1) is a multiplicative identity for BP, and that
for each element (x,y) of BP, (x,y)-x — (y,x). The multiplicative idempotents are
precisely the diagonal elements {(x,x)}.

LEMMA 2.1. If + is a semiring addition on BP, then BP is additively idempotent.

PROOF. Since (1,1) is a multiplicative identity for BP, then Lemma 1.1 implies
that it is sufficient to show (1,1) is an additive idempotent. Let (e,/) = (1,1)+(1,1).
If x> 1, we have

(xe/xAe,xf/xAe) = (x,x)(e,f) = (x,x)[(l, 1)+(1,1)] = (x,x)+(x,x)

= (x, 1) [(1,1)+(1, 1)](1,JC) = (x, lKe,f)(l,x)
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Thus, xAe = 1. Similarly, (xe,fx) = (e,f)(x,x) = (ex/fAX,fx/fAx) and so

/AX = 1 = e/\x.

Now since x> 1, e = 1 =/and so (1,1)+(1,1) = (1,1).

LEMMA 2.2. Let x> 1 be an element of P. Then there exists aeP such that
and (x, 1) + (1,1) = (a, 1), and there exists beP with b^x such that

Furthermore, (1, l) + (l,x) = (l,x/a) and(l,x)+(l, 1) = (l,x/b).

PROOF. We prove the assertion for a and x/a; the proof for b and xjb is similar.
Let (x, 1)+(1,1) = (c,c). Then

(xa,xc) = (xa,c)(l,x) = (x, l)(a,c)(l,x) = (x, 1) [(x, 1)+(1,l)](l,x)

= K*2, !)+(*, l)](l,x) = (x2,x)+(x,x) = [(x, 1) + (1, l)](x,x)

= (a, c) (x, x) = (ax/c A x, cx/c A x).

Thus, CAX = 1; but x> 1 and so c = 1. Now let (1,1)+(1,JC) = (1,s). Then since
(a/aAX,x/aAx) = (l,x)(a, 1) = (1,*) [(*, 1)+(1,1)] = (1,1)+(1,*) = (1, *X
we have a = a AX and hence s = x/a.

The following is now immediate, using Lemma 2.2 and Theorem 1.6.

THEOREM 2.3. i>x{l} is a subsemiring of BP which is multiplicatively isomorphic
to P, and hence the addition on Px {1} is either trivial, max or min.

We dispose of the trivial addition at once.

THEOREM 2.4. If + is a semiring addition on BP which is trivial when restricted
toPx{l}, then + is trivial on BP.

PROOF. Suppose + is left trivial on P x {1}. Then for any x in P,

) = (x,l) and (

and so the a of Lemma 2.2 is x and the b is 1, and hence (1, l)+(l,x) = (1,1) and
l, 1) = (1,x). Thus, for any (x,y) and (z,w) in BP,

(x, y)+(z, w) = [(x, y)+(z, y)]+{z, w) = (x, y)+[(z, y)+(z, w)]
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Hence, the addition on BP is left trivial. The situation is symmetrical for the
right trivial addition.

In the remainder of this section, we assume that addition on Px{l} is min;
in this case we will see that addition on {1} xP is max; it is easy to show that the
case where addition on Px{l} is max is completely symmetrical.

LEMMA 2.5. Suppose addition restricted to P x {1} is min, and let (x,y) eB P .
(a) If (z, w)eBP with x^z andy>w, then (x,y) + (z, w) = (x,y) = (z, w) + (x, y).
(b) Ifx<y, then (x,y) + (l, 1) = (x,y) = (1, l)+(x,y).
(c) Ifx^y, then there exist a and b in P with a^y andb^y such that

) = (a,a) and (1, l)+(x,y) = (b, b).

PROOF, (a) Since (x, 1) + (1,1) = (1,1) = (1, l)+(x, 1), the a and b of Lemma 2.2
are 1, so that (l,x)+(l, 1) = (1,1)+(1, JC) = (l,x) and hence for every x and y in P,

(x, l)+(l,y) = (x,

Thus, if x < z and y > w,

(x, y)+(z, w) = [(x, y) + (z, y)] + (z, w) = (x, y) + [(z, y) + (z, w)]

= (x,y)+(z,y) = (x,y).

(b) and (c) are proved as follows. Let (x,y)+(l, 1) = (a, c). Then

(axle A x, cx/c AX) = (a, c) (x, x) = [(x, y) + (1,1)] (x, x) = (x2/x A y, xy/x Ay)+(x, x),

which equals (x,y) if x<y and (x,x) if x^y. Thus, if x<y, then OX/CAX = x and
cx/c AX = y and so a = CAX. If a = c, then x = .y; but x<>» and so a = x and
hence c = .y. If x^y, then axle AX = x and CX/CAX = X and so a = c<x. Pre-
multiplying (a,c) by (;>,.}>), we find that if x^y, then asS>\ This completes the
proof of the lemma.

We now introduce some notation which will be referred to throughout the rest
of this paper. Let

R = {(x,y)eBP: x>y} and D = LnR = {(x,x): xeP}.
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As in Lemma 1.1,

and

U = {(x,y)eBP: (x,^) + (l,l) =

U' = {(x,y)eBP:(l,l) + (x,y) =

S = {(x,y)eBP: (x,^) + (l, 1) =

S' = {0c,y)eBP:(l,l)+(x,y) =

(1,

(1,

(x

.1)},

.1)},

(x,y)}.

Finally, for (x, y) in BP, let D(x,y) = {(ax,ay): a>0}, andletJR1 = (JR\£»)u{(l,

427

REMARK 2.6. If (x,j>) and (z,w) are two elements of BP, assume xs$z. Then one
and only one of the following statements is true:

(a) y^w;
(b) y<w and z/x<w/y;
(c) y < w and z/x > tv/y.
In case (a), (x,y)+(z, w) = (x,y) = (z, w)+(x,^) by Lemma 2.5. If either (b) or

(c) is true, then (x,y) + (z,w) = (x, 1)[(1, l) + (z/x,w/y)](l,y). Hence, in case (b),
(x,y) + (z, w) = (z,w) = (z,w)+(x,y), by Lemma 2.5, and it is evident that a
complete description of the addition on BP depends on a description of addition
by (1,1) on the subset R of BP. We have the following partial result: if (x,y) and
(z, w) are elements of BP with neither (x/z,y/w) nor (z/x, w/.y) in .R, then

We now examine the diagonal D of BP. If P is dense in [l,oo), then since
L\D^SnS' by Lemma 2.5 and D^L*, we have D^SnS' by Lemma 1.1, and
hence L = S = S'. Section 3 will be devoted to characterizing semiring additions
on BP such that D^SnS' and U is a proper subset of Rv

If P = {l,x, JC2, ...} for x> 1, then by Lemma 2.5, either (1, l) + (x,x) = (1,1) or
(1, l)+(x,x) = (x,x), and similarly for (x,x)+(l, 1). Now if (1, l) + (x,x) = (1,1),
suppose that for 1 ^k<n, (1, l)+(xk,xk) = (1,1). Then

(1, l)+(xn, xn) = [(1,

= (1, l)+[(xn-\xn-l)+(xn,xn)]

= (1,

Hence Z> £ # ' . If (1, l)+(x,x) = (x,x) then suppose that for 1

(l,l)+(x*,;c*) = (**,**).
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Then

(1,1)+ (*",**) = (1, l) + (x»-\ lXxsxW,**-1)

= (1, l) + (*^-1,1) [(1, lHteaflO,**-1)

= (1,1)+ (X""1, x"-1) + (xn, xn)

= (xn-\xn~v)+(xn,xn)

= (xn~\ 1) [(1,1) + (x, x)] (1, x"-1) = (x» *»),

and hence by induction DsS'. Similar manipulations hold for U and S. We
summarize this discussion as follows.

THEOREM 2.7. Suppose + is a semiring addition on BP.
(a) Either Z>£ U or D^S; also Z>£ {]' Or D^S'.
(b) IfP is dense in [l,oo), then D^SnS'.

LEMMA 2.8. Suppose + is min on Px {1}.

(a) If (x,y)eU (respectively, U') and z^x, then (z,y)eU (respectively, U').
(b) If D^S (respectively, D^S') and a~&\, then for every (x,y) in BP,

(ax,ay) + (x,y) = (ax, ay) (respectively, (x,y) + (ax,ay) = (ax, ay)).
(c) If D^S(respectively, Ds5 ' ) , andif(x,y)eU' (respectively, U

then (x/a,y/a)eU' (respectively, U).
(d) IfD^SnS' or Z>£ Un U', then + is abelian.

PROOF, (a) If (x, y)eU and z *s x, then

(z,y)+(U l) = (z,y)+l(x,y)+(l, l)] = i(z,y)+(x,y)]+(h l)

and so (z,y)eU.
(b) Let D^S and o> 1. Then

(fflCo^ + Cx^) = (x, l)[(a,a) + (l, l)](l,y) = (JC, \)(a,a)(\,y) = (ax,^).
(c) Let DsS, (x,y)eUr and l < a < ^ < x Then
(1, l) + (x/a,y/a) = (1, l)+(x,y) + (x/a,y/a) = (1, 1) + (JC,^) (by (b)) = (1,1)

and so (x/a,y/a) e V.
(d) To see that + is abelian, it is enough by Remark 2.6 to show that (1,1)

commutes additively with each element (x,y) of R. This is obvious if £>£ Un V.
If D^SnS', let (a,a) = (1, 1) + (JC,^) and (b,b) = (x,y) + (\, 1) as in Lemma 2.5.
Then

(b,b) = (1, l) + (b,b) = (1, l)+[(*,j;) + (l, 1)] = [(1,
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LEMMA 2.9. Let + be a semiring addition on BP which is min on Px{l}. If
/ )SU' (respectively, D^U), then R\D^U (respectively, R\D^U').

PROOF. Suppose Z)£ U'; then R = U' by Lemma 2.8(a). Suppose that R\D is
not contained in U. Then I»c S by Theorem 2.7 and there exist x and j such that
x>y with (*,J>)+(1, 1) = (a,a) for some a> 1. Then

, 1) = [(ox,ay) + (*,y)] + (l, 1) (by Lemma 2.8(b))

, 1)] = (ax, ay)+(a, a)

Hence,

= (x, j ) + (ax, ay)+(1,1) = (x, y)+(a2, a2),

which by Lemma 2.5 equals (a2, a2) if j><a2 and equals (a2b,a2b) for some b^l if
y >a2. This contradiction implies that R\D^U. Similarly, if Dc U, then R\D^U'.
If £>£ C/n t/\ then R=U=U'.

THEOREM 2.10. Let + be a semiring addition on BP which is min on Px {1}.
(a) One of the following is true:

(i) u=U' = R.
(ii) U=RandU' = Rv

(iii) U' = RandU = Rv

(iv) U=U' = RV

(v) U = U' is a proper subset of Rv

(b) In cases (i—iv),for (x,y) and (z, w) in BP,

I if(x/z,y/w)eU or (z/x,w/y)eU',

, v v w I, otherwise.

If + is max onPx{l}, then U and U' are subsets ofL, and for (x, y) and (z, w) in BP,

(xAz,yAw) if (x/z,y/w)eU or (z/x,w/y)eU',

(x,y)+(z,w) = i I xwAyz\
ixvz, 1 otherwise.
\ XAZ )

(c) IfP is dense in [l,oo), then only (v) can be true.
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PROOF, (a) follows from Theorem 2.7, and Lemma 2.9, and (b) is easy to verify.
For (c), we note that D^SnS' by Theorem 2.7b and since in cases (i-iv) above,
U= U*^D, (v) is the only possibility. We discuss this case in Section 3.

3. Additions on Bp with

In this section, we examine semiring additions on BP which have the property
that U is a proper subset of Rt = (R\D)u{(l, 1)}, which implies that Px{l} is
additively min. We stress that the situation in which P x {1} is max additively is
exactly symmetrical. Recall that by Lemma 2.8 (d) addition is abelian; furthermore,
Lemma 2.8(a),(c) imply that U= V is a subset of Rt bounded above by a non-
decreasing curve C. (The least U can be is Px{l}. In this case, it follows from
Remark 2.6 that for each (x,y) and (z, w) in BP,

In fact, if (x,y)eR, the "a" of Lemma 2.5 is y.)

LEMMA 3.1. Let + be a semiring addition on BP which is min onPx{l}. Suppose
that V is a proper subset o/Rv

(a) If (x,y)eR\ Band (1,1) +(x,y) = (a, a) for some a>\, then

if and only if c^ I/a; andifb>l, then (1, l)+(xb/a,yb/a) = (b,b).
(b) If(x,y)eL\B and if there is a d> 1 such that (x,y)+(d,d) = (px,py) where

P>1, then (x,y)+(w,w) = (x,y) if and only if y^w^d/p; and if b^l, then
(x,y)+(bd/p,bd/p) = (bx,by).

PROOF, (a) Let (x,y)eR\D and suppose (l,l)+(x,y) = (a,a) with
Since (a,d) + (x,y) = (a,a) + (l, 1)+(*,;>) = (a,a), we have (1, l)+(x/a,y/a) = (1,1)
and Lemma 2.8(c) implies that c^ I/a if and only if (1, l) + (xc,yc) = (1,1).

Now suppose that b^l and that (1, l) + (xb/a,yb/a) = (z,z) where z^yb/a.
If z< b/a, then since (z,z)+(xb/a,yb/d) = (z,z), we have

(l,l)+(xb/az,yb/az) = (l,l)

and so by the preceding paragraph, b/az < I/a and so b < z < b/a. This contradiction
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shows that z^b/a. Now

(b,b) = (b/a, lKa,a)(l,b/a) = (b/a, 1)[(1, l)+(x,y)](l,b/a)

= (b/a,b/a)+(xbla,yb/a) = (b/a,b/a) + (l, l)+(xb/a,yb/a)

and so (1, l)+(xbla,yb/a) = (6,*).
(b) Let {x,y)eL\D. Recall from Lemma 2.5(b) that (x,y) + (l,l) = (x,y).

Suppose that there is d> 1 such that (x,y)+(d,d)^(x,y). Then

(x,y) + (d,d) = (x, 1) [(1, l) + (dlx,d/y)](l,y) = (*/»>w)

where 1 <p < rf/^. By (b), (1,1) + (w/x, w/y) = (1,1) if and only if y sS w < d/p and if
b^\, then (l,l)+(bd/px,bd/py) = (b,b). Hence, (x, y) + (w, H>) = (x,j>) if and only

; and if b> 1, then (x,y)+(bd/p,bd/p) = (foc.fcy).

Now suppose that every (x, y) in 2? possesses an a = a^,^) as in Lemma 3.1;
then a = 1 if and only if (x, j>) e U and for & > 1, (xb,yb) $ U; in fact, using Lemma
2.8(c) we see that (x,y) eUif and only if a ̂  1. In Example 3.2, we let the curve C
be the graph of a non-decreasing homomorphism/, which intercepts

D(x,y) = {(tx,ty):t>0}

in a unique point (x/a,y/a) of GxG. We define an addition +f in terms of this
denominator a, and show that +f is a semiring addition. In Theorem 3.4 we show
that Example 3.2 actually characterizes all additions with U& proper subset oiRv

EXAMPLE 3.2. Let f be a continuous non-decreasing homomorphism from G to
((0,oo), •) with the properties that for each (x,y) in BP, graph if) meets
D{x,y) = {(qx,ay): a>0} in a unique point of GxG, and that graph (f\p)^Rv
Then we define the function 8: BP-+G so that for (x,y)eBP,B(x,y) is that unique
element ofG such that (x/B(x,y), ylB(x,y))e graph (/). If we define addition by

? vS\ - (xB(z,w)AzB(x,y) yB(z,w)AwB(x,y)\
Z'W)-\B(z,w)AB(x,y) ' B{z,w)AB{.x,y) )

then +f is a commutative semiring addition on BP and U = {(x,y)eR: y^f(x)} is
a proper subset ofRv

PROOF. TO aid in proving associativity, we establish the following facts: if (x,y)
(z, w) are elements of BP with B(x, y)=p and B(z, w) = q, and if y/x ^ w/z, then

(i) xq^zp and yq^pw,
(ii) if y^w thenp^q,
(iii) for any a in G such that (ax,ay)eBP, B(ax,ay) = qp.
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To see (i), note that y/x is the slope of D(x,y) and w/z is the slope of D(z, w) and
so since/is non-decreasing and (x/p,y/p) and (z/q,w/q) lie on graph(/), we have
x/p < z/q and y/p < w/q. Hence, if y Js w, q < wp/y ̂ p. Finally,

(ax/ap, ay/ap) = (x/p, y/p)

is the unique intersection of D(x,y) and graph(/). We note that closure follows
from these observations.

Now suppose fi(x,y) =/>, fi(z, w) = q and P(a,b) = c. If y/x^z/w^b/a, we have

= (x, y) + ((zc A aq)/(c A #), (we A bq)/(c Aq))

H»C/(C A q))

cAq) \cAp) \cAq) \cAq)
(yqc\

CAqJ y \CAq),

(yqc

\

flxqc\(apq\ tycq\lbpq\
\pAq) \pAqJ \pAq) \pAq)

.\c

P«\AC 2!L,AC

\pAq'
)

PAq)

Since this addition is clearly commutative, associativity is proven.
We prove distributivity in two parts. First note that if aeP with fi(a, \) = b and

if (x,y)eBP with fi(x,y) =p then fi(ax,y) = bp, for

y/bp = (y/p)(l/b) =f(x/p)f(a/b) =f(xa/pb).

Also if £(l,a) = c, then fi[(l,a)(x,y)] — fi(x/aAX,ay/aAx) = ap/aAx; for i
then ay/cp =f(\xa/cpa) and so fi(x/a,y) = cp/a, and if a^x, then

(ay/x)/(cp/x) = (a/c)(y/p) =f(\x/cp)

and so /?(!, ay/x) = cp/x.
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Now if (x,y) and (z,w) are two elements of BP with P(x,y) =p, f!(z,w) = q,
andif0(a,l) = £, then

\ PW ' P^q ) \ p/\q ' phq )

Now if 3̂(1, a) = c, then

(ha)[(x,y)+(z,w)]

aqAxqAzpAap' aqAxqAzpAap)

[ xcg \ / zcp \ 1 ay eg \ ( awep \
\(aAx)(aAz)) \(aAx)(aAz)) \(aAx)(aAz)J \(aAx)(aAz)J

\aAz) \aAx) \aAz) \aAx

ayv\
z)\aAx' OAX) \eiAz' aAz)

= (l,aXx,y)+(ha)(z,w).

Combining these two results gives

(a,b)[(x,y)+(z,W)] = (a, l)(l,b)[(x,y)+(*.»)]

= (a,b)(x,y)+(a,b)(z,w).

Hence, multiph'cation is distributive over this addition.
We remark that the proof of associativity of +f does not require tha t /be a

homomorphism; however, our proof of distributivity does. In part (c) of the
proof of Theorem 3.4 we will show the necessity of the homomorphism property
of/
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Now we show that j3 (and hence +f) is continuous. Without loss of generality
we can assume that P is dense in [l,oo). Let {(x^y^}^ be a sequence from BP

converging to a point (x,y) of BP, and let P(xn,yn)=pn. Since {(x^yj}^ is
convergent and hence bounded in P2, {pn}n=i is also bounded. (In fact {/>n}£U is
bounded below by some e>0), and hence has a subsequence {pn)^i which
converges to a point a in (0,oo). Then by definition of pn and the continuity of/,
y/a = limif(xnjpni)=f(limi(xnjpni))=f(x/a) and hence a = fi{x,y). It follows
that fi(xn,yn)-+p(x,y). This completes the proof that + , is a semiring addition.
Moreover, since P(x,y)^ 1 if and only if y^f(x), we have

= (xAp(x,y) yAp(x,y)\ = / p(x,y) p(x,y)
\lAp(x,y)' lAP(x,y)J \lAp(x,yyiAP(x,y

((1,1)

l
Hence, U = {(x,y)eR:

REMARK 3.3. The homomorphisms of [(0,oo), •] to [(0,oo), •] are the functions
{/a: a real} where fa(x) = xa for every x, and the ones which satisfy the conditions
of Example 3.2 must have 0 < a < l . Clearly, any such a satisfies the conditions
if P = [l,oo). However, suppose P is cyclic. Then we can calculate from the
relationship (x/p(x, y), y/P(x, y)) e graph (/) n G2, that if f{x) = x01 for every x in G,
then fi(x,y) = (y/xa)1/a-a\ and since P = {\,a,a\...} where a> 1, j8(l,c) must be
aft for some integer k. That is, j8(l,a) = a1''1-"" = afc and so k = 1/(1-a) and
hence a = (A:-1)/& if £ ^ 0. We show in part (b) of the proof of Theorem 3.4 that
every semiring addition on BP with P cyclic and U a proper subset of Rx is + a

where « = N/(N+1) for a non-negative integer iV.

THEOREM 3.4. Lef + bea semiring addition on BP which is min onPx {1}. Suppose
that U is a proper subset of Rv Then there exists a non-decreasing homomorphism
f: (7->-(0,oo) which satisfies the properties of Example 3.2 and + = + / as in
Example 3.2.

PROOF. We prove this theorem in several steps, which we state as follows,
(a) If h: BP-*Gu{0,oo} is defined so that

(sup{d:(x,y) + (d,d) (x,y)} if (x,y)eL,
h(x,y) =

(inf {a:(!,!)+(x/a, y/a) = (1,1)} if (*, y) e R,
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then h is well defined on BP, the range of h is actually contained in G, and for x
and y in P, h(x,y) = xy/h(y,x). Furthermore, for each {x,y) and (z, w) in BP, if
(z/x,w/y)eR\D, then

, w) -

(b) If P is cyclic, then there exists a non-negative integer N such that (x, y)e U
if and only if y^xN/lN+1); we let/(x) = xNnN+1), and in this case, for every (x,y)
in 5 P , p(x,y) = (y^+D/x*) where j8 is defined for /as in (3.2). If P is dense in
[l,oo) and/: G^-(0,oo) is defined by

(sup{yeP: (x,y)eU}
X

then/is a continuous non-decreasing function.
(c) If yS is defined for/as in Example 3.2 then h=fi in the dense case as well as

the cyclic. Hence, in either case, + = +f. Moreover,/is a homomorphism. We now
commence the proof.

PROOF, (a) It is a simple observation that h[x, x) = x whether calculated in R or
in L, and it follows from Lemma 3.1 that the range of h is contained in G u {0, co}.
Note that h(x,y) = 0 if and only if (x,y)eR\D and (1,\)+(ax,ay) = (1,1) for
every a^l/y; and h(x,y) = oo if and only if (x,y)eL\D and (x,y) + D = {(x,y)}.
We show later that h takes on neither of these values. Suppose that {x,y)eL and
h(x,y) = c = dip as in Lemma 3.1(b). Then since

(x,y)+(c,c) = (x,y)

and for t>c,

we have

and for t > c,

Hence,

(1, l)+(y,x) = (1, l)+(xy/x,xy/y) = (xy/cxy/c)

and hence,
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We now analyse the addition on BP. Recall from Remark 2.6 that if (x, y) and
(z, w) are elements of Bp such that neither (z/x, w/y) nor (x/z,y/w) is in R\ D then

We can thus assume that (z/x, w/y) is in R\D and consider three cases: (1) both
addends are in R; (2) (x,y)eL and (z,w)eR; and (3) both addends are in L. We
begin by considering elements on which h is finite and non-zero, and then show
that either h(R\D) = {0} and h(L\D) = {oo}, or h(BP)<^G. Notice that if x<y,
then (x,y) + D = {(x,y)} if and only if (1,1) + D(y/x, 1) = {(1,1)}. We also remark
that if (x,y)eR, then if h(x,y) = a>\, then for every b> 1, h(bx,by) = ba,by (a).

Now if (x,y) and (z, w) are two elements of R with h(x,y) = d^\ and
h(z, w) = c> 1, then let (1, l)+(z/x, w/y) = (g,g). Then

(gd,gd) = (1, l) + (gx,gy) = (1,

z, w) = (</,rf) + (z, w)

z, w) =

= (d,d) + (c,c) = (dv c,dvc),

and so g = dv c/d. Hence,

If either </<l or c< l , let dAC= \/b where A>1; then h(bx,by) = bd>l and
h(bz,bw) = be^ I, so that by the preceding formula,

and hence

/dvc\ /dvc

for any (x,y) and (z,w) in R with h(x,y)>0, h(z,w)>0, and (z/x,w/y) in R.
If (x,y)eL and (z, w)ei? with A(;c, j ) = d<oo and A(z, w) = c>0, then

(*» J') + (^ vv) = (x, y) + {d, d) + (z, w) = (x, y) + (dvc,dvc)

and if w^d, then

(x, j ) + (z, w) = [(x, y) + (w, w)] + (z, w) = (x, >-) + [(w, w) + (z, w)]
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id hence the formula of the preceding paragraph holds between elements of
and R on which h is neither 0 nor oo.
Finally, let (x, y) and (z, w) be elements of L with h(x, y) = d<co, h(z, w) = c < oo,
id (z/x,w/y)eR\D. Then (x,y)+(z,w) = (tx,ty) for some t>l.lfd>c, then

(tx, ty) = (x, y) + (z, w) = (x, 7)+(d, d)+(z, w) = (x, j ) + (dz/c, dw/c)

= (x, 1) [(1, l) + (dz/cx,dw/cy)Kl,y) = (x, l)(dt/c,dt/c)(l,y)

= (dtx/c,dty/c)

id so d would equal c. Hence, d^c. Now choose (a,b) in R\D with

(a,b) = q>pvdt;

len (a/x,b/y) and (a/z,b/w) are in i?\ Z> and

($*/«/, fly/fiO = (?/*/*, qty/dt) = (tx, ty)+(a, b) = [(x, y)+(z, w)] + (a, b)

= (x, y) + [(z, w)+(a, b)] = (x, y) + (qz/c, qw/c)

= (x, 1) [(1, l) + (qzlcx,qw/cyy\ (l,y)

= (x, l)(qt/c,qtlc)(l,y) = (qtx/cqty/c),

i that f = c/d and hence

Now suppose that there exists an (a, b) in L/D with A(a, b) = 00. Note that if
<a, h(c,d) = 00, and A(5(fl,5)n5P) = {oo}. Hence, if A(L\Z))^{oo}, we may
ssume that there exists (p,x) inL\D such that /*(/>,s) = q< 00 and (p/a,s/b) eR\D.
hen h(q/p,q/s)= 1 and we may choose c>q, and let (z,w) = (qc/p,qc/s); then
(z, w) = c and z > w. Now let (a, b)+{p,s) = (ha, hb) for some h ̂  1. Then

(Aa, Afe)+(z, w) = (to, to)+(w, w)+(z, w) = (ha, hb) + (w, w) = (ha, hb),

3 that

(ha, hb) = (te, hb) + (z, w) = [(a, b)+(p, s)]+(z, w) = (a, b) + [(p, s) + (z, w)]

= (a, b)+(cp/q, cs/q) = (hca/q, hcb/q),

3 that c — q. But c was chosen larger than q, and hence, there is no such (p, s).
hus, h(L\D) = {00}, and /J(R\Z>) = {0}, which contradicts the assumption that
f be a proper subset of Rx and, hence, the range of h is contained in G, and the
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formula

is valid for every pair (x,y), (z, w) in BP with (z/x, wly)eR\D.
(b) If P is cyclic, we put P = {l,x,x2,...} for x> 1. Since £/ is a proper subsei

of Rv there is an JV such that (xN+\ xN) e U but (xN+\ xN+1) $ U. Then

by (a). Now

1,1)

1, 1)(1,JC»)+(1, 1) = ( x ^ . x ^ + O , 1)

= 0,1)

and by induction we can show that for every k, (xk(N+1),xkN)eU. On the other
hand, we will show that for every k, (xlN+1)k-N,xNk-<N-1)) + (l, 1) = (x,x). This
is true for k = 1 by the way N was selected. Now suppose that it is true for k<n.
Then

_ fx(N+l)n-N

It follows from this that (a, b) e Uif and only if a < bmN+1). If we define/: G-» (0, oo)
by/(a) = aww+1» then since a = N/(N+1), by Example 3.2,

b \va~a) ( b \ 1-(JV/JV+11 / b Y+1 bN+1( b \ 1-(JV/JV+11 / b Y+1 _ bN+1

{aNHN+l)J ~ \aNHN+vJ ~ ~pT'

and it is not hard to verify that this formula also gives h(a, b) and hence for every
{a,b)eBP, h{a,b) = fi(a,b). We will show in (c) that + = +,.

We now assume P is dense in [l,oo). Let xeP. Since (1, l) + (x,z)#(l,l) for
any z^x, the set Ux = {yeP: (x,y)eU} is bounded above. We define/: G->(0,oo)
by
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By Lemma 2.8(a), (c),/is a non-decreasing function. Let xeP and xn->x. Since
f is non-decreasing f(xn) is bounded and hence has a convergent subsequence
J(xn)}> which converges to an element y of [l,oo). If y<f{x), let zeP such that
\><z<f(x). Since f(xn) is eventually strictly greater than z,y^z. Hence .y^/Oc).
Similarly, y ^ / ( x) and so y =f(x), and it follows that/(xn) -+f(x), and thus that/is
xmtinuous on P. Since/, when restricted to Gn(0,1], is the composition of
inversions with/ |P,/is continuous on Gn(0,1] and since/(I) = 1,/is continuous
on G.

We remark that graph(/) n2?pc U; for suppose (x,y)egraph(f)nBP. Then
y = sup{z: (x,z)e £/} and since U is closed, (x, y)e U.

(c) For any element (x,y) of R\D, let a = h(x,y). Then since

(1, l) + (x/a,y/a) = (1,1), y/a^f(x/a).

If k=f(x/a), suppose y/a<k; then since P is dense in [1,°°), there is apeP such
that y/a<p<k and (x/a,p)eU, which implies that (px/y,p)eUnD(x,y) (since
px/y>x/a), contradicting (a). Hence, j>/a =f(x/a)- Suppose that graph(/) contains
another point (x/b, y/b) of Z>(x, y)nBP. We may assume that b > a. Then if a < c < b,
since (x/a,y/a)eU, (x/c,y/c)eU and so y/c^f(x/c). Suppose y/c<f(x/c); then
there exists deP such that (x/c,d)eU and y/c<d<f(x/c). Hence (x/b,dc/b)eU
and so j>/6 < rfc/i «S/(x/£>). This contradiction shows that if graph(/) contains two
points of D(x,y), it contains all the points on a straight line between those two
points. Now we show that (x/a,y/a) = (x/b,y/b). Let xn->x/b from the left. Then
(xn,f(xn))^(x/b,y/b) and (1, l) + (bxja,byja)-*(l, l) + (x/a,y/a) = (1,1), but for
every n, (1, l)+(bxja,byja) = (b/a,b/a). Thus, 6/a = 1, and hence,

(x/h(x,y),y/h(x,y))

is the unique intersection point of D(x, y) and graph(/). This shows that h=fl on
.R\D and since A(x,x) = x = j3(x,x) for every xeP, h=fi on R. Now if
(x, j>) GL \ D and /i(x, y) = a, then A(>»/x, 1) = I/a and so J8(J/X, 1) = I/a by what was
just shown. Hence, a/y =f(a/x) and (a/x,a/y) is the unique intersection point of
graph(/) and D(y/x, 1); it follows that y/a =f(x/a) and that (x/a,y/a) is the unique
intersection of D(x, y) and graph(/), and so h agrees with j3 on L as well.

Now we wish to show that + = +f as in Example 3.2. We may assume P is either
dense or cyclic. Since h = j3 and / is non-decreasing, it follows that h has the
property proved for /3 in Example 3.2 (which only involved the monotonicity off)
that if w/y < z/x, then x/?(z, w) «S zj8(x, j'), j>)9(z, w) < WJ9(JC, j ) and /; > q if >> ̂  w. If we
let

j8(*. JO A j8(z, w) ' |8(JC, 7) A j3(z, w)
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then if x < z, y < w and w/y < z/x, we have

f}(x,y) ' f!(x,y)

which equals (x,y) + (z,w) by the formula derived in (c). Similarly, if x<z, y<w
and w/y^z/x, then P(x,y)^fi(z,w), xP(z,w)^zP(x,y) and yP(z,w)>wfi(x,y) and
so A: = (z, w) which equals (x, j>) + (z, w) by Remark 2.6. Finally, if x < z and j ' > w,
then

p(x,y)>p(z,w)
and since

x / z s n ^ / w . XJ8(Z,W)<ZJ8(X,J) and jj3(z,w>Xwj3(x,jO.

So A: = (x,^), which, again by Remark 2.6, is equal to (x,y)+(z,w). This shows
that + = +f as in Example 3.2.

We now show that/ is a homomorphism. We assume first that (x,^) and (z,w)
are two elements of R\ D with y =/(x) and w =/(z). Without loss of generality,
suppose w/z^y/x. Then j8(z/w, 1) = 1/M>, and if p is any element of P\{1},
P(px,py)=p. Now

(zp/w,p) = (z/w, l)(p,p) = (z/w, 1) [(1, l) + (px,py)] .=

_ / zr/w r \
\rA(l/Wy rA(l/w)J

(by the calculations used in Example 3.2 for proving associativity), where
r = fi(zpx/w),py). Hence, r/(rA(l/w))=p and since p>\, rA(1,w)^r and so
p = rw. Hence, yw =py/(p/w) = py/r =f(zpx/wr) =/(xz) and hence/is a homo-
morphism when restricted t o / - 1 ^ ) . Now suppose that z< 1 and w =/(z)eGn(0,1].
Then if (x,^) is as above, w/z^y/x, j3(l, w/z) = 1/z, and if r = P(px,pyw/z) where
p>\, we have

(p, Nsp/r) = (1, W/z)+(px,pyW/z) =

Hence p = rz and yw = pyw/rz =f(xp/r) =f(zxp/rz) =f(xz). Since for x < l ,
/(*) = \/f(Mx\ we easily see that if both x and z are in Gn(0,1] then
/(xz) =/(x)/(z) and so/ is a homomorphism on/""x(G). Now suppose xeG and
y =/(*) e(0, co). Let {rfn}^=1 be a sequence converging to x/y; then if/»n = j8(Jn, 1),
it follows that (djpn, l/p)->(x,y). Now if w =/(z) and y =/(x) where x and z
are in G, let xn->x, zn->z, yn=f(xn) and wn =/(zn). Then .ynwn-^M>; but
j ' nwn =/(xnzn)->/(xz). Hence,/is a homomorphism on all of G. This completes
the proof of Theorem 3.4.
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