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Essential Surfaces in Graph Link Exteriors

Toru Ikeda

Abstract. An irreducible graph manifold M contains an essential torus if it is not a special Seifert

manifold. Whether M contains a closed essential surface of negative Euler characteristic or not depends

on the difference of Seifert fibrations from the two sides of a torus system which splits M into Seifert

manifolds. However, it is not easy to characterize geometrically the class of irreducible graph manifolds

which contain such surfaces. This article studies this problem in the case of graph link exteriors.

1 Preliminaries

Let V be a solid torus in S3 with preferred framing. A loop l on ∂V is said to be

of type (p, q), if it wraps around V in the longitudinal direction p times and in the

meridional direction q times. Note that (p, q) and (−p,−q) denote the same type.

A link L on ∂V consisting of n parallel copies of l is said to be of type (np, nq). In

particular, L is a torus link of type (np, nq) if V is unknotted. The exterior of a torus

link of type (np, nq) is called a torus link space of type (np, nq).

We say V is a fibered solid torus of type (p, q) if V is Seifert fibered so that each

fiber on ∂V is of type (p, q). A manifold obtained from V by removing an open

regular neighborhood of n regular fibers in the interior is called a cable space of type

(np, nq). A manifold homeomorphic to a cable space of type (n, 0) is called an n-fold

composing space.

A Seifert fibration of S3 is said to be of type (p, q) if a regular fiber is a torus knot of

type (p, q). A singular fibration of S3 is a trivial fibration of a trivial knot complement

which extends to no Seifert fibration of S3. The trivial knot is called a singular circle.

A link L in S3 is called a Seifert link if the exterior is a Seifert manifold. It is shown

by Burde and Murasugi [1] that any Seifert link is either a union of fibers of a Seifert

fibration of S3 or a union of fibers of a singular fibration and its singular circle.

A link L in S3 is called a graph link if the exterior E is a graph manifold, i.e., E is split

by a system of disjoint, embedded tori into pieces that are Seifert manifolds. Suppose

that L is non-splittable. Then the splitting of E is realized by the JSJ decomposition

[4, 5]. Each piece P is bounded by a system T1 ∪ · · · ∪ Tn of tori such that Ti is an

essential torus in E or a component of ∂E. Denote by Vi a solid torus in S3 bounded

by Ti . Each Ti is called an outer torus of P if P ⊂ Vi , and an inner torus of P otherwise.

An inner torus Ti is said to be regular if the Seifert fibration of Ti extends to a trivial

fibration of Vi , and exceptional otherwise. We classify the pieces P into a torus link

space of type (np, nq), where |p| > 1 and |q| > 1, with two exceptional fibers, a

cable space of type ((n − 1)p, (n − 1)q), where |p| > 1, with an exceptional fiber,
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or an (n − 1)-fold composing space with no exceptional fiber (see [2]). If P is a

composing space, some Ti can be regarded as an outer torus and P has the following

three possibilities:

Type I: the Seifert fibration of P does not extend to that of Vi ,

Type II: the Seifert fibration of P extends to a non-trivial fibration of Vi , or

Type III: the Seifert fibration of P extends to a trivial fibration of Vi .

We assume that any composing space of Type I is bounded by an exceptional inner

torus and several outer tori, and that any composing space of Type II or III is bounded

by an outer torus and several inner tori. Note that the type of a composing space

depends on the choice of the outer tori. For example, we can regard a composing

space of type I with an unknotted exceptional inner torus Ti as a composing space

of Type III with the outer torus Ti . Figure 1 illustrates the types of the Seifert link

exteriors.

(1) Composing space of Type I or III (2) Composing space of Type II

(3) Composing space of Type III (4) Cable space (5) Torus knot space

Figure 1: Exterior of Seifert links.

Let F be a closed essential surface of negative Euler characteristic in E. Isotope F

so that afterwards F intersects any P in a system of essential surfaces. It follows from

[3, VI.34] that each component of F ∩ P has the following two possibilities:

(1) a fiber in a fibration of P as a surface bundle over S1, which we call a surface fiber,

or

(2) an annulus saturated in some Seifert fibration of P.

Let L be a link in S3 and K a component of L. Take a regular neighborhood V of

K . Let C be a link on ∂V of type (np, nq) where gcd(p, q) = 1 and n ≥ 1. We say the

link (L − K) ∪ C is obtained from L by taking an (np, nq)-cable C of K if |np| > 1,

i.e., C is not parallel to K in V . The link L ∪C is said to be obtained from L by taking

an (np, nq)-special cable K ∪C of K if |p| 6= 1, i.e., K ∪C is not a cable of K .

2 Essential Surfaces in Seifert Manifold Pieces

Let P be an n-fold composing space of Type II bounded by tori T1, . . . , Tn+1 where

n ≥ 2. Without loss of generality, each Ti bounds a solid torus Vi in S3 so that T1

is an exceptional inner torus, T2, . . . , Tn are regular inner tori, and Tn+1 is an outer

torus. By extending the Seifert fibration of P, we assume that Vi is a fibered solid

torus of type (p, q) where |p| > 1 for i = 1 or n + 1, and (1, pq) otherwise.
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Let Ṽn+1 be a |p|-cover of Vn+1. Denote by P̃ the induced |p|-cover of P and by Ṽi

the induced |p|-covers of Vi for 1 ≤ i ≤ n. We consider each Ṽi endowed with the

induced fibration. With respect to the lift of the preferred framing of Vn+1, Ṽi is a

fibered solid torus of type (1, σq), where σ = p/|p|, for i = 1 or n + 1, and a union

of |p| copies of Ṽ1 otherwise.

Suppose that a surface fiber F in P intersects Ti in loops of type (λi , µi). Then

pµi −qλi 6= 0 for i = 1 or n+1, and µi − pqλi 6= 0 otherwise. The induced |p|-cover

F̃ of F intersects each component of T̃i = ∂Ṽi in a link of type (λi , |p|µi) for i = 1 or

n+1, and (λi , µi−(pq−σq)λi) otherwise. By twisting Ṽn in the meridional direction

−σq times, any component of Ṽi is a fibered solid torus of type (1, 0), and F̃ intersects

T̃i in a link of type (λi , σ(pµi −qλi)) for i = 1 or n+1, and (λi , µi − pqλi) otherwise.

Note that H1(P̃) is a free abelian group generated by meridians of the components of

T̃1 ∪ · · · ∪ T̃n and a longitude of T̃1. A meridian of T̃n+1 is homologous to the sum

of these meridians. Longitudes of the components of T̃1 ∪ · · · ∪ T̃n+1 are mutually

homologous. Since F̃ ∩ T̃n+1 is homologous to F̃ ∩ (T̃1 ∪ · · · ∪ T̃n), we obtain, by

replacing (λi , µi) with (−λi,−µi) if necessary,

σ(pµ1 − qλ1) = µ2 − pqλ2 = · · · = µn − pqλn = σ(pµn+1 − qλn+1) 6= 0 and

λn+1 = λ1 + |p|λ2 + · · · + |p|λn.

Set µ = σ(pµ1 − qλ1) and λ = λn+1. Then µ1 = (σµ + qλ1)/p, µn+1 = (σµ + qλ)/p

and µi = µ + pqλi for 2 ≤ i ≤ n.

We can apply a similar argument to the case where P is a composing space of

Type III or a cable space. The argument for a cable space is applicable to the case of a

torus link space P by splitting P into a composing space of Type III and a torus knot

space. Furthermore, the argument for a composing space of Type III is applicable to

the case of a composing space of Type I by exchanging the role of inner and outer

tori. These arguments are summarized in Table 1.

3 Essential Surfaces in Graph Link Exteriors

In this section, we focus on several classes of graph links to derive from Table 1 criteria

for determining whether a given graph link has a closed essential surface of negative

Euler characteristic in the exterior or not.

Theorem 3.1 Let L be a non-splittable graph link whose exterior E contains a closed

essential surface F of negative Euler characteristic. Suppose that E is split by a JSJ de-

composition into pieces of Seifert manifolds. Then we have the following:

(1) If E consists of two pieces, L is an (n, 0)-cable of a non-trivial torus knot.

(2) If E consists of three pieces, L has the following possibilities:

(2-1) L is obtained from a link stated in (1) by taking a (p, q)-cable or a

(p, q)-special cable of some component where q 6= 0.

(2-2) L is an (n, 0)-cable of an (r, s)-cable of a non-trivial torus knot of type (p, q),

where gcd(r, s) = 1 and s 6= pqr.
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(2-3) L is obtained from a non-Hopf torus link L1 ∪ L2 of type (2p, 2q) by taking

an (ri , si)-cable or an (ri , si)-special cable of each Li where si 6= pqri and

p2q2r1r2 = s1s2.

(2-4) L is obtained from a non-Hopf link consisting of fibers and the singular cir-

cle of a singular fibration of S3 by taking either a (0, n)-special cable of an

(r, s)-cable of the singular circle where gcd(r, s) = 1, or an (n, 0)-cable of an

(r, s)-cable of a fiber where gcd(r, s) = 1 and s 6= 0.

(2-5) L is obtained from a non-trivial non-Hopf link consisting of fibers of a Seifert

fibration of S3 of type (p, q) by taking either an (n, npqr2)-cable of an (r, s)-

cable of a regular fiber where gcd(r, s) = 1 and s 6= pqr, or a (t, u)-cable or a

(t, u)-special cable of an (r, s)-cable of an exceptional fiber of order |p| where

gcd(r, s) = 1, ps 6= qr and pu = qr2t.

(1) (2-1) (2-2)

(2-3) (2-4) (2-5)

Figure 2: Examples of links stated in Theorem 3.1.

Proof Isotope F so that afterwards F consists of essential surfaces in the Seifert mani-

fold pieces. Note that any component surface fiber appears in a piece which is disjoint

from ∂E, and that no component annulus is connected to another.

(1) Suppose that E consists of pieces P1 and P2. Without loss of generality, F

intersects P1 in surface fibers. Then P1 is a torus knot space bounded by the essential

torus splitting E into P1 and P2. Table 1 implies that F intersects ∂P1 in preferred

longitudes. Since ∂E ⊂ ∂P2, F intersects P2 in annuli. Therefore Table 1 implies

that P2 is an n-fold composing space of Type III. It immediately follows that E is the

exterior of an (n, 0)-cable of a non-trivial torus knot.

(2) Suppose that E consists of pieces P1, P2, and P3. If F is disjoint from some Pi ,

(1) implies that L is classified into (2-1). Assume that F intersects every Pi . Without

loss of generality, F intersects P1 in surface fibers. Then P1 is bounded by one or two

essential tori. Therefore P1 is a torus link space or a cable space.

Assume that P1 is a torus knot space of type (p, q). Then F intersects ∂P1 in pre-

ferred longitudes of type (n, 0). Without loss of generality, P1 is connected to P2

over the torus T1 = ∂P1 and P2 is connected to P3 over a torus T2. Since Table 1

implies that P2 is a composing space of Type III, P3 is contained in a solid torus

bounded by T2 and therefore intersects ∂E. Thus F intersects P2 in surface fibers
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and P3 in annuli. Since P2 is disjoint from ∂E, P2 is a cable space of type (r, s),

where gcd(r, s) = 1 and s 6= pqr. Table 1 implies that a surface fiber in P2 joins a

link on T1 of type (|r|λ, (µ + rsλ)/|r|) and a link on T2 of type (λ, µ + rsλ). Then

(|r|λ, (µ + rsλ)/|r|) = (n, 0) implies (λ, µ + rsλ) = (n/|r|, 0). Thus F intersects T2

in preferred longitudes. Table 1 implies that P3 is a composing space of Type III with

preferred longitudinal fibers on ∂P3. Hence L is classified into (2-2).

Assume that P1 is a torus link space of type (2p, 2q) bounded by two tori T1

and T2. Table 1 implies that each component of F ∩ P1 joins a link on T1 of type

(λ1,−pqλ2) and a link on T2 of type (λ2,−pqλ1), where λ1 + λ2 6= 0. Without loss

of generality, P1 is connected to P2 and P3 over T1 and T2 respectively. Each of P2 and

P3 is a cable space or a composing space that F intersects in annuli. Suppose that a

fiber of Pi+1 on Ti is of type (ri , si). Then −pqr1λ2 = s1λ1 and −pqr2λ1 = s2λ2. One

easily obtain si 6= pqri and p2q2r1r2 = s1s2. Hence L is classified into (2-3).

Assume that P1 is a cable space of type (r, s), where gcd(r, s) = 1. Denote by T1

and T2 the outer torus and the inner torus of P1 respectively. Table 1 implies that

a surface fiber in P1 joins a link on T1 of type (|r|λ, (µ + rsλ)/|r|) and a link on

T2 of type (λ, µ + rsλ). Suppose that P1 is connected to P2 and P3 over T1 and T2

respectively. If F intersects P2 in surface fibers, P2 is a torus knot space, in which case

L is classified into (2-2) by the argument presented above. We may therefore assume

that F intersects P2 in annuli. Since P3 is contained in the solid torus bounded by T2,

P3 intersects ∂E. Thus F intersects P3 in annuli.

Assume that the Seifert fibration of P2 extends to a singular fibration of S3. We

consider P2 to be a composing space of Type I by switching the inner and outer tori

of P2 if necessary. If T1 is the inner torus of P2, Table 1 implies that F intersects T1 in

meridians of type (0, n). Then (|r|λ, (µ + rsλ)/|r|) = (0, n) implies (λ, µ + rsλ) =

(0, n|r|). Therefore F intersects T2 in meridians and hence P3 is a composing space

of Type I. If T1 is an outer torus of P2, s 6= 0 and F intersects T1, as the outer torus of

P1, in preferred longitudes of type (n, 0). Then (|r|λ, (µ + rsλ)/|r|) = (n, 0) implies

(λ, µ + rsλ) = (n/|r|, 0). Therefore F intersects T2, which is the outer torus of P3, in

preferred longitudes and hence P3 is a composing space of Type III. In both cases, L

is classified into (2-4).

Assume that the Seifert fibration of P2 extends to a Seifert fibration of S3 of type

(p, q). In this case, P2 is a torus link space, cable space, or a composing space of Type

II or III. We may assume that F intersects T1, as the outer torus of P1, in loops of type

(n, npq) or (np, nq), corresponding to a regular or exceptional fiber of the Seifert

fibration of S3. Suppose that F intersects T1 in loops of type (n, npq), where s 6= pqr.

Then (|r|λ, (µ+rsλ)/|r|) = (n, npq) implies (λ, µ+rsλ) = (n/|r|, npq|r|). Therefore

F intersects T2, which is the outer torus of P3, in longitudes each of which is of type

(1, pqr2). Hence P3 is a composing space of Type III. Suppose that F intersects T1

in loops of type (np, nq), where |p| ≥ 2 and ps 6= qr. Then (|r|λ, (µ + rsλ)/|r|) =

(np, nq) implies (λ, µ + rsλ) = (np/|r|, nq|r|). Therefore F intersects T2 in loops of

type (t, u), where pu = qr2t , and hence P3 is a cable space, or a composing space of

Type II or III. In both cases, L is classified into (2-5).

Theorem 3.2 Let L be a non-splittable graph link and E the exterior of L. Suppose that

no composing space is obtained by the JSJ decomposition of E. For any closed essential
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Table 2: Surface fiber types in cable spaces.

χ(F0) (k, n, |p|)

−1 (2, 1, 2)

−2 (3, 1, 3), (4, 1, 2)

−3 (6, 1, 2), (4, 1, 4), (2, 2, 2)

−4 (8, 1, 2), (6, 1, 3), (5, 1, 5)

surface F in E, the Euler characteristic χ(F) of F satisfies χ(F) ≥ 0 or χ(F) ≤ −6.

Moreover, (p, q) 6= (4, 2r) for any cable space type (p, q) and for any odd r implies

χ(F) ≥ 0 or χ(F) ≤ −10, and (p, q) 6= (2, r) for any cable space type (p, q) and for

any odd r implies χ(F) ≥ 0 or χ(F) 6= −8.

Proof Assume that −8 ≤ χ(F) ≤ −2. Suppose that F is split by a JSJ decomposi-

tion of E into essential surfaces in Seifert manifold pieces. Then χ(F) is the sum of

the Euler characteristics χ(F0) of the component surfaces F0. Since F separates E, it

separates any piece which F intersects. Therefore, there is no piece which F intersects

in an odd number of surface fibers. Hence −4 ≤ χ(F0) ≤ −1 for any component

surface fiber F0.

Let P be a cable space of type (np, nq), where gcd(p, q) = 1 and |p| ≥ 2. The orbit

manifold O of P is a disk with n holes and an exceptional point C of order |p|. We

may consider a surface fiber F0 in P to be a k-fold branched cover of O branched over

C, where k is a multiple of |p|. This implies χ(F0) = k(1 − n|p|)/|p|. We say F0 is of

type (k, n, |p|). For example, χ(F0) = −1 implies k/|p| = 1 and n|p| = 2 because

k/|p| > 0 and (1 − n|p|) < 0 are integers, and therefore (k, n, |p|) = (2, 1, 2). The

possible types of F0 are listed in Table 2.

Let P be a torus link space of type (np, nq), where gcd(p, q) = 1, |p| ≥ 2 and

|q| ≥ 2. The orbit manifold O of P is a disk with n − 1 holes and two exceptional

points C1 and C2 of order |p| and |q|. Then a surface fiber F0 in P is a k-fold branched

cover of O branched over C1 and C2, where k is a multiple of |pq|. Therefore χ(F0) =

k(|p|+ |q|−n|pq|)/|pq|. We say F0 is of type (k, n, |p|, |q|). For example, χ(F0) = −1

implies k/|pq| = 1 and (|p|−1)(|q|−1)+(n−1)|pq| = 2. Since (|p|−1)(|q|−1) = 1

implies |p| = |q| = 2 which contradicts gcd(p, q) = 1, we have (|p|−1)(|q|−1) = 2

and therefore (k, n, |p|, |q|) = (6, 1, 2, 3) or (6, 1, 3, 2). The possible types of F0 are

listed in Table 3.

Assume that F contains a surface fiber F1 of type (2, 2, 2) in a cable space P1.

Clearly, P1 is of type (4, 2r) where r is odd. Table 2 implies χ(F1) = −3. Then F

intersects P1 in two surface fibers and therefore χ(F) = −6 or −8. Assume that

F contains a surface fiber F2 of type (6, 1, 2, 3) or (6, 1, 3, 2) in a torus knot space

P2. Since F2 is bounded by a preferred longitude on ∂P2, Table 1 implies that F2 is

connected to no essential annulus in a cable space over ∂P2. Therefore, ∂P2 is the

outer torus of P1, and two surface fibers in P2 is connected separately to two surface

fibers in P1. Hence F1 intersects ∂P2 in a preferred longitude. This is impossible by

Table 1. Consequently χ(F) = −8 implies that F contains a surface fiber of type
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Table 3: Surface fiber types in torus link spaces.

χ(F0) (k, n, |p|, |q|)
−1 (6, 1, 2, 3), (6, 1, 3, 2)

−2 (12, 1, 2, 3), (12, 1, 3, 2)

−3 (18, 1, 2, 3), (18, 1, 3, 2), (10, 1, 2, 5), (10, 1, 5, 2)

−4 (24, 1, 2, 3), (24, 1, 3, 2)

(2, 1, 2), i.e., F intersects a cable space of of type (2, r) where r is odd.

Assume that F contains no surface fiber of type (2, 2, 2). Then any component

surface fiber of F appears in a torus knot space or a cable space bounded by two tori.

If F contains a surface fiber F1 in a torus knot space P1, F1 intersects T1 = ∂P1 in a

longitude. Table 1 implies that F1 is connected over T1 to a surface fiber F2 in a cable

space P2 and that F2 intersects the inner torus T2 of P2 in a longitude by the argument

presented for the proof of Theorem 3.1. Repeating this argument three times, we

obtain χ(F) < −8 and a contradiction occurs. If F contains no surface fiber in a torus

knot space, F contains an essential annulus F1 in a piece P1 bounded by (possibly not

preferred) longitudes in the inner torus T1 of P1. Applying the argument presented

in the previous case, a contradiction occurs again.

Now we show an example in the case χ(F) = −6. Let L be an iterated torus link

obtained from a (4, 22)-cable of a torus knot of type (2, 3) by taking a (2, 45)-cable of

a component and a (3, 64)-cable of the another. The exterior of L is split by a JSJ de-

composition into a torus knot space P1 of type (2, 3), a cable space P2 of type (4, 22),

a cable space P3 of type (2, 45) and a cable space P4 of type (3, 64). Denote by T1 the

outer torus of P2, and by T2 and T3 the inner tori of P2. Suppose that P2 is connected

to P3 and P4 over T2 and T3 respectively. Clearly P2 admits a surface bundle structure

over S1
= {e2πθi |θ ∈ R} with a surface fiber intersecting each Ti in a meridian. De-

note by Fθ the surface fiber of level e2πθi . Then χ(Fθ) = −3. Take disjoint essential

annuli A1, A2, A3, and A4 in P2 so that any Fθ intersects each Ai in essential arc, A1

joins T1 and T2, and each of A2, A3, and A4 joins T2 and T3. By a cutting and pasting

technique illustrated in Figure 3, we obtain a surface fiber F ′

θ of Euler characteris-

tic −3 which joins links on T1, T2, and T3 of types (2, 12), (4, 90), and (−3,−64)

respectively. By glueing essential annuli in P1, P3, and P4 to F ′

0 ∪ F ′

1/2 along their

boundary loops, we obtain a closed essential surface of Euler characteristic −6.

4 Graph Knot Case

In this section, we focus on the graph knot case. Note that any non-trivial graph knot

exterior is split by a JSJ decomposition into a torus knot space, a cable space bounded

by two tori, or a composing space of Type I.

Theorem 4.1 Let E be a graph knot exterior which contains a closed essential surface F

of negative Euler characteristic. Then F is split by a JSJ decomposition of E into essential

annuli in composing spaces and surface fibers in cable spaces.
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Figure 3: Cutting and pasting of surface fibers.

Proof We may consider F split into essential surfaces in Seifert manifold pieces.

Assume that F intersects an inner torus T1 of a piece P1 in non-meridional non-

longitudinal loops. Table 1 implies that P1 is a cable space or a composing space

which F intersects in surface fibers, otherwise F intersects P1 in meridians or longi-

tudes. A surface fiber in a cable space of type (p, q) joins a link on the inner torus of

type (λ, µ + pqλ) and a link on the outer torus of type (|p|λ, (µ + pqλ)/|p|). If λ
and µ + pqλ are non-zero integers such that µ + pqλ is not a multiple of λ, |p|λ and

(µ + pqλ)/|p| are non-zero integers such that (µ + pqλ)/|p| is not a multiple of |p|λ.

Furthermore, a surface fiber in an n-fold composing space joins a link on the inner

torus of type (λ,
∑n

i=1 µi) and links on the outer tori of type (λ, µi) for 1 ≤ i ≤ n. If

λ and
∑n

i=1 µi are non-zero integers such that
∑n

i=1 µi is not a multiple of λ, some

µi is a non-zero integer which is not a multiple of λ. In both cases, we can find an

outer torus T2 of P1 which F intersects in non-meridional non-longitudinal loops.

Suppose that P1 is connected over T2 to a piece P2. Then P2 is a cable space or a com-

posing space which F intersects in surface fibers as before. Repeating this argument,

we obtain an infinite sequence of the pieces, which contradicts the compactness of E.

Assume that F intersects an outer torus T1 of a piece P1 in longitudes. Table 1

implies that P1 is a cable space or a composing space which F intersects in surface

fibers, otherwise F cannot intersect T1 in longitudes. Denote by T2 the inner torus

of P1. If P1 is a cable space, the argument presented in the proof of Theorem 3.1

implies that F intersects T2 in longitudes. If P1 is an n-fold composing space, the

first half of this proof implies that F intersects any component of ∂P1 in meridians

or in longitudes, and therefore Table 1 implies that F intersects T2 in longitudes. In

both cases, P1 is connected over T2 to a cable space or a composing space P2 which F

intersects in surface fibers. Repeating this argument, we obtain an infinite sequence

of the pieces and a contradiction occurs again.

Consequently, F intersects the splitting tori in meridians. Hence the theorem fol-

lows from Table 1.

Let K be a connected sum of a trefoil knot and a cable of a granny knot. The exte-

rior E of K is split into a cable space and two composing spaces. Figure 4 illustrates an

essential surface F in E of Euler characteristic −2. One easily checks that F consists

of three essential annuli in the composing spaces and two surface fibers, which are

twice-punctured disks, in the cable space.
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K

F

Figure 4: A genus two essential surface in a graph knot exterior.

Corollary 4.2 Any iterated torus knot exterior contains no closed essential surface of

negative Euler characteristic.

Proof No composing space is obtained by the JSJ decomposition of the iterated torus

knot exterior. Hence this is immediate from Theorem 4.1.
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