Essential Surfaces in Graph Link Exteriors

Toru Ikeda

Abstract

An irreducible graph manifold M contains an essential torus if it is not a special Seifert manifold. Whether M contains a closed essential surface of negative Euler characteristic or not depends on the difference of Seifert fibrations from the two sides of a torus system which splits M into Seifert manifolds. However, it is not easy to characterize geometrically the class of irreducible graph manifolds which contain such surfaces. This article studies this problem in the case of graph link exteriors.

1 Preliminaries

Let V be a solid torus in S^{3} with preferred framing. A loop l on ∂V is said to be of type (p, q), if it wraps around V in the longitudinal direction p times and in the meridional direction q times. Note that (p, q) and $(-p,-q)$ denote the same type. A link L on ∂V consisting of n parallel copies of l is said to be of type ($n p, n q$). In particular, L is a torus link of type ($n p, n q$) if V is unknotted. The exterior of a torus link of type ($n p, n q$) is called a torus link space of type ($n p, n q$).

We say V is a fibered solid torus of type (p, q) if V is Seifert fibered so that each fiber on ∂V is of type (p, q). A manifold obtained from V by removing an open regular neighborhood of n regular fibers in the interior is called a cable space of type $(n p, n q)$. A manifold homeomorphic to a cable space of type ($n, 0$) is called an n-fold composing space.

A Seifert fibration of S^{3} is said to be of type (p, q) if a regular fiber is a torus knot of type (p, q). A singular fibration of S^{3} is a trivial fibration of a trivial knot complement which extends to no Seifert fibration of S^{3}. The trivial knot is called a singular circle. A link L in S^{3} is called a Seifert link if the exterior is a Seifert manifold. It is shown by Burde and Murasugi [1] that any Seifert link is either a union of fibers of a Seifert fibration of S^{3} or a union of fibers of a singular fibration and its singular circle.

A link L in S^{3} is called a graph link if the exterior E is a graph manifold, i.e., E is split by a system of disjoint, embedded tori into pieces that are Seifert manifolds. Suppose that L is non-splittable. Then the splitting of E is realized by the JSJ decomposition [4,5]. Each piece P is bounded by a system $T_{1} \cup \cdots \cup T_{n}$ of tori such that T_{i} is an essential torus in E or a component of ∂E. Denote by V_{i} a solid torus in S^{3} bounded by T_{i}. Each T_{i} is called an outer torus of P if $P \subset V_{i}$, and an inner torus of P otherwise. An inner torus T_{i} is said to be regular if the Seifert fibration of T_{i} extends to a trivial fibration of V_{i}, and exceptional otherwise. We classify the pieces P into a torus link space of type ($n p, n q$), where $|p|>1$ and $|q|>1$, with two exceptional fibers, a cable space of type $((n-1) p,(n-1) q)$, where $|p|>1$, with an exceptional fiber,

[^0]or an ($n-1$)-fold composing space with no exceptional fiber (see [2]). If P is a composing space, some T_{i} can be regarded as an outer torus and P has the following three possibilities:
Type I: the Seifert fibration of P does not extend to that of V_{i},
Type II: the Seifert fibration of P extends to a non-trivial fibration of V_{i}, or Type III: the Seifert fibration of P extends to a trivial fibration of V_{i}.
We assume that any composing space of Type I is bounded by an exceptional inner torus and several outer tori, and that any composing space of Type II or III is bounded by an outer torus and several inner tori. Note that the type of a composing space depends on the choice of the outer tori. For example, we can regard a composing space of type I with an unknotted exceptional inner torus T_{i} as a composing space of Type III with the outer torus T_{i}. Figure 1 illustrates the types of the Seifert link exteriors.

Figure 1: Exterior of Seifert links.

Let F be a closed essential surface of negative Euler characteristic in E. Isotope F so that afterwards F intersects any P in a system of essential surfaces. It follows from [3, VI.34] that each component of $F \cap P$ has the following two possibilities:
(1) a fiber in a fibration of P as a surface bundle over S^{1}, which we call a surface fiber, or
(2) an annulus saturated in some Seifert fibration of P.

Let L be a link in S^{3} and K a component of L. Take a regular neighborhood V of K. Let C be a link on ∂V of type ($n p, n q$) where $\operatorname{gcd}(p, q)=1$ and $n \geq 1$. We say the link $(L-K) \cup C$ is obtained from L by taking an ($n p, n q$)-cable C of K if $|n p|>1$, i.e., C is not parallel to K in V. The link $L \cup C$ is said to be obtained from L by taking an $(n p, n q)$-special cable $K \cup C$ of K if $|p| \neq 1$, i.e., $K \cup C$ is not a cable of K.

2 Essential Surfaces in Seifert Manifold Pieces

Let P be an n-fold composing space of Type II bounded by tori T_{1}, \ldots, T_{n+1} where $n \geq 2$. Without loss of generality, each T_{i} bounds a solid torus V_{i} in S^{3} so that T_{1} is an exceptional inner torus, T_{2}, \ldots, T_{n} are regular inner tori, and T_{n+1} is an outer torus. By extending the Seifert fibration of P, we assume that V_{i} is a fibered solid torus of type (p, q) where $|p|>1$ for $i=1$ or $n+1$, and $(1, p q)$ otherwise.

Let \widetilde{V}_{n+1} be a $|p|$-cover of V_{n+1}. Denote by \widetilde{P} the induced $|p|$-cover of P and by \widetilde{V}_{i} the induced $|p|$-covers of V_{i} for $1 \leq i \leq n$. We consider each \widetilde{V}_{i} endowed with the induced fibration. With respect to the lift of the preferred framing of $V_{n+1}, \widetilde{V}_{i}$ is a fibered solid torus of type $(1, \sigma q)$, where $\sigma=p /|p|$, for $i=1$ or $n+1$, and a union of $|p|$ copies of \widetilde{V}_{1} otherwise.

Suppose that a surface fiber F in P intersects T_{i} in loops of type $\left(\lambda_{i}, \mu_{i}\right)$. Then $p \mu_{i}-q \lambda_{i} \neq 0$ for $i=1$ or $n+1$, and $\mu_{i}-p q \lambda_{i} \neq 0$ otherwise. The induced $|p|$-cover \widetilde{F} of F intersects each component of $\widetilde{T}_{i}=\partial \widetilde{V}_{i}$ in a link of type $\left(\lambda_{i},|p| \mu_{i}\right)$ for $i=1$ or $n+1$, and $\left(\lambda_{i}, \mu_{i}-(p q-\sigma q) \lambda_{i}\right)$ otherwise. By twisting \widetilde{V}_{n} in the meridional direction $-\sigma q$ times, any component of \widetilde{V}_{i} is a fibered solid torus of type (1,0), and \widetilde{F} intersects \widetilde{T}_{i} in a link of type $\left(\lambda_{i}, \sigma\left(p \mu_{i}-q \lambda_{i}\right)\right)$ for $i=1$ or $n+1$, and $\left(\lambda_{i}, \mu_{i}-p q \lambda_{i}\right)$ otherwise. Note that $H_{1}(\widetilde{P})$ is a free abelian group generated by meridians of the components of $\widetilde{T}_{1} \cup \cdots \cup \widetilde{T}_{n}$ and a longitude of \widetilde{T}_{1}. A meridian of \widetilde{T}_{n+1} is homologous to the sum of these meridians. Longitudes of the components of $\widetilde{T}_{1} \cup \cdots \cup \widetilde{T}_{n+1}$ are mutually homologous. Since $\widetilde{F} \cap \widetilde{T}_{n+1}$ is homologous to $\widetilde{F} \cap\left(\widetilde{T}_{1} \cup \cdots \cup \widetilde{T}_{n}\right)$, we obtain, by replacing $\left(\lambda_{i}, \mu_{i}\right)$ with $\left(-\lambda_{i},-\mu_{i}\right)$ if necessary,

$$
\begin{gathered}
\sigma\left(p \mu_{1}-q \lambda_{1}\right)=\mu_{2}-p q \lambda_{2}=\cdots=\mu_{n}-p q \lambda_{n}=\sigma\left(p \mu_{n+1}-q \lambda_{n+1}\right) \neq 0 \text { and } \\
\lambda_{n+1}=\lambda_{1}+|p| \lambda_{2}+\cdots+|p| \lambda_{n}
\end{gathered}
$$

Set $\mu=\sigma\left(p \mu_{1}-q \lambda_{1}\right)$ and $\bar{\lambda}=\lambda_{n+1}$. Then $\mu_{1}=\left(\sigma \mu+q \lambda_{1}\right) / p, \mu_{n+1}=(\sigma \mu+q \bar{\lambda}) / p$ and $\mu_{i}=\mu+p q \lambda_{i}$ for $2 \leq i \leq n$.

We can apply a similar argument to the case where P is a composing space of Type III or a cable space. The argument for a cable space is applicable to the case of a torus link space P by splitting P into a composing space of Type III and a torus knot space. Furthermore, the argument for a composing space of Type III is applicable to the case of a composing space of Type I by exchanging the role of inner and outer tori. These arguments are summarized in Table 1.

3 Essential Surfaces in Graph Link Exteriors

In this section, we focus on several classes of graph links to derive from Table 1 criteria for determining whether a given graph link has a closed essential surface of negative Euler characteristic in the exterior or not.

Theorem 3.1 Let L be a non-splittable graph link whose exterior E contains a closed essential surface F of negative Euler characteristic. Suppose that E is split by a JSJ decomposition into pieces of Seifert manifolds. Then we have the following:
(1) If E consists of two pieces, L is an $(n, 0)$-cable of a non-trivial torus knot.
(2) If E consists of three pieces, L has the following possibilities:
(2-1) L is obtained from a link stated in (1) by taking $a(p, q)$-cable or a (p, q)-special cable of some component where $q \neq 0$.
(2-2) L is an ($n, 0)$-cable of an (r, s)-cable of a non-trivial torus knot of type (p, q), where $\operatorname{gcd}(r, s)=1$ and $s \neq p q r$.
(2-3) L is obtained from a non-Hopf torus link $L_{1} \cup L_{2}$ of type ($2 p, 2 q$) by taking an $\left(r_{i}, s_{i}\right)$-cable or an $\left(r_{i}, s_{i}\right)$-special cable of each L_{i} where $s_{i} \neq p q r_{i}$ and $p^{2} q^{2} r_{1} r_{2}=s_{1} s_{2}$.
(2-4) L is obtained from a non-Hopf link consisting of fibers and the singular circle of a singular fibration of S^{3} by taking either a $(0, n)$-special cable of an (r, s)-cable of the singular circle where $\operatorname{gcd}(r, s)=1$, or an $(n, 0)$-cable of an (r, s)-cable of a fiber where $\operatorname{gcd}(r, s)=1$ and $s \neq 0$.
(2-5) L is obtained from a non-trivial non-Hopflink consisting of fibers of a Seifert fibration of S^{3} of type (p, q) by taking either an $\left(n, n p q r^{2}\right)$-cable of an (r, s) cable of a regular fiber where $\operatorname{gcd}(r, s)=1$ and $s \neq p q r$, or a (t, u)-cable or a (t, u)-special cable of an (r, s)-cable of an exceptional fiber of order $|p|$ where $\operatorname{gcd}(r, s)=1, p s \neq q r$ and $p u=q r^{2} t$.

Figure 2: Examples of links stated in Theorem 3.1.

Proof Isotope F so that afterwards F consists of essential surfaces in the Seifert manifold pieces. Note that any component surface fiber appears in a piece which is disjoint from ∂E, and that no component annulus is connected to another.
(1) Suppose that E consists of pieces P_{1} and P_{2}. Without loss of generality, F intersects P_{1} in surface fibers. Then P_{1} is a torus knot space bounded by the essential torus splitting E into P_{1} and P_{2}. Table 1 implies that F intersects ∂P_{1} in preferred longitudes. Since $\partial E \subset \partial P_{2}, F$ intersects P_{2} in annuli. Therefore Table 1 implies that P_{2} is an n-fold composing space of Type III. It immediately follows that E is the exterior of an $(n, 0)$-cable of a non-trivial torus knot.
(2) Suppose that E consists of pieces P_{1}, P_{2}, and P_{3}. If F is disjoint from some P_{i}, (1) implies that L is classified into (2-1). Assume that F intersects every P_{i}. Without loss of generality, F intersects P_{1} in surface fibers. Then P_{1} is bounded by one or two essential tori. Therefore P_{1} is a torus link space or a cable space.

Assume that P_{1} is a torus knot space of type (p, q). Then F intersects ∂P_{1} in preferred longitudes of type $(n, 0)$. Without loss of generality, P_{1} is connected to P_{2} over the torus $T_{1}=\partial P_{1}$ and P_{2} is connected to P_{3} over a torus T_{2}. Since Table 1 implies that P_{2} is a composing space of Type III, P_{3} is contained in a solid torus bounded by T_{2} and therefore intersects ∂E. Thus F intersects P_{2} in surface fibers
and P_{3} in annuli. Since P_{2} is disjoint from $\partial E, P_{2}$ is a cable space of type (r, s), where $\operatorname{gcd}(r, s)=1$ and $s \neq p q r$. Table 1 implies that a surface fiber in P_{2} joins a link on T_{1} of type $(|r| \lambda,(\mu+r s \lambda) /|r|)$ and a link on T_{2} of type $(\lambda, \mu+r s \lambda)$. Then $(|r| \lambda,(\mu+r s \lambda) /|r|)=(n, 0)$ implies $(\lambda, \mu+r s \lambda)=(n /|r|, 0)$. Thus F intersects T_{2} in preferred longitudes. Table 1 implies that P_{3} is a composing space of Type III with preferred longitudinal fibers on ∂P_{3}. Hence L is classified into (2-2).

Assume that P_{1} is a torus link space of type $(2 p, 2 q)$ bounded by two tori T_{1} and T_{2}. Table 1 implies that each component of $F \cap P_{1}$ joins a link on T_{1} of type $\left(\lambda_{1},-p q \lambda_{2}\right)$ and a link on T_{2} of type $\left(\lambda_{2},-p q \lambda_{1}\right)$, where $\lambda_{1}+\lambda_{2} \neq 0$. Without loss of generality, P_{1} is connected to P_{2} and P_{3} over T_{1} and T_{2} respectively. Each of P_{2} and P_{3} is a cable space or a composing space that F intersects in annuli. Suppose that a fiber of P_{i+1} on T_{i} is of type $\left(r_{i}, s_{i}\right)$. Then $-p q r_{1} \lambda_{2}=s_{1} \lambda_{1}$ and $-p q r_{2} \lambda_{1}=s_{2} \lambda_{2}$. One easily obtain $s_{i} \neq p q r_{i}$ and $p^{2} q^{2} r_{1} r_{2}=s_{1} s_{2}$. Hence L is classified into (2-3).

Assume that P_{1} is a cable space of type (r, s), where $\operatorname{gcd}(r, s)=1$. Denote by T_{1} and T_{2} the outer torus and the inner torus of P_{1} respectively. Table 1 implies that a surface fiber in P_{1} joins a link on T_{1} of type $(|r| \lambda,(\mu+r s \lambda) /|r|)$ and a link on T_{2} of type $(\lambda, \mu+r s \lambda)$. Suppose that P_{1} is connected to P_{2} and P_{3} over T_{1} and T_{2} respectively. If F intersects P_{2} in surface fibers, P_{2} is a torus knot space, in which case L is classified into (2-2) by the argument presented above. We may therefore assume that F intersects P_{2} in annuli. Since P_{3} is contained in the solid torus bounded by T_{2}, P_{3} intersects ∂E. Thus F intersects P_{3} in annuli.

Assume that the Seifert fibration of P_{2} extends to a singular fibration of S^{3}. We consider P_{2} to be a composing space of Type I by switching the inner and outer tori of P_{2} if necessary. If T_{1} is the inner torus of P_{2}, Table 1 implies that F intersects T_{1} in meridians of type $(0, n)$. Then $(|r| \lambda,(\mu+r s \lambda) /|r|)=(0, n)$ implies $(\lambda, \mu+r s \lambda)=$ ($0, n|r|$). Therefore F intersects T_{2} in meridians and hence P_{3} is a composing space of Type I. If T_{1} is an outer torus of $P_{2}, s \neq 0$ and F intersects T_{1}, as the outer torus of P_{1}, in preferred longitudes of type $(n, 0)$. Then $(|r| \lambda,(\mu+r s \lambda) /|r|)=(n, 0)$ implies $(\lambda, \mu+r s \lambda)=(n /|r|, 0)$. Therefore F intersects T_{2}, which is the outer torus of P_{3}, in preferred longitudes and hence P_{3} is a composing space of Type III. In both cases, L is classified into (2-4).

Assume that the Seifert fibration of P_{2} extends to a Seifert fibration of S^{3} of type (p, q). In this case, P_{2} is a torus link space, cable space, or a composing space of Type II or III. We may assume that F intersects T_{1}, as the outer torus of P_{1}, in loops of type $(n, n p q)$ or $(n p, n q)$, corresponding to a regular or exceptional fiber of the Seifert fibration of S^{3}. Suppose that F intersects T_{1} in loops of type ($n, n p q$), where $s \neq p q r$. Then $(|r| \lambda,(\mu+r s \lambda) /|r|)=(n, n p q)$ implies $(\lambda, \mu+r s \lambda)=(n /|r|, n p q|r|)$. Therefore F intersects T_{2}, which is the outer torus of P_{3}, in longitudes each of which is of type $\left(1, p q r^{2}\right)$. Hence P_{3} is a composing space of Type III. Suppose that F intersects T_{1} in loops of type $(n p, n q)$, where $|p| \geq 2$ and $p s \neq q r$. Then $(|r| \lambda,(\mu+r s \lambda) /|r|)=$ $(n p, n q)$ implies $(\lambda, \mu+r s \lambda)=(n p /|r|, n q|r|)$. Therefore F intersects T_{2} in loops of type (t, u), where $p u=q r^{2} t$, and hence P_{3} is a cable space, or a composing space of Type II or III. In both cases, L is classified into (2-5).

Theorem 3.2 Let L be a non-splittable graph link and E the exterior of L. Suppose that no composing space is obtained by the JSJ decomposition of E. For any closed essential

Table 2: Surface fiber types in cable spaces.

$\chi\left(F_{0}\right)$	$(k, n,\|p\|)$
-1	$(2,1,2)$
-2	$(3,1,3),(4,1,2)$
-3	$(6,1,2),(4,1,4),(2,2,2)$
-4	$(8,1,2),(6,1,3),(5,1,5)$

surface F in E, the Euler characteristic $\chi(F)$ of F satisfies $\chi(F) \geq 0$ or $\chi(F) \leq-6$. Moreover, $(p, q) \neq(4,2 r)$ for any cable space type (p, q) and for any odd r implies $\chi(F) \geq 0$ or $\chi(F) \leq-10$, and $(p, q) \neq(2, r)$ for any cable space type (p, q) and for any odd r implies $\chi(F) \geq 0$ or $\chi(F) \neq-8$.

Proof Assume that $-8 \leq \chi(F) \leq-2$. Suppose that F is split by a JSJ decomposition of E into essential surfaces in Seifert manifold pieces. Then $\chi(F)$ is the sum of the Euler characteristics $\chi\left(F_{0}\right)$ of the component surfaces F_{0}. Since F separates E, it separates any piece which F intersects. Therefore, there is no piece which F intersects in an odd number of surface fibers. Hence $-4 \leq \chi\left(F_{0}\right) \leq-1$ for any component surface fiber F_{0}.

Let P be a cable space of type $(n p, n q)$, where $\operatorname{gcd}(p, q)=1$ and $|p| \geq 2$. The orbit manifold O of P is a disk with n holes and an exceptional point C of order $|p|$. We may consider a surface fiber F_{0} in P to be a k-fold branched cover of O branched over C, where k is a multiple of $|p|$. This implies $\chi\left(F_{0}\right)=k(1-n|p|) /|p|$. We say F_{0} is of type $(k, n,|p|)$. For example, $\chi\left(F_{0}\right)=-1$ implies $k /|p|=1$ and $n|p|=2$ because $k /|p|>0$ and $(1-n|p|)<0$ are integers, and therefore $(k, n,|p|)=(2,1,2)$. The possible types of F_{0} are listed in Table 2.

Let P be a torus link space of type $(n p, n q)$, where $\operatorname{gcd}(p, q)=1,|p| \geq 2$ and $|q| \geq 2$. The orbit manifold O of P is a disk with $n-1$ holes and two exceptional points C_{1} and C_{2} of order $|p|$ and $|q|$. Then a surface fiber F_{0} in P is a k-fold branched cover of O branched over C_{1} and C_{2}, where k is a multiple of $|p q|$. Therefore $\chi\left(F_{0}\right)=$ $k(|p|+|q|-n|p q|) /|p q|$. We say F_{0} is of type $(k, n,|p|,|q|)$. For example, $\chi\left(F_{0}\right)=-1$ implies $k /|p q|=1$ and $(|p|-1)(|q|-1)+(n-1)|p q|=2$. Since $(|p|-1)(|q|-1)=1$ implies $|p|=|q|=2$ which contradicts $\operatorname{gcd}(p, q)=1$, we have $(|p|-1)(|q|-1)=2$ and therefore $(k, n,|p|,|q|)=(6,1,2,3)$ or $(6,1,3,2)$. The possible types of F_{0} are listed in Table 3.

Assume that F contains a surface fiber F_{1} of type $(2,2,2)$ in a cable space P_{1}. Clearly, P_{1} is of type $(4,2 r)$ where r is odd. Table 2 implies $\chi\left(F_{1}\right)=-3$. Then F intersects P_{1} in two surface fibers and therefore $\chi(F)=-6$ or -8 . Assume that F contains a surface fiber F_{2} of type $(6,1,2,3)$ or $(6,1,3,2)$ in a torus knot space P_{2}. Since F_{2} is bounded by a preferred longitude on ∂P_{2}, Table 1 implies that F_{2} is connected to no essential annulus in a cable space over ∂P_{2}. Therefore, ∂P_{2} is the outer torus of P_{1}, and two surface fibers in P_{2} is connected separately to two surface fibers in P_{1}. Hence F_{1} intersects ∂P_{2} in a preferred longitude. This is impossible by Table 1. Consequently $\chi(F)=-8$ implies that F contains a surface fiber of type

Table 3: Surface fiber types in torus link spaces.

$\chi\left(F_{0}\right)$	$(k, n,\|p\|,\|q\|)$
-1	$(6,1,2,3),(6,1,3,2)$
-2	$(12,1,2,3),(12,1,3,2)$
-3	$(18,1,2,3),(18,1,3,2),(10,1,2,5),(10,1,5,2)$
-4	$(24,1,2,3),(24,1,3,2)$

$(2,1,2)$, i.e., F intersects a cable space of of type $(2, r)$ where r is odd.
Assume that F contains no surface fiber of type ($2,2,2$). Then any component surface fiber of F appears in a torus knot space or a cable space bounded by two tori. If F contains a surface fiber F_{1} in a torus knot space P_{1}, F_{1} intersects $T_{1}=\partial P_{1}$ in a longitude. Table 1 implies that F_{1} is connected over T_{1} to a surface fiber F_{2} in a cable space P_{2} and that F_{2} intersects the inner torus T_{2} of P_{2} in a longitude by the argument presented for the proof of Theorem 3.1. Repeating this argument three times, we obtain $\chi(F)<-8$ and a contradiction occurs. If F contains no surface fiber in a torus knot space, F contains an essential annulus F_{1} in a piece P_{1} bounded by (possibly not preferred) longitudes in the inner torus T_{1} of P_{1}. Applying the argument presented in the previous case, a contradiction occurs again.

Now we show an example in the case $\chi(F)=-6$. Let L be an iterated torus link obtained from a $(4,22)$-cable of a torus knot of type $(2,3)$ by taking a $(2,45)$-cable of a component and a $(3,64)$-cable of the another. The exterior of L is split by a JSJ decomposition into a torus knot space P_{1} of type (2,3), a cable space P_{2} of type (4, 22), a cable space P_{3} of type $(2,45)$ and a cable space P_{4} of type $(3,64)$. Denote by T_{1} the outer torus of P_{2}, and by T_{2} and T_{3} the inner tori of P_{2}. Suppose that P_{2} is connected to P_{3} and P_{4} over T_{2} and T_{3} respectively. Clearly P_{2} admits a surface bundle structure over $S^{1}=\left\{e^{2 \pi \theta i} \mid \theta \in \mathbb{R}\right\}$ with a surface fiber intersecting each T_{i} in a meridian. Denote by F_{θ} the surface fiber of level $e^{2 \pi \theta i}$. Then $\chi\left(F_{\theta}\right)=-3$. Take disjoint essential annuli A_{1}, A_{2}, A_{3}, and A_{4} in P_{2} so that any F_{θ} intersects each A_{i} in essential arc, A_{1} joins T_{1} and T_{2}, and each of A_{2}, A_{3}, and A_{4} joins T_{2} and T_{3}. By a cutting and pasting technique illustrated in Figure 3, we obtain a surface fiber F_{θ}^{\prime} of Euler characteristic -3 which joins links on T_{1}, T_{2}, and T_{3} of types $(2,12),(4,90)$, and $(-3,-64)$ respectively. By glueing essential annuli in P_{1}, P_{3}, and P_{4} to $F_{0}^{\prime} \cup F_{1 / 2}^{\prime}$ along their boundary loops, we obtain a closed essential surface of Euler characteristic -6.

4 Graph Knot Case

In this section, we focus on the graph knot case. Note that any non-trivial graph knot exterior is split by a JSJ decomposition into a torus knot space, a cable space bounded by two tori, or a composing space of Type I.

Theorem 4.1 Let E be a graph knot exterior which contains a closed essential surface F of negative Euler characteristic. Then F is split by a JSJ decomposition of E into essential annuli in composing spaces and surface fibers in cable spaces.

Figure 3: Cutting and pasting of surface fibers.

Proof We may consider F split into essential surfaces in Seifert manifold pieces.
Assume that F intersects an inner torus T_{1} of a piece P_{1} in non-meridional nonlongitudinal loops. Table 1 implies that P_{1} is a cable space or a composing space which F intersects in surface fibers, otherwise F intersects P_{1} in meridians or longitudes. A surface fiber in a cable space of type (p, q) joins a link on the inner torus of type $(\lambda, \mu+p q \lambda)$ and a link on the outer torus of type $(|p| \lambda,(\mu+p q \lambda) /|p|)$. If λ and $\mu+p q \lambda$ are non-zero integers such that $\mu+p q \lambda$ is not a multiple of $\lambda,|p| \lambda$ and $(\mu+p q \lambda) /|p|$ are non-zero integers such that $(\mu+p q \lambda) /|p|$ is not a multiple of $|p| \lambda$. Furthermore, a surface fiber in an n-fold composing space joins a link on the inner torus of type $\left(\lambda, \sum_{i=1}^{n} \mu_{i}\right)$ and links on the outer tori of type $\left(\lambda, \mu_{i}\right)$ for $1 \leq i \leq n$. If λ and $\sum_{i=1}^{n} \mu_{i}$ are non-zero integers such that $\sum_{i=1}^{n} \mu_{i}$ is not a multiple of λ, some μ_{i} is a non-zero integer which is not a multiple of λ. In both cases, we can find an outer torus T_{2} of P_{1} which F intersects in non-meridional non-longitudinal loops. Suppose that P_{1} is connected over T_{2} to a piece P_{2}. Then P_{2} is a cable space or a composing space which F intersects in surface fibers as before. Repeating this argument, we obtain an infinite sequence of the pieces, which contradicts the compactness of E.

Assume that F intersects an outer torus T_{1} of a piece P_{1} in longitudes. Table 1 implies that P_{1} is a cable space or a composing space which F intersects in surface fibers, otherwise F cannot intersect T_{1} in longitudes. Denote by T_{2} the inner torus of P_{1}. If P_{1} is a cable space, the argument presented in the proof of Theorem 3.1 implies that F intersects T_{2} in longitudes. If P_{1} is an n-fold composing space, the first half of this proof implies that F intersects any component of ∂P_{1} in meridians or in longitudes, and therefore Table 1 implies that F intersects T_{2} in longitudes. In both cases, P_{1} is connected over T_{2} to a cable space or a composing space P_{2} which F intersects in surface fibers. Repeating this argument, we obtain an infinite sequence of the pieces and a contradiction occurs again.

Consequently, F intersects the splitting tori in meridians. Hence the theorem follows from Table 1.

Let K be a connected sum of a trefoil knot and a cable of a granny knot. The exterior E of K is split into a cable space and two composing spaces. Figure 4 illustrates an essential surface F in E of Euler characteristic -2. One easily checks that F consists of three essential annuli in the composing spaces and two surface fibers, which are twice-punctured disks, in the cable space.

Figure 4: A genus two essential surface in a graph knot exterior.

Corollary 4.2 Any iterated torus knot exterior contains no closed essential surface of negative Euler characteristic.

Proof No composing space is obtained by the JSJ decomposition of the iterated torus knot exterior. Hence this is immediate from Theorem 4.1.

Acknowledgment The author would like to thank the referee for some helpful comments.

References

[1] G. Burde and K. Murasugi, Links and Seifert fiber spaces. Duke Math. J. 37(1970), 89-93.
[2] T. Ikeda, Atoroidal decompositions of link exteriors. Kobe J. Math. 9(1992), no. 1, 71-88.
[3] W. Jaco, Lectures on three-manifold topology. CBMS Regional Conference Series in Mathematics 43, American Mathematical Society, Providence, RI, 1980.
[4] W. Jaco and P. Shalen, Seifert fibered spaces in 3-manifolds. Mem. Amer. Math. Soc. 21(1979), no. 220.
[5] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries. Lecture Notes in Mathematics 761, Springer, Berlin, 1979.

Department of Mathematics, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan e-mail: ikedat@kochi-u.ac.jp

[^0]: Received by the editors August 31, 2006; revised July 7, 2008.
 AMS subject classification: Primary: 57M25.
 Keywords: Graph link, Graph manifold, Seifert manifold, Essential surface.
 (C)Canadian Mathematical Society 2009.

