ON CONFORMALLY FLAT SPACES WITH COMMUTING CURVATURE AND RICCI TRANSFORMATIONS

R. L. BISHOP AND S. I. GOLDBERG

Let \((M, g)\) be a \(C^\infty\) Riemannian manifold and \(A\) be the field of symmetric endomorphisms corresponding to the Ricci tensor \(S\); that is,

\[S(X, Y) = g(AX, Y). \]

We consider a condition weaker than the requirement that \(A\) be parallel (\(\nabla A = 0\)), namely, that the "second exterior covariant derivative" vanish (\(\nabla_X \nabla_Y A - \nabla_Y \nabla_X A - \nabla_{[X,Y]} A = 0\)), which by the classical interchange formula reduces to the property

\[(P) \quad R(X, Y) \circ A = A \circ R(X, Y), \]

where \(R(X, Y)\) is the curvature transformation determined by the vector fields \(X\) and \(Y\).

The property \((P)\) is equivalent to

\[(Q) \quad R(AX, X) = 0. \]

To see this we observe first that a skew symmetric and a symmetric endomorphism commute if and only if their product is skew symmetric. Thus we have

\[(P) \iff R(Z, W)A\text{ is skew symmetric} \]

\[\iff g(R(Z, W)AX, X) = 0 \]

\[\iff g(R(AX, X)Z, W) = 0 \]

\[\iff (Q). \]

Let \(M\) be a connected conformally flat manifold of dimension \(n, n \geq 3\). Then the Ricci endomorphisms determine the curvature according to the formula

\[(1) \quad R(X, Y) = \frac{1}{n-2} (AX \wedge Y + X \wedge AY) - \frac{r}{(n-1)(n-2)} X \wedge Y, \]

where \(r = \text{trace } A\) and \(X \wedge Y\) denotes the endomorphism

\[Z \mapsto g(Y, Z)X - g(X, Z)Y. \]

In this paper the connected conformally flat spaces satisfying \((P)\) are classified.

Lemma 1. Let \(M\) be an \(n\)-dimensional conformally flat space satisfying \((P)\).
Then
\[A^2 - \frac{r}{n-1} A = \rho I, \]
where \(\rho \) is a \(C^\infty \) function on \(M \) and \(I \) is the identity field.

\textbf{Proof.} Setting \(Y = AX \) in (1) and then applying \((Q)\) gives
\[BX \wedge X = 0, \]
where
\[B = A^2 - \frac{r}{n-1} A. \]
Since (3) may be interpreted as an exterior product, we conclude that every \(X \)
is an eigenvector of \(B \), so \(B = \rho I \) for some scalar field \(\rho \).

\textbf{Lemma 2.} Under the conditions in Lemma 1, \(A \) has at most the two eigenvalues
\[\frac{r \pm \sqrt{r^2 + 4(n-1)\rho}}{2(n-1)}. \]
Let \(M' \) be the open subset of \(M \) on which \(r^2 + 4(n-1)\rho \neq 0 \). Then the eigenspaces of \(A \) form smooth complementary orthogonal distributions on each connected component of \(M' \).

The eigenvalues are the roots of
\[\mu^2 - \frac{r}{n-1} \mu - \rho = 0; \]
the rest is also routine.

Let us fix notation as follows: The eigenvalues of \(A \) are \(\mu_1 \) and \(\mu_2 \). They are defined and continuous on all of \(M \) and distinct on \(M' \). The eigenspaces on \(M' \) are \(D_1 \) and \(D_2 \), of dimensions \(k \) and \(n-k \). We shall use adapted orthonormal frames and coframes \(\{X_a, X_b\} \) and \(\{\omega_a, \omega_b\}, a, b = 1, \ldots, k \) and \(i, j = k+1, \ldots, n \); moreover, \(i, j = 1, \ldots, n \). The corresponding connection and curvature forms are \(\omega_{ab} \), etc. and \(\Omega_{ab} \), etc.

\textbf{Lemma 3.} Let \(K = (\mu_1 - \mu_2)/(n-2) \). On \(D_1 \) the sectional curvature is \(K \), on \(D_2 \) it is \(-K\), and on mixed sections it vanishes; that is,
\[\Omega_{ab} = K \omega_a \wedge \omega_b, \]
\[\Omega_{ab} = -K \omega_a \wedge \omega_b, \]
\[\Omega_{ab} = 0. \]

\textbf{Proof.} Noting that \(r/(n-1) = \mu_1 + \mu_2 \), formula (1) becomes
\[R(X, Y) = \frac{1}{n-2} \{AX \wedge Y + X \wedge AY - (\mu_1 + \mu_2)X \wedge Y \}. \]
The rest follows by taking orthonormal eigenvectors for \(X \) and \(Y \).
Note that M' is just the set on which $K \neq 0$.

Theorem. Let M be an n-dimensional connected conformally flat space satisfying (P), $n \geq 3$. Then M is one of four types:

(a) M is flat (M' empty).
In the remaining cases $M = M'$; that is, M is either flat everywhere or has no flat points; moreover, k is constant.

(b) M has constant curvature ($k = 0$ or n).

(c) M is locally the Riemannian product of a k-dimensional space of constant curvature K and an $(n - k)$-dimensional space of constant curvature $-K(1 \leq k \leq n - 1)$.

(d) There is an open C^∞ map $t: M \to \mathbb{R}^+$ (positive reals) such that $K = K_0/t^2$ for some constant K_0. The map t is a Riemannian submersion having fibres which are totally umbilical hypersurfaces of constant (intrinsic) curvature $(1 + K_0)/t^2$ ($k = 1$ or $n - 1$).

Proof. Define the vector valued 1-form $F = F^i \otimes X_i$ by

$$F^i = A^i \omega^j - \frac{r}{2(n - 1)} \omega^i,$$

where A^i_j are the components of A. (The summation convention is employed here and in the sequel.) The X_i and ω^i are any local vector field basis and the dual basis of 1-forms, respectively. If ω^i_j are the connection forms for this basis we define the exterior covariant derivative DF of F as the vector-valued 2-form $(DF)^i \otimes X_i$, where

$$(DF)^i = dF^i + \omega^i_j \wedge F^j.$$

It is easily checked that DF is independent of the choice of basis. Using the first structural equation viz., $d\omega^i = -\omega^i_j \wedge \omega^j$, and the coefficients Γ^i_{kj} of $\omega^i_j (\omega^i_j = \Gamma^i_{kj} \omega^k)$, we obtain

$$(DF)^i = \left(X_k A^i_j + A^i_j \Gamma^k_{kj} + A^i_k \Gamma^j_{kh} - \frac{1}{2(n - 1)} \delta^i_j X_k r \right) \omega^k \wedge \omega^j$$

$$= \left(\nabla_k A^i_j - \frac{1}{2(n - 1)} \delta^i_j \nabla_k r \right) \omega^k \wedge \omega^j,$$

where δ^i_j is the Kronecker delta. As a tensor, this has the components

$$(n - 2) C^i_{jk} = \nabla_k A^i_j - \nabla_j A^i_k - \frac{1}{2(n - 1)} (\delta^i_j \nabla_k r - \delta^i_k \nabla_j r),$$

where C^i_{jk} is Weyl’s 3-index tensor. For a conformally flat space it is known that $C^i_{jk} = 0$. We use this by calculating DF in terms of an orthonormal basis adapted to the distributions D_i. In particular we can lower all superscripts.
Thus,

\[F_\alpha = A_\alpha \omega_\alpha - \frac{r}{2(n-1)} \omega_\alpha \]

\[= \mu_1 \omega_\alpha - \frac{1}{2} (\mu_1 + \mu_2) \omega_\alpha \]

\[= L \omega_\alpha, \]

where \(L = (n-2)K/2 \), and

\[F_\alpha = A_\alpha \omega_\alpha - \frac{r}{2(n-1)} \omega_\alpha \]

\[= \mu_2 \omega_\alpha - \frac{1}{2} (\mu_1 + \mu_2) \omega_\alpha \]

\[= -L \omega_\alpha, \]

from which

\[dF_\alpha = dL \wedge \omega_\alpha + L d\omega_\alpha + \omega_{ab} \wedge \omega_{\beta} - \omega_{\alpha \beta} \wedge \omega_{\beta} \]

\[= dL \wedge \omega_\alpha - L \omega_\alpha \wedge \omega_\alpha + L (\omega_{ab} \wedge \omega_{\beta} - \omega_{\alpha \beta} \wedge \omega_{\beta}) \]

\[= dL \wedge \omega_\alpha - 2L \omega_{\alpha \beta} \wedge \omega_{\beta} \]

\[= 0, \]

\[dF_\alpha = -dL \wedge \omega_\alpha + 2L \omega_{ab} \wedge \omega_\beta \]

\[= 0. \]

When \(k = n \), \(K \) is constant and \(M' = M \) follows immediately from Schur's theorem (or (4)).

Otherwise, by Cartan's lemma, (4) says that for each \(a \), \(dL \) and the \(\omega_{ab} \) are dependent at most on \(\omega_a \) and the \(\omega_\alpha \) and (5) says that the same forms are dependent at most on \(\omega_a \) and the \(\omega_\alpha \). Thus if \(2 \leq k \leq n - 2 \) we can make two choices of \(\alpha \) for each \(a \) and vice-versa, showing that \(dL = 0 \) and \(\omega_{\alpha \beta} = 0 \). Consequently, \(L \) and \(K = 2L/(n-2) \) are constant and \(D_1 \) and \(D_2 \) are parallel (in particular, completely integrable).

When \(k = 1 \) we still have by (5) that \(dL \) and \(\omega_{a1} \) are dependent at most on \(\omega_a \) and \(\omega_1 \). Making two choices of \(\alpha \), we get \(dL = H \omega_1 \) for some \(C^\infty \) function \(H \). Then, (4) reduces to \(\omega_{1\beta} \wedge \omega_{\beta} = 0 \), so the \(\omega_{1\beta} \) cannot depend on \(\omega_1 \). Hence \(\omega_{1a} = C_\alpha \omega_\alpha \) (\(\alpha \) not summed) for some scalar field \(C_\alpha \). But then by (5) again

\[-H \omega_1 \wedge \omega_\alpha + 2L (-C_\alpha \omega_\alpha) \wedge \omega_1 = 0; \]

that is, \(C = C_\alpha = H/2L \) is the same for all \(\alpha \). The geometrical interpretation of the relation \(\omega_{1a} = C_\alpha \omega_\alpha \) is that \(D_2 \) (the distribution annihilated by \(\omega_1 \)) is completely integrable and has totally umbilical leaves. In fact, \(d\omega_1 = -\omega_{1a} \wedge \omega_a = 0 \), so locally \(\omega_1 \) has a primitive \(u \); that is, \(du = \omega_1 \).
A differential equation for \(C \) may be obtained from the fact that the curvature of the section \(X_1 \wedge X_\alpha \) vanishes:

\[
\Omega_{1\alpha} = d\omega_{1\alpha} + \omega_{1\beta} \wedge \omega_{\beta\alpha} = dC \wedge \omega_\alpha + Cd\omega_\alpha + \omega_{1\beta} \wedge \omega_{\beta\alpha} = dC \wedge \omega_\alpha - C\omega_{\alpha i} \wedge \omega_i + C\omega_\beta \wedge \omega_{\beta\alpha} = \left(\frac{dC}{du} - C^2\right)\omega_1 \wedge \omega_\alpha.
\]

Therefore,

\[
\frac{dC}{du} - C^2 = 0.
\]

Solving this, we obtain either \(C = 0 \) or

\[
C = -\frac{1}{u - u_0} = -\frac{1}{t},
\]

where \(u_0 \) is a constant and hence \(t \) is another primitive for \(\omega_1 \). The signs of \(C \) and \(\omega_1 \) can be changed, if necessary, so as to make \(t > 0 \).

If \(C = 0 \), then it must be so on connected sets. Hence \(H = dL/du = 2LC = 0 \) and \(L \), and hence \(K_\alpha \), are constant. Moreover, \(C = 0 \) says \(D_1 \) and \(D_2 \) are parallel so we are back in case (c).

If \(C \neq 0 \), then we solve \(H = 2LC \) for \(L \), obtaining \(L = L_0/t^2 \), and hence \(K = K_0/t^2 \) for constants \(L_0 \) and \(K_0 \). Thus, \(t = (K_0/K)^{\frac{1}{2}} \) is a primitive for \(\omega_1 \) in each component of \(M' \). We don’t know yet whether there is only one component, so \(K_0 \) might have several values. As a map \(t : M' \to \mathbb{R}^+ \), \(t \) is clearly a Riemannian submersion whose fibres are the leaves of \(D_2 \). As such it is distance-non-increasing. Now suppose that \(M' \neq M \). Let \(\gamma \) be a curve entirely in \(M' \) except for the last point \(\gamma(1) \in M - M' \). The length of \(t\gamma \) is at most that of \(\gamma \) and is therefore bounded. Hence \(t\gamma(1) = \lim_{s \to 1} t\gamma(s) \) exists and is not \(\infty \). It cannot be 0 either, for then there would be a sequence of plane sections converging to a section at \(\gamma(1) \) and having curvatures diverging to \(\lim_{s \to 0} K_0/t^2 \). A similar difficulty is presented at any other finite limit for \(t\gamma(1) \), since we would then have curvatures converging to nonzero values contradicting the fact that \(M - M' \) is flat. Hence, \(M = M' \).

To complete the proof we calculate the intrinsic curvature of the leaves of \(D_2 \). The connection forms \(\omega_{\alpha\beta} \), restricted to a leaf, become the connection forms of the leaf. Thus, denoting the curvature forms of a leaf by \(\Phi_{\alpha\beta} \), the second structural equation for a leaf is

\[
d\omega_{\alpha\beta} = -\omega_{\alpha\gamma} \wedge \omega_{\beta\gamma} + \Phi_{\alpha\beta} = -\omega_{\alpha i} \wedge \omega_{i\beta} + \Omega_{\alpha\beta} = -\omega_{\alpha\gamma} \wedge \omega_{\beta\gamma} + (C^2 + K)\omega_\beta \wedge \omega_\beta.
\]
Evidently the curvature forms of the leaf are
\[\Phi_{\alpha\beta} = (C^2 + K)\omega_\alpha \wedge \omega_\beta, \]
so the curvature of the leaves of \(D_2 \) is \((1 + K_0)/r^2\).

\textit{Remark.} If \(M \) is complete, then the case (d) cannot occur, since the base of a complete Riemannian submersion must be complete.

\textit{University of Illinois,}
\textit{Urbana, Illinois}