# UNIONS OF TWO CONVEX SETS 

WILLIAM L. STAMEY and J. M. MARR

1. Introduction and notation. Valentine (1, Theorems 2 and 3) has defined a three-point property which he called $P_{3}$ and has shown that a closed subset of the euclidean plane possessing this property is expressible as the union of at most three convex sets. He also showed that if the number of isolated points of local non-convexity of such a set is one, finite and even, or infinite, the set is the union of two convex sets. In this paper we give properties which, together with Valentine's results, characterize those subsets of a plane which may be represented as a union of two closed, convex sets.

The closed metric segment joining $p$ and $q$ in the euclidean plane $E^{2}$ will be denoted by $S(p, q)$. A set $A$ is star-like with respect to $p \in A$ if $S(p, q)$ lies in $A$ for every $q \in A$. The set of star-like points of $A$ is called the kernel of $A$. The boundary of $A$ and the kernel of $A$ will be denoted by $B(A)$ and $K(A)$ respectively. A set $A$ is said to have the property $P_{3}$ if for each triple of its points $p, q, r$ at least one of the segments $S(p, q), S(q, r)$, or $S(p, r)$ lies in $A$. By a convex polygon we mean a simple closed curve which is the union of a finite number of line segments and which bounds a convex set in $E^{2}$.

Suppose $p_{1}, p_{2}, \ldots, p_{k}$ are the vertices of a convex polygon ordered in the counter-clockwise manner around the polygon. Two lines containing adjacent sides of the convex polygon intersect at a vertex $p_{j}$ and determine four closed sectors whose intersection is $p_{j}$. That closed sector which has only $p_{j}$ in common with the polygon will be denoted by $\sum_{j}$. Now consider a side $S\left(p_{j}, p_{j+1}\right)$ (where the index $k+1$ is identified with the index 1 ) of the convex polygon. The line determined by $p_{j}$ and $p_{j+1}$ divides the plane into two halfplanes. Let $H\left(p_{j}, p_{j+1}\right)$ be the closed half-plane which contains $\sum_{j} \cup \sum_{j+1}$, and let

$$
T\left(p_{j}, p_{j+1}\right)=\overline{H\left(p_{j}, p_{j+1}\right) \backslash\left(\sum_{j} \cup \sum_{j+1}\right)} .
$$

The set $T\left(p_{j}, p_{j+1}\right)$ will be referred to as a $T$ set. A $T$ set may be triangular or unbounded. The intersection $\sum_{j} \cap T\left(p_{j}, p_{j+1}\right)$ is either a ray with initial point $p_{j}$ or is a segment with one endpoint $p_{j}$. The intersection $\sum_{j} \cap \sum_{j+1}$ is either null or contains interior points of both $\sum_{j}$ and $\sum_{j+1}$. Then the sides of the polygon determine in the plane $2 k+1$ sets: (1) the interior of the polygon, (2) the $k$ sets $\sum_{j}$, and (3) the $k$ sets $T\left(p_{j}, p_{j+1}\right)$.
2. Preliminaries. In this section results are obtained which enable us to provide the desired characterization of certain subsets of $E^{2}$.

Lemma 1. Let $S$, a connected subset of $E^{2}$, have property $P_{3}$, and let $p_{1}, p_{2}, \ldots, p_{k}$ $(k \geqslant 3)$ be all of the points of local non-convexity of $S$. Then $p_{1}, p_{2}, \ldots, p_{k}$ are the vertices of a convex polygon, and the interior of each $\sum_{j}(j=1,2, \ldots, k)$ contains no points of $S$.

Proof. Since $S$ has $P_{3}$, for each $j, p_{j} \in B(K(S))$ (1, Corollary 1). Since $K(S)$ is convex, the points $p_{j}$ are the vertices of a convex polygon.

Suppose $q \in S$ and that $q$ is an interior point of a $\sum$, say $\sum_{1}$. Since $S\left(p_{2}, p_{k}\right)$ $\subset K(S)$, every point of $S\left(p_{2}, p_{k}\right)$ can be joined to $q$ by a segment which lies in $S$. Then the interior and boundary of the triangle determined by $q, p_{2}$, and $p_{k}$ contains only points of $S$. Since $p_{1}$ is an interior point of this triangle, $S$ is locally convex at $p_{1}$. This is a contradiction.

Suppose $p$ is a point of the boundary of a closed, convex set $A$ in the plane. If there is a line tangent to $B(A)$ at $p$, then this line is the only support line for $A$ at $p$. Otherwise, there exist a unique right-hand and a unique left-hand semitangent to $B(A)$ at $p$. Each is a support line of $A$.

Lemma 2. If $p_{1}, p_{2}, \ldots, p_{k}(k \geqslant 3)$ are all the points of local non-convexity of a bounded, closed subset $S$ of $E^{2}$ possessing property $P_{3}$, then the intersection of $S$ and any $T$ set is convex.

Proof. If for any $T$ set, say $T\left(p_{1}, p_{2}\right), T \cap S$ is not convex, then there exist points $q, r \in T \cap S$ such that none of the points of $S(q, r)$ between $q$ and $r$ lie in $S$. Each of the points $q$ and $r$ can be joined by a segment in $T \cap S$ to $S\left(p_{1}, p_{2}\right)$. If $S(q, r)$ extended meets $S\left(p_{1}, p_{2}\right)$, there is a contradiction. Thus the segment $S(q, r)$ must be parallel to $S\left(p_{1}, p_{2}\right)$ or must be on a line which intersects $S\left(p_{1}, p_{2}\right)$ extended. In either case the points $p_{1}, p_{2}, q$, and $r$ determine a convex quadrilateral. The labelling may be selected so that the diagonals of the convex quadrilateral are $S\left(p_{1}, r\right)$ and $S\left(p_{2}, q\right)$. Now there exist points $p_{1}{ }^{\prime} \in S\left(p_{1}, q\right)$ and $p_{2}{ }^{\prime} \in S\left(p_{2}, r\right)$ such that $p_{1} \neq p_{1}{ }^{\prime} \neq r, p_{2} \neq p_{2}{ }^{\prime} \neq q$ and the quadrilateral determined by $p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, q$, and $r$ is convex.

Let $Q$ be the set of points interior to and on the boundary of the quadrilateral with vertices $p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, q$, and $r$. Then $T \cap Q$ is convex. Since $q, r \in T$ $\cap Q \cap S$ and $S(q, r) \not \subset T \cap Q \cap S$, then $T \cap Q \cap S$ is not convex. Hence $S$ has a point of local non-convexity in $T$ different from $p_{1}$ and $p_{2}$. This is a contradiction.

Let $C(j, j+1)=S \cap T\left(p_{j}, p_{j+1}\right)$ for $j=1,2, \ldots, k$. In the following if we denote that the three points $p_{1}, p_{2}$, and $p_{3}$ are consecutive points on a simple closed curve, we mean to indicate the order in which these points are encountered in traversing the simple closed curve in such a manner that the bounded component of its complement is always on the left.

Lemma 3. Let $p_{1}, p_{2}, p_{3}$ be any three consecutive points of local non-convexity of a set $S$ satisfying the hypothesis of Lemma 2. Then for $j=1,2$ each of the semitangents to $C(j, j+1)$ at $p_{2}$ is a support line for $K(S)$.

Proof. We shall show that $K(S)$ lies in only one of the closed half-planes determined by the right-hand semitangent to $C(1,2)$ at $p_{2}$. The proof for the left-hand semitangent to $C(2,3)$ is similar.

The right-hand semitangent is a support line for the triangle with vertices $p_{1}, p_{2}$, and $p_{3}$. Let $H$ be that open half-plane which does not contain the triangle. Assume $q \in H \cap K(S)$. Clearly $q \notin C(1,2)$; hence $q \in C(2,3)$. Consider the line $L$ containing $S\left(q, p_{2}\right)$. Since $L$ is not a support line for $C(1,2)$, both open half-planes determined by $L$ contain points of $C(1,2)$. Let $r$ be a point of $C(1,2)$ in that open half-plane which contains the interior of $\sum_{2}$. Since $q \in K(S), S(q, r) \subset S$ and $S(q, r) \cap \sum_{2}$ is not null. This contradicts Lemma 1.

Lemma 4. Let $p_{1}, p_{2}, p_{3}$ be points satisfying the hypothesis of Lemma 3. If $t_{1} \in C(1,2)$ and $t_{2} \in C(2,3), t_{1} \neq p_{2} \neq t_{2}$, are such that $S \cap S\left(t_{1}, t_{2}\right)=t_{1}$ $\cup t_{2}$, then $t_{1}\left(t_{2}\right)$ is in the closed half-plane not containing $K(S)$ determined by the left-hand (right-hand) semitangent to $C(2,3)\left(\right.$ to $C(1,2)$ ) at $p_{2}$.

Proof. Since $K(S) \cap C(1,2)$ is not null, by Lemma 3 the right-hand semitangent at $p_{2}$ is a support line for $K(S) \cup C(1,2)$. Note that the right-hand semitangent is also a support line for $\sum_{2}$ and that $\sum_{2}$ lies in the closed halfplane not containing $K(S)$. Since $S\left(t_{1}, t_{2}\right)$ has points in common with the interior of $\sum_{2}, S\left(t_{1}, t_{2}\right)$ intersects the right-hand semitangent to $C(1,2)$. A similar argument holds for $t_{2}$ and the left-hand semitangent to $C(2,3)$ at $p_{2}$.

Theorem 1. Let $S$ be a bounded, closed, and connected subset of $E^{2}$. Suppose $S$ has property $P_{3}$ and that $S$ contains at least one point of local non-convexity. If there exists a point $q \in S$ such that $q \in K(S) \cap B(S)$ and $S$ is locally convex at $q$, then $S$ can be expressed as the union of two closed and convex sets.

Proof. If the number of points of local non-convexity of $S$ is one, finite and even, or infinite, then the desired conclusion is immediate ( $\mathbf{1}, \mathrm{p} .1232$, Theorem $3)$. Otherwise, denote the points of local non-convexity of $S$ by $p_{1}, \ldots, p_{2 n+1}$, $n \geqslant 1$, ordered in a counter-clockwise manner around $B(K(S))$. Set $2 n+1$ $=k$. Since $q$ lies in one of the $T$ sets of the polygon $p_{1}, \ldots, p_{k}$, the labelling may be selected so that $q \in T\left(p_{k}, p_{1}\right)$. Since $q \in B(S)$, then by Lemma 2 , $q$ is a point of the boundary of the convex set $C(k, 1)$. Then $q$ lies on an arc $A\left(p_{k}, p_{1}\right)$ contained in $B(S)$ with endpoints $p_{k}$ and $p_{1}$. At every point of this arc except at $p_{k}$ and $p_{1}, S$ is locally convex. Since $S$ is not locally convex at $p_{1}$, there is a point, say $r$, of the arc $A\left(p_{k}, p_{1}\right)$ such that $r$ is not in $K(S)$ and $r$ is in the subarc of $A\left(p_{k}, p_{1}\right)$ from $q$ to $p_{1}$. Since $K(S)$ and $C(k, 1)$ are closed and convex, there is a subarc $A\left(q_{1}, p_{1}\right)$ of $A\left(p_{k}, p_{1}\right)$ with endpoints $q_{1}$ and $p_{1}$ such that $A\left(q_{1}, p_{1}\right) \cap K(S)=q_{1} \cup p_{1}$. Similarly there is a subarc $A\left(q_{k}, p_{k}\right)$ of $A\left(p_{k}, p_{1}\right)$ such that $A\left(q_{k}, p_{k}\right) \cap K(S)=p_{k} \cup q_{k}$.

In $T\left(p_{j}, p_{j+1}\right) \cap B(S)$, denote the arc joining $p_{j}$ and $p_{j+1}$ by $A_{T}\left(p_{j}, p_{j+1}\right)$ for $j=1,2, \ldots, k$ (where $p_{k+1}=p_{1}$ ). Also for each two distinct points $a$ and $b$ in $B(K(S))$, let $A_{K}(a, b)$ be the arc connecting $a$ and $b$ in $B(K(S))$ in the counter-clockwise direction. If $a=b$, then let $A_{K}(a, b)=a$. Let

$$
\begin{array}{r}
D=A_{K}\left(q_{1}, p_{1}\right) \cup A_{T}\left(p_{1}, p_{2}\right) \cup A_{K}\left(p_{2}, p_{3}\right) \cup \ldots \cup A_{T}\left(p_{k-2}, p_{k-1}\right) \cup \\
A_{K}\left(p_{k-1}, p_{k}\right) \cup A_{T}\left(p_{k}, q_{k}\right) \cup A_{K}\left(q_{k}, q_{1}\right) .
\end{array}
$$

Note that each arc of the form $A_{T}$ or $A_{K}$ can have only endpoints in common with another $A_{T}$ or $A_{K}$. Hence $D$ is a simple closed curve. Let $M$ denote the closure of the bounded component of $E^{2} \backslash D$. It is clear from the manner in which $D$ was constructed that $K(S) \subset M$ and that the set $M$ is the union of $K(S)$ and a certain collection $C$ of the sets $C(j, j+1)$. Hence $M \subset S$.

Assertion. The set $M$ is convex.
Proof. Let $x, y \in M$. If either $x$ or $y$ is in $K(S)$, then $S(x, y) \subset M$. Suppose neither $x$ nor $y$ is in $K(S)$; then each is in a $T$-set. If $x$ and $y$ belong to the same $T$-set, then $S(x, y) \subset M$. If $x$ and $y$ are in $T$-sets whose intersection is null, then there exist points $x_{1}$ and $y_{1}$ in $B(K(S))$ such that $S(x, y)=S\left(x, x_{1}\right)$ $\cup S\left(x_{1}, y_{1}\right) \cup S\left(y_{1}, y\right)$. Since each of the three segments of the decomposition of $S(x, y)$ is in $M$, then $S(x, y) \subset M$. Suppose then that $x$ and $y$ are in $T$-sets whose intersection is a point of local non-convexity $p_{j}$. If $j \neq 1$, then one of the points $x, y$ is in $K(S)$. This has been considered previously. Suppose $j=1$. If $x \in T\left(p_{1}, p_{2}\right), y \in C(k, 1)$ but $y$ is not in the closed convex set $F$ bounded by $A_{T}\left(p_{k}, q_{k}\right)$ and $S\left(p_{k}, q_{k}\right)$, then $y \in K(S)$. If $y \in F$, then $x$ and $y$ lie on the same side of the left-hand semitangent to $\mathrm{C}(1,2)$ at $p_{1}$. If $S(x, y) \not \subset S$, then Lemma 4 would be contradicted. Hence $S(x, y)$ is of the form $S\left(x, x_{1}\right) \cup$ $S\left(x_{1}, y_{1}\right) \cup S\left(y_{1}, y\right)$ where $x_{1} \cup y_{1} \subset B(K(S))$. That is, if $x$ and $y$ are in $M$ then $S(x, y) \subset M$, and the assertion has been proved.

Let $E$ denote the simple closed curve which is the set-theoretic union of the sequence of $\operatorname{arcs} A_{T}\left(q_{1}, p_{1}\right), A_{K}\left(p_{1}, p_{2}\right), \ldots, A_{T}\left(p_{k-1}, p_{k}\right), A_{K}\left(p_{k}, q_{k}\right), A_{T}\left(q_{k}, q_{1}\right)$ and let $N$ be the closure of the set of points interior to and on $E$. By an argument similar to that used for $M$, the set $N$ is convex and $K(S) \subset N \subset S$.

If $x \in S$, then either $x \in K(S)$ or $x \in C(j, j+1)$ for some $j$. In either case $x$ is in $M$ or $N$. By construction $M \cup N \subset S$, and hence $S=M \cup N$ where $M$ and $N$ are convex. Thus the theorem has been proved.

Theorem 2. If a bounded, closed, connected subset $S$ of the plane $E^{2}$ is the union of two closed, convex sets, each of which contains the kernel of $S$, and if $S$ has an odd number $\geqslant 3$ of points of local non-convexity, then $S$ contains a point of local convexity which lies in $K(S) \cap B(S)$.

Proof. Let the points of local non-convexity be denoted $p_{1}, \ldots, p_{k}, k$ odd and $k \geqslant 3$, as $K(S)$ is traversed in the counter-clockwise manner. Let $S$ $=M \cup N$ where $K(S) \subset M \cap N$ with $M$ and $N$ each closed and convex.

Consider $A_{T}\left(p_{1}, p_{2}\right)$. Since $S$ has $P_{3}$, points $p_{1}$ and $p_{2}$ each belong to $K(S)$ $=M \cap N$. If any other point of $A_{T}\left(p_{1}, p_{2}\right)$ belongs to both $M$ and $N$, the proof is complete. So let it be assumed that $A_{T}\left(p_{1}, p_{2}\right) \subset M$, and $A_{T}\left(p_{1}, p_{2}\right)$ $\cap N=p_{1} \cup p_{2}$.

Then consider $A_{T}\left(p_{2}, p_{3}\right)$. There exists a point of $A_{T}\left(p_{2}, p_{3}\right)$ and a point
of $A_{T}\left(p_{1}, p_{2}\right)$ which cannot be joined by a segment in $S$. Such a point of $A_{T}\left(p_{2}, p_{3}\right)$ is in $N$. Again if a point of local convexity (with respect to $S$ ) of $A_{T}\left(p_{2}, p_{3}\right)$ belongs to $M \cap N$, the proof is complete. Thus it may be assumed that every point of $A_{T}\left(p_{2}, p_{3}\right)$ belongs to $N$, and that the only points of $A_{T}\left(p_{2}, p_{3}\right)$ belonging to $M$ are $p_{2}$ and $p_{3}$.

Continuing around the polygon $p_{1}, \ldots, p_{k}$ in this manner gives
and

$$
\begin{aligned}
& A_{T}\left(p_{2 j-1}, p_{2 j}\right) \subset M \\
& A_{T}\left(p_{2 j}, p_{2 j+1}\right) \subset N
\end{aligned} \quad j=1, \ldots, \frac{k-1}{2}
$$

But $A_{T}\left(p_{k}, p_{1}\right)$ and $A_{T}\left(p_{1}, p_{2}\right)$ are contained in $M$. Then any point of either of these arcs may be joined to any point of the other by a segment lying in $M C^{-} S$. This violates the local non-convexity of $S$ at $p_{1}$ and nullifies the assumption that no point of any of the $A_{T}$ arcs except endpoints belongs to both $M$ and $N$.

The following example shows that the hypothesis of Theorem 2 cannot be weakened by deleting the condition that $S$ be bounded. Let $M$ be the set of points $(x, y) \in E^{2}$ in the closed first quadrant; and let $N$ be the set of points $(x, y) \in E^{2}$ satisfying both $y \geqslant 1-x$ and $y \geqslant x-3$. The points of local non-convexity of $S=M \cup N$ are $(0,1),(1,0)$, and ( 3,0 ). This set $S$ has no point $q$ of local convexity such that $q \in B(S) \cap K(S)$.

## Reference

1. F. A. Valentine, A three point convexity property, Pac. J. Math., 7 (1957), 1227-1235.

Kansas State University

