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Abstract
In [14], Jacquet–Piatetskii-Shapiro–Shalika defined a family of compact open subgroups of p-adic general linear
groups indexed by nonnegative integers and established the theory of local newforms for irreducible generic
representations. In this paper, we extend their results to all irreducible representations. To do this, we define a new
family of compact open subgroups indexed by certain tuples of nonnegative integers. For the proof, we introduce
the Rankin–Selberg integrals for Speh representations.
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1. Introduction

1.1. Background

The theory of newforms is fascinating and plays an important role in the theory of automorphic forms.
It was first studied in the early 1970s by Atkin–Lehner [3] and Li [23] in terms of classical modular
forms, and by Casselman [6] in terms of local newforms on GL2. Their results become a bridge between
classical modular forms and automorphic representations of GL2. Casselman’s result was generalised to
GL𝑛 by Jacquet–Piatetskii-Shapiro–Shalika [14] (see also Jacquet’s erratum [13]) in the 1980s. Another
proof was given by Matringe [26] in 2013.

After their works, the theory of local newforms was established

• for PGSp4 and for S̃L2, which is the double cover of SL2, by Roberts–Schmidt [35, 36];
• for GSp4 by Okazaki [33];
• for U(1, 1) by Lansky–Raghuram [19];
• for unramified U(2, 1) by Miyauchi [27, 28, 29, 30].

In 2010, Gross gave a conjecture on the local newforms for SO2𝑛+1 in a letter to Serre (see the expansion
[9] of this letter). It is a natural extension of the GL2 case [6] and the PGSp4 case [35]. This conjecture
was proven for generic supercuspidal representations by Tsai [41].

One has to notice that in all previous works, representations are assumed to be generic. For GL𝑛,
this assumption might be reasonable since all local components of an arbitrary irreducible cuspidal
automorphic representation of GL𝑛 are generic. However, for other groups, this assumption is too strong
because there are many irreducible cuspidal automorphic representations whose local components are
not generic (and not tempered), such as the Saito–Kurokawa lifting of PGSp4.
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In this paper, we generalise the results in [14] to all the irreducible representations. Namely, we
extend the theory of local newforms to not generic representations in the case of GL𝑛. By considering
the endoscopic classification, our results would be useful for the study of local newforms for classical
groups in the future.

1.2. Main results

Let us describe our results. Let F be a nonarchimedean local field of characteristic zero with the ring of
integers 𝔬 and the maximal ideal 𝔭. Fix a nontrivial additive character 𝜓 of F, which is trivial on 𝔬 but
not on 𝔭−1. We denote by q the order of 𝔬/𝔭.

For an integer 𝑛 ≥ 1, set Λ𝑛 = {(𝜆1, . . . , 𝜆𝑛) ∈ Z
𝑛 | 0 ≤ 𝜆1 ≤ · · · ≤ 𝜆𝑛}. We regard Λ𝑛 as a totally

ordered monoid with respect to the lexicographic order. For 𝜆 = (𝜆1, . . . , 𝜆𝑛), we set |𝜆 | = 𝜆1 + · · · +𝜆𝑛.
We set 𝐺𝑛 = GL𝑛 (𝐹). For 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ Λ𝑛, we define a subgroup K𝑛,𝜆 of GL𝑛 (𝔬) by

K𝑛,𝜆 = {(𝑘𝑖, 𝑗 ) ∈ GL𝑛 (𝔬) | 𝑘𝑖, 𝑗 ≡ 𝛿𝑖, 𝑗 mod 𝔭𝜆𝑖 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛},

where 𝛿𝑖, 𝑗 is the Kronecker delta.
Let 𝜋 be an irreducible smooth complex representation of 𝐺𝑛. Godement–Jacquet [8] associated two

local factors 𝐿(𝑠, 𝜋) and 𝜀(𝑠, 𝜋, 𝜓) with 𝜋. By [14, (5.1) Théorème (i)] and [8, Corollary 3.6] (or by the
local Langlands correspondence [11], [12]), we have 𝜀(𝑠, 𝜋, 𝜓) = 𝜀(0, 𝜋, 𝜓)𝑞−𝑐𝜋 𝑠 for some nonnegative
integer 𝑐𝜋 . We call 𝑐𝜋 the conductor of 𝜋.

Set 𝜋 (0) = 𝜋 and 𝜋 (𝑖) to be the highest derivative of 𝜋 (𝑖−1) in the sense of Bernstein–Zelevinsky [4]
for 𝑖 = 1, . . . , 𝑛. (Note that our notation is different from the original in [4].) It is known that 𝜋 (𝑖) is
irreducible so that one can consider its conductor 𝑐𝜋 (𝑖) . We then define 𝜆𝜋 = (𝜆1, . . . , 𝜆𝑛) by

𝜆𝑘 = 𝑐𝜋 (𝑛−𝑘) − 𝑐𝜋 (𝑛−𝑘+1)

for 1 ≤ 𝑘 ≤ 𝑛. In Section 2.3 (especially in Proposition 2.4) below, we will see that 𝜆𝜋 ∈ Λ𝑛. We note
that |𝜆𝜋 | = 𝑐𝜋 .

We denote by 𝜋K𝑛,𝜆 theK𝑛,𝜆-invariant subspace of 𝜋, which is finite-dimensional. Our main theorem
is stated as follows:
Theorem 1.1 (Theorems 2.1, 2.2). Let 𝜋 be an irreducible representation of 𝐺𝑛.
(1) For 𝜆 ∈ Λ𝑛, we have

dim(𝜋K𝑛,𝜆 ) =

{
1 if 𝜆 = 𝜆𝜋 ,

0 if 𝜆 < 𝜆𝜋 .

(2) If 𝜆 ∈ Λ𝑛 satisfies that |𝜆 | < |𝜆𝜋 |, then 𝜋K𝑛,𝜆 = 0.
We call any nonzero element in 𝜋K𝑛,𝜆𝜋 a local newform of 𝜋. Using Theorem 1.1, we can give a

characterisation of the conductor in terms of the dimensions of fixed parts: that is,

𝑐𝜋 = min
{
|𝜆 |
�� 𝜋K𝑛,𝜆 ≠ 0

}
.

Note that when 𝜋 is generic, since 𝜋 (𝑖) is the trivial representation 1𝐺0 for any 𝑖 ≥ 1, we have
𝜆𝜋 = (0, . . . , 0, 𝑐𝜋). In this case, K𝑛,𝜆𝜋 is nothing but the compact group introduced by Jacquet–
Piatetskii-Shapiro–Shalika [14]. Hence Theorem 1.1 (1) is an extension of a result in [14].

According to the Zelevinsky classification, the set of isomorphism classes of irreducible representa-
tions of 𝐺𝑛 is classified by multisegments. We recall it in Section 2.1. When 𝜋 = 𝑍 (𝔪) is the irreducible
representation associated with a multisegment 𝔪, we have another description of 𝜆𝜋 in terms of 𝔪
(Proposition 2.4), which allows us to compute 𝜆𝜋 in many important cases (Example 2.5). Moreover,
Corollary 2.8 tells us how to compute 𝜆𝜋 inductively in general.
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The proof of Theorem 1.1 takes the following three steps:

Step 1: Reduce to two cases: the case where 𝜋 is of type 𝜒 with an unramified character 𝜒 of 𝐹×

and the case where 𝐿(𝑠, 𝜋) = 1. Here, we say that an irreducible representation 𝜋 is of type 𝜒 if
𝜋 = 𝑍 (Δ1 + · · · + Δ𝑟 ) such that for 𝑖 = 1, . . . , 𝑟 , the segment Δ 𝑖 is of the form [𝑎𝑖 , 𝑏𝑖]𝜒 for some
integers 𝑎𝑖 , 𝑏𝑖 satisfying 𝑎𝑖 ≤ 𝑏𝑖 .
Step 2: Prove Theorem 1.1 for 𝜋 of type 𝜒 with an unramified character 𝜒 of 𝐹×.
Step 3: Prove Theorem 1.1 for 𝜋 such that 𝐿(𝑠, 𝜋) = 1.

Let us give the details of each step.

1.3. Reduction

Using the Mackey theory, we study theK𝑛,𝜆-invariant subspaces of parabolically induced representations
in Section 5.1. To do this, in Section 4.1, we relate Λ𝑛 with the set |C𝑛 | of isomorphism classes [𝑀]

of 𝔬-modules such that M is generated by at most n elements. In Section 5.1, we associate a compact
open subgroup K𝑛, [𝑀 ] of 𝐺𝑛 with [𝑀] ∈ |C𝑛 |. If 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ Λ𝑛 and 𝑀 = ⊕𝑛𝑖=1𝔬/𝔭

𝜆𝑖 , then
K𝑛, [𝑀 ] = K𝑛,𝜆. Proposition 5.2 says that the K𝑛, [𝑀 ]-invariant subspace of a parabolically induced
representation decomposes into a direct sum indexed by certain filtrations on M by 𝔬-modules. In
particular, this proposition together with Corollary 4.7 reduces Theorem 1.1 to the following two types
of irreducible representations:

• 𝜋 ∈ Irr(𝐺𝑛) of type 𝜒 with a fixed unramified character 𝜒 of 𝐹×

• 𝜋 ∈ Irr(𝐺𝑛) such that 𝐿(𝑠, 𝜋) = 1

1.4. The case where 𝝅 is of type 𝝌

In Section 6, we prove Theorem 1.1 for irreducible representations 𝜋 ∈ Irr(𝐺𝑛) of type 𝜒 with a fixed
unramified character 𝜒 of 𝐹×.

In the proof of Theorem 1.1 (1), we first consider the case where 𝜋 is a ladder representation.
The main ingredient in this case is Tadić’s determinantal formula established by Lapid–Mínguez [21].
This formula describes 𝜋 explicitly as an alternating sum of standard modules. The key point is that
the standard modules appearing here are parabolically induced representations from one-dimensional
representations. In particular, for [𝑀] ∈ |C𝑛 |, the determinantal formula together with Proposition 5.2
expresses the dimension of 𝜋K𝑛, [𝑀 ] explicitly as an alternating sum of the numbers of certain filtrations
on M by 𝔬-modules (Proposition 6.1). Surprisingly, there are many cancellations in this alternating sum
(Lemma 6.3). From this lemma, we can deduce Theorem 1.1 (1) for a ladder representation 𝜋 of type 𝜒.
For these miraculous cancellations, see Example 6.4.

The proof of Theorem 1.1 (1) for general 𝜋 of type 𝜒 is by induction on a certain totally ordered set.
The key is Proposition 2.7, whose proof relies on a highly nontrivial result of Knight–Zelevinsky [16]
that describes the Zelevinsky dual of 𝜋 (see also Proposition 3.7).

We reduce the proof of Theorem 1.1 (2) to the case where 𝜋 is a Steinberg representation. In this
case, by Tadić’s determinantal formula (or by the definition of the Steinberg representations in Harish-
Chandra [10]), we can express 𝜋K𝑛,𝜆 explicitly as an alternating sum of the numbers of certain filtrations
on the 𝔬-module corresponding to 𝜆. We realise this alternating sum as a coefficient of certain formal
power series in one variable whose coefficients are in a graded ring. By giving another description of
this formal power series, we deduce that 𝜋K𝑛,𝜆 = 0.

1.5. The case where 𝑳(𝒔, 𝝅) = 1

In Section 7, we firstly prove Theorem 1.1 (2) for 𝜋 with 𝐿(𝑠, 𝜋) = 1. We reduce the proof to the case
where 𝜋 is cuspidal. In this case, Lemma 7.1 says that certain Hecke operators depending on 𝜆 ∈ Λ𝑛
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act on 𝜋 as nilpotent endomorphisms. We consider the Godement–Jacquet integral 𝑍 (Φ, 𝑠, 𝑓 ) defined
in [8]. From this lemma, it follows that if 𝜋K𝑛,𝜆 ≠ 0, then we can obtain data Φ and f such that 𝑍 (Φ, 𝑠, 𝑓 )
is a nonzero constant, whereas 𝑍 (Φ̂, 𝑠, 𝑓 ) ∈ 𝑞 |𝜆 |𝑠C[[𝑞−𝑠]]. Since 𝜀(𝑠, 𝜋, 𝜓) = 𝜀(0, 𝜋, 𝜓)𝑞−|𝜆𝜋 |𝑠 , by the
functional equation, we conclude that |𝜆 | ≥ |𝜆𝜋 |.

By Proposition 5.2, we can reduce Theorem 1.1 (1) for 𝜋 with 𝐿(𝑠, 𝜋) = 1 to the case where 𝜋 = 𝑍 (Δ)
for a segment Δ (Lemma 7.2). The key point here is that the matrices defined by the multiplicities
of irreducible representations appearing in standard modules are ‘triangular’ and unipotent ([42, 7.1
Theorem]).

Finally, we prove Theorem 1.1 (1) for 𝜋 = 𝑍 (Δ) with 𝐿(𝑠, 𝜋) = 1. Slightly generally, we do it in
Section 9 for Speh representations Sp(𝜋temp, 𝑚) with an irreducible tempered representation 𝜋temp of
𝐺𝑛. For the notation of Speh representations, see Example 2.5 (4). The proof of this case is rather
an analogue of the generic case in [14]. Namely, it is an application of the theory of Rankin–Selberg
integrals. To carry out the proof, we establish this theory for Speh representations in Section 8.

1.6. Rankin–Selberg integrals for Speh representations

The theory of Rankin–Selberg integrals was developed by Jacquet–Piatetskii-Shapiro–Shalika [15].
These integrals are integrations of products of Whittaker functions of two irreducible representations
of 𝐺𝑛 and 𝐺𝑚, and they represent the Rankin–Selberg L-functions. Since representations are required
to admit nontrivial Whittaker functions, they must be generic. As an application of Rankin–Selberg
integrals for 𝐺𝑛 ×𝐺𝑛−1, the theory of local newforms for generic representations of 𝐺𝑛 was established
in [14].

To prove Theorem 1.1 (1) for Speh representations, we need to extend the theory of Rankin–Selberg
integrals to the case of Speh representations. In the equal rank case, this extension was done by Lapid–
Mao [20]. In their paper, instead of Whittaker models, they used two models of a Speh representation
that are called the Zelevinsky model and the Shalika model1.

For our purpose, we need the Rankin–Selberg integrals in the ‘almost equal rank case’, which are
easier than the equal rank case. The Zelevinsky model is a direct generalisation of the Whittaker model
so that we can easily extend the theory of Rankin–Selberg integrals using this model (Theorem 8.5).
On the other hand, the Shalika model has an important property of the Whittaker model (Theorem 8.2),
which we need for the proof of Theorem 1.1 (1) for Speh representations. To transfer the Rankin–
Selberg integrals in the Zelevinsky models to those in the Shalika models, we use the model transition
established by Lapid–Mao (see Proposition 8.3).

After establishing the Rankin–Selberg integrals in the Shalika models, the proof of Theorem 1.1 (1)
for Speh representations 𝜋 with 𝐿(𝑠, 𝜋) = 1 is exactly the same as in the generic case [14]. We do not
compute the greatest common divisors of the Rankin–Selberg integrals in general (see Proposition 8.7).
This is a main reason this method cannot be applied to Speh representations 𝜋 with 𝐿(𝑠, 𝜋) ≠ 1.
However, as an application of Theorem 1.1 (1) for all cases, we can specify the greatest common divisor
when the Speh representation of the group of smaller rank is unramified (see Theorem 9.1).

1.7. Organisation

This paper is organised as follows. In Section 2, we state the main results (Theorems 2.1 and 2.2).
We give two definitions of 𝜆𝜋 (Proposition 2.4) and explain how to compute it (Corollary 2.8). Some
important examples of 𝜆𝜋 are given in Example 2.5. Propositions 2.4 and 2.7 are proven in Section 3.
After preparing several facts on 𝔬-modules in Section 4, we prove the Mackey decomposition of the
K𝑛, [𝑀 ]-invariant subspace of a parabolically induced representation (Proposition 5.2) in Section 5. It

1As mentioned in [20], this terminology does not coincide with the standard notion of the Shalika model in the literature. This
model was also used in the theory of twisted doubling [5] established by Cai–Friedberg–Ginzburg–Kaplan, in which it is called
the (𝑘, 𝑐) model.
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reduces the proofs of the main results to two cases: 𝜋 ∈ Irr(𝐺𝑛) of type 𝜒 with a fixed unramified
character 𝜒 of 𝐹× and 𝜋 ∈ Irr(𝐺𝑛) such that 𝐿(𝑠, 𝜋) = 1. For the former case, Theorems 2.1 and 2.2 are
proven in Section 6. In Section 7, we treat the latter case. More precisely, for the latter case, we prove
Theorem 2.2, but we reduce Theorem 2.1 to the case where 𝜋 is a Speh representation. Theorem 2.1
for Speh representations 𝜋 with 𝐿(𝑠, 𝜋) = 1 is proven in Section 9 after establishing the theory of
Rankin–Selberg integrals for Speh representations in Section 8.

Notation

Let F be a nonarchimedean local field of characteristic zero. Denote the ring of integers and its maximal
ideal by 𝔬 and 𝔭, respectively. Fix a uniformiser 𝜛 of 𝔬, and normalise the absolute value | · | on F so
that |𝜛 | = 𝑞−1, where 𝑞 = #(𝔬/𝔭). We fix a nontrivial additive character 𝜓 of F such that 𝜓 is trivial on
𝔬 but nontrivial on 𝔭−1.

For an integer 𝑛 ≥ 1 and a commutative ring R, we let 𝑀𝑛 (𝑅) denote the R-module of n-by-n matrices
with entries in R.

In this paper, all representations are assumed to be smooth. For a representation 𝜋 of GL𝑛 (𝐹), its
contragredient representation is denoted by �̃�.

2. Statements of the main results

In this section, we fix notations and state the main results.

2.1. The Zelevinsky classification

We recall the Zelevinsky classification [42] of irreducible representations of 𝐺𝑛 = GL𝑛 (𝐹). For a
smooth representation 𝜋 of 𝐺𝑛 and a character 𝜒 of 𝐹×, the twisted representation 𝑔 ↦→ 𝜋(𝑔)𝜒(det 𝑔) is
denoted by 𝜋𝜒. The set of equivalence classes of irreducible representations of 𝐺𝑛 is denoted by Irr(𝐺𝑛).

When 𝜋1, . . . , 𝜋𝑟 are smooth representations of 𝐺𝑛1 , . . . , 𝐺𝑛𝑟 , respectively, with 𝑛1 + · · · + 𝑛𝑟 = 𝑛,
we write 𝜋1 × · · · × 𝜋𝑟 for the parabolically induced representation of 𝐺𝑛 from 𝜋1 ⊗ · · · ⊗ 𝜋𝑟 via the
standard parabolic subgroup whose Levi subgroup is 𝐺𝑛1 × · · · × 𝐺𝑛𝑟 .

A segment Δ is a finite set of representations of the form

[𝑥, 𝑦]𝜌 = {𝜌 | · |𝑥 , 𝜌 | · |𝑥+1, . . . , 𝜌 | · |𝑦},

where 𝜌 is an irreducible cuspidal representation of 𝐺𝑑 for some 𝑑 ≥ 1, and 𝑥, 𝑦 ∈ R with 𝑥 ≡ 𝑦 mod Z
and 𝑥 ≤ 𝑦. We write 𝑙 (Δ) = 𝑦 − 𝑥 + 1 and call it the length of Δ .

Let Δ = [𝑥, 𝑦]𝜌 be a segment. Then the parabolically induced representation

𝜌 | · |𝑥 × 𝜌 | · |𝑥+1 × · · · × 𝜌 | · |𝑦

of 𝐺𝑑𝑙 (Δ) has a unique irreducible subrepresentation. We denote it by 𝑍 (Δ). For example, if 𝜌 = 𝜒 is a
character of 𝐹×, then 𝑍 ([𝑥, 𝑦]𝜒) = | det |

𝑥+𝑦
2 𝜒(det) is a one-dimensional representation of 𝐺𝑦−𝑥+1.

Let 𝑟 ≥ 1. For 𝑖 = 1, . . . , 𝑟 , let Δ 𝑖 = [𝑥𝑖 , 𝑦𝑖]𝜌𝑖 be a segment and 𝑛𝑖 ≥ 1 an integer such that 𝜌𝑖 is a
cuspidal representation of 𝐺𝑛𝑖 . When 𝜌𝑖 is unitary and the inequalities

𝑥1 + 𝑦1 ≥ · · · ≥ 𝑥𝑟 + 𝑦𝑟

hold, the parabolically induced representation

𝑍 (Δ1) × · · · × 𝑍 (Δ𝑟 )
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has a unique irreducible subrepresentation. We denote it by 𝑍 (𝔪), where 𝔪 denotes the multisegment
𝔪 = Δ1 + · · · + Δ𝑟 . The Zelevinsky classification says that for any irreducible representation 𝜋 of 𝐺𝑛,
there exists a unique multisegment 𝔪 = Δ1 + · · · + Δ𝑟 such that 𝜋 � 𝑍 (𝔪).

When 𝑥1 > · · · > 𝑥𝑡 and 𝑦1 > · · · > 𝑦𝑡 , the irreducible representation

𝑍 ([𝑥1, 𝑦1]𝜌, . . . , [𝑥𝑡 , 𝑦𝑡 ]𝜌) = 𝑍 ([𝑥1, 𝑦1]𝜌 + · · · + [𝑥𝑡 , 𝑦𝑡 ]𝜌)

is called a ladder representation. A ladder representation of the form 𝑍 ([𝑥, 𝑦]𝜌, [𝑥 − 1, 𝑦 − 1]𝜌, . . . ,
[𝑥 − 𝑡 + 1, 𝑦 − 𝑡 + 1]𝜌) for some positive integer t is called a Speh representation.

2.2. Main results

Fix 𝑛 ≥ 1. Let Λ𝑛 be the subset of Z𝑛 consisting of 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ Z
𝑛 such that 0 ≤ 𝜆1 ≤ · · · ≤ 𝜆𝑛.

Note that Λ𝑛 is a submonoid of Z𝑛. We endow Λ𝑛 with the total order induced by the lexicographic
order: that is, for 𝜆 = (𝜆1, . . . , 𝜆𝑛), 𝜆

′ = (𝜆′
1, . . . , 𝜆

′
𝑛) ∈ Λ𝑛, we write 𝜆 < 𝜆′ if and only if there exists

1 ≤ 𝑖 ≤ 𝑛 such that 𝜆 𝑗 = 𝜆′
𝑗 for 𝑗 < 𝑖 and 𝜆𝑖 < 𝜆′

𝑖 .
For 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ Λ𝑛, defineK𝑛,𝜆 to be the subgroup of 𝐺𝑛 (𝔬) = GL𝑛 (𝔬) consisting of matrices

𝑘 = (𝑘𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛 such that

𝑘𝑖, 𝑗 ≡ 𝛿𝑖, 𝑗 mod 𝔭𝜆𝑖

for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛. For example, if 𝑛 = 4 and 𝜆 = (0, 0, 1, 2), then

K4, (0,0,1,2) =
�			

𝔬 𝔬 𝔬 𝔬
𝔬 𝔬 𝔬 𝔬
𝔭 𝔭 1 + 𝔭 𝔭
𝔭2 𝔭2 𝔭2 1 + 𝔭2

����
 ∩ GL4(𝔬).

In Section 1.2, we defined 𝜆𝜋 ∈ Λ𝑛 for any 𝜋 ∈ Irr(𝐺𝑛). The main results are as follows.

Theorem 2.1. Let 𝜋 ∈ Irr(𝐺𝑛). Then the K𝑛,𝜆𝜋 -invariant subspace 𝜋K𝑛,𝜆𝜋 is one-dimensional. More-
over, if 𝜆 ∈ Λ𝑛 satisfies 𝜆 < 𝜆𝜋 , then 𝜋K𝑛,𝜆 = 0.

For 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ Λ𝑛, we write |𝜆 | for 𝜆1 + · · · + 𝜆𝑛.

Theorem 2.2. Let 𝜋 ∈ Irr(𝐺𝑛). If 𝜆 ∈ Λ𝑛 satisfies |𝜆 | < |𝜆𝜋 |, then 𝜋K𝑛,𝜆 = 0.

2.3. Definition of 𝝀𝖒
For an irreducible representation 𝜋 of 𝐺𝑛, we defined 𝜆𝜋 ∈ Z𝑛 in Section 1.2. Here we describe it in
terms of multisegments, which then implies that 𝜆𝜋 ∈ Λ𝑛.

A segment Δ is written as Δ = [𝑎, 𝑏]𝜌, where 𝑎, 𝑏 ∈ Z with 𝑎 ≤ 𝑏 and 𝜌 is a cuspidal representation
of 𝐺𝑑 for some 𝑑 ≥ 0. We write a multisegment as a sum 𝔪 = Δ1 + · · · + Δ𝑟 of segments, where r is
a nonnegative integer. We call the integer r the cardinality of 𝔪 and denote it by Card(𝔪). Recall that
we set 𝑙 (Δ) = 𝑏 − 𝑎 + 1. We write 𝑙 (𝔪) for the sum 𝑙 (Δ1) + · · · + 𝑙 (Δ𝑟 ) and call 𝑙 (𝔪) the length of 𝔪.

If 𝑎 < 𝑏, we write Δ− for the segment [𝑎, 𝑏 − 1]𝜌. When 𝑎 = 𝑏, we understand Δ− to be the empty
multisegment. We set 𝔪− = Δ−

1 + · · · +Δ−
𝑟 . By the fundamental result of Zelevinsky [42, 8.1 Theorem],

the highest derivative of 𝑍 (𝔪) is equivalent to 𝑍 (𝔪−).
We call Δ = [𝑎, 𝑏]𝜌 unipotent if 𝜌 is an unramified character of 𝐹×. Similarly, we say that 𝔪 =

Δ1 + · · · + Δ𝑟 is unipotent if Δ 𝑖 is unipotent for 𝑖 = 1, . . . , 𝑟 . Fix an unramified character 𝜒 of 𝐹×. We
say that a multisegment 𝔪 = Δ1 + · · · + Δ𝑟 is of type 𝜒 if for 𝑖 = 1, . . . , 𝑟 , the segment Δ 𝑖 is of the form
[𝑎𝑖 , 𝑏𝑖]𝜒 for some integers 𝑎𝑖 , 𝑏𝑖 satisfying 𝑎𝑖 ≤ 𝑏𝑖 .

We denote by 𝔪♯ the unique multisegment such that 𝑍 (𝔪♯) is equivalent to the Zelevinsky dual of
𝑍 (𝔪) (see, e.g., [34, Section 7]). We denote by 𝔪ram the multisegment ((𝔪♯)−)♯. When 𝜋 = 𝑍 (𝔪),
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we set 𝜋ram = 𝑍 (𝔪ram). We use ‘ram’ only for unipotent multisegments. For an example of 𝔪ram, see
Section 2.5 below.

When 𝑛′ < 𝑛, we regard Λ𝑛′ as a submonoid of Λ𝑛 via the inclusion Λ𝑛′ ↩→ Λ𝑛 given by
(𝜆1, . . . , 𝜆𝑛′ ) ↦→ (0, . . . , 0, 𝜆1, . . . , 𝜆𝑛′ ).

Definition 2.3. Let 𝔪 be a multisegment.

(1) If 𝔪 = Δ1 + · · · + Δ𝑟 with Δ 𝑖 = [𝑎𝑖 , 𝑏𝑖]𝜌𝑖 being not unipotent for all 𝑖 = 1, . . . , 𝑟 , then we set

𝜆𝔪 =
𝑟∑
𝑖=1

(0, . . . , 0, 𝑐𝜌𝑖 , . . . , 𝑐𝜌𝑖︸��������︷︷��������︸
𝑙 (Δ𝑖 )

),

where 𝑐𝜌𝑖 is the conductor of 𝜌𝑖 . Note that 𝑐𝜌𝑖 > 0 for 1 ≤ 𝑖 ≤ 𝑟 by [14, (5.1) Théorème].
(2) If 𝔪 is unipotent, and if we write 𝔪ram = Δ1 + · · · + Δ𝑟 , then we set

𝜆𝔪 =
𝑟∑
𝑖=1

(0, . . . , 0, 1, . . . , 1︸���︷︷���︸
𝑙 (Δ𝑖 )

).

(3) In general, we decompose 𝔪 as 𝔪 = 𝔪′ +𝔪unip, where 𝔪unip is unipotent, and each segment in 𝔪′

is not unipotent. Then we set

𝜆𝔪 = 𝜆𝔪′ + 𝜆𝔪unip .

As seen in the next proposition, this is an alternative definition of 𝜆𝜋 .

Proposition 2.4. Let 𝑛 ≥ 1, and let 𝜋 = 𝑍 (𝔪) be the irreducible representation of 𝐺𝑛 corresponding
to a multisegment 𝔪. Then we have 𝜆𝜋 = 𝜆𝔪.

This proposition will be proven in Section 3.2 below. We now give some examples.

Example 2.5. Let 𝜋 be an irreducible representation of 𝐺𝑛.

(1) When 𝐿(𝑠, 𝜋) = 1, then 𝜋 = 𝑍 (Δ1 + · · · + Δ𝑟 ) with Δ 𝑖 not unipotent. If 𝜋 = 𝑍 (Δ) with a segment
Δ = [𝑥, 𝑦]𝜌, then we have

𝜆𝜋 = 𝜆Δ = (0, . . . , 0︸���︷︷���︸
𝑛−𝑙 (Δ)

, 𝑐𝜌, . . . , 𝑐𝜌︸������︷︷������︸
𝑙 (Δ)

) ∈ Λ𝑛.

Here, we note that 𝑐𝜌 > 0. In general, if 𝜋 = 𝑍 (Δ1 + · · · + Δ𝑟 ), we have

𝜆𝜋 = 𝜆Δ1 + · · · + 𝜆Δ𝑟 ∈ Λ𝑛.

(2) When 𝜋 = 𝑍 ([𝑥1, 𝑦1]𝜒, . . . , [𝑥𝑡 , 𝑦𝑡 ]𝜒) ∈ Irr(𝐺𝑛) is a ladder representation of type 𝜒, where 𝜒 is an
unramified character of 𝐹×, we have

𝜆𝜋 =
𝑡∑
𝑖=2

(0, . . . , 0, 1, . . . , 1︸���︷︷���︸
max{𝑦𝑖−𝑥𝑖−1+2,0}

) ∈ Λ𝑛.

Indeed, by the description of the Zelevinsky duals of ladder representations in [21, Section 3] (see
also Section 2.5 below), we have

𝜋ram = 𝑍 ([𝑥1 − 1, 𝑦2]𝜒, [𝑥2 − 1, 𝑦3]𝜒, . . . , [𝑥𝑡−1 − 1, 𝑦𝑡 ]𝜒).

Here, if 𝑥𝑖−1 − 1 > 𝑦𝑖 , we ignore [𝑥𝑖−1 − 1, 𝑦𝑖]𝜒.
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(3) Let 𝑡 ≥ 1, and let 𝜋𝑖 ∈ Irr(𝐺𝑛𝑖 ) be as in either (1) or (2) above for 1 ≤ 𝑖 ≤ 𝑡. Assume 𝜋 = 𝜋1×· · ·×𝜋𝑡
is irreducible. Then we have 𝜆𝜋 = 𝜆𝜋1 + · · · + 𝜆𝜋𝑡 .

(4) Let 𝜋 be an irreducible tempered representation of𝐺𝑛. Then the parabolically induced representation

𝜋 | · |−
𝑚−1

2 × 𝜋 | · |−
𝑚−3

2 × · · · × 𝜋 | · |
𝑚−1

2

of 𝐺𝑛𝑚 has a unique irreducible subrepresentation 𝜎, which is denoted by Sp(𝜋, 𝑚). Note that 𝜎 is
a (unitary) Speh representation. Combining the cases above, we obtain

𝜆𝜎 = (0, . . . , 0︸���︷︷���︸
(𝑛−1)𝑚

, 𝑐𝜋 , . . . , 𝑐𝜋︸�������︷︷�������︸
𝑚

) ∈ Λ𝑛𝑚.

Remark 2.6. In the appendix of the paper [17] by the second and third authors, they introduce a notion
of mirahoric representations (see Section A.1.6 of [17]). Let us recall the definition. Two segments
Δ and Δ ′ are said to be tightly linked if they are linked and either Δ is not unipotent or Δ ∩ Δ ′ is
nonempty. Let 𝜋 = 𝐿(𝔪) be an irreducible representation associated with a multisegment 𝔪 in the
Langlands classification: that is, 𝜋 is the Zelevinsky dual of 𝑍 (𝔪). They defined 𝜋 to be mirahoric if
any two segments in 𝔪 are not tightly linked. In terms of the setup in this paper, the class of mirahoric
representations is equal to the class of irreducible representations 𝜋 such that 𝜆𝜋 = (0, . . . , 0, 𝑐) for
some c. This can be seen from their proposition [17, Proposition A.15], which says that a representation
𝜋 is mirahoric if and only if the conductor of the highest derivative of 𝜋 is zero. Hence, a main result
[17, Proposition A.3] in the appendix can be interpreted as a special case of Theorem 2.1 restricted to
the mirahoric representations.

An irreducible representation 𝜋 = 𝐿(𝔪) is generic if and only if any two segments of 𝔪 are
not linked. Therefore a generic representation is mirahoric. However, a simple multisegment such as
𝔪 = [0, 1]𝜌 + [2, 3]𝜌, where 𝜌 is an unramified character, gives a mirahoric representation 𝐿(𝔪), which
is not generic. (This is one of the reasons for treating the unipotent case and the case 𝐿(𝑠, 𝜋) = 1
separately.)

2.4. Computation of 𝝀𝖒
When 𝔪 is a general unipotent multisegment, it is difficult to compute 𝜆𝔪 directly from the definition.
In this subsection, we explain how to compute 𝜆𝔪 efficiently.

Let𝔪 be a unipotent multisegment. We may assume that𝔪 is of type 𝜒 for some unramified character
𝜒 of 𝐹×. We denote by 𝔪max the set of segments Δ in 𝔪 such that Δ is maximal with respect to the
inclusion among the segments in 𝔪. We regard 𝔪max as a multisegment in which each segment has
multiplicity at most 1. We set 𝔪max = 𝔪 −𝔪max. For example, if

𝔪 = [0, 0]𝜒 + [1, 2]𝜒 + [1, 2]𝜒 + [2, 2]𝜒,

then we have

𝔪max = [0, 0]𝜒 + [1, 2]𝜒

and

𝔪max = [1, 2]𝜒 + [2, 2]𝜒 .

Proposition 2.7. We have 𝔪ram = (𝔪max)
ram + (𝔪max)ram.
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We will prove this proposition in Section 3.3 below.

Corollary 2.8. We have 𝜆𝔪 = 𝜆𝔪max + 𝜆𝔪max .

Proof. Write (𝔪max)
ram = Δ1 + · · · + Δ𝑟 and (𝔪max)ram = Δ𝑟+1 + · · · + Δ 𝑡 . Then 𝔪ram = Δ1 + · · · + Δ 𝑡

by Proposition 2.7. Hence we have

𝜆𝔪 =
𝑡∑
𝑖=1

(0, . . . , 0, 1, . . . , 1︸���︷︷���︸
𝑙 (Δ𝑖 )

)

=
𝑟∑
𝑖=1

(0, . . . , 0, 1, . . . , 1︸���︷︷���︸
𝑙 (Δ𝑖 )

) +

𝑡∑
𝑖=𝑟+1

(0, . . . , 0, 1, . . . , 1︸���︷︷���︸
𝑙 (Δ𝑖 )

)

= 𝜆𝔪max + 𝜆𝔪max .

This completes the proof. �

Since𝔪max is a ladder multisegment (i.e., the multisegment corresponding to a ladder representation),
we can compute 𝜆𝔪max as in Example 2.5 (2). Hence, using this corollary, we can compute 𝜆𝔪 inductively.

2.5. An example of computation of 𝖒ram

By using Proposition 2.7, one can compute 𝔪ram for an arbitrary multisegment 𝔪 in a systematic way.
Let us give an example.

Let 𝔪 =
∑7
𝑖=1 Δ 𝑖 be a multisegment where Δ1 = [5, 6]𝜒, Δ2 = [3, 7]𝜒, Δ3 = [3, 4]𝜒, Δ4 = [2, 5]𝜒,

Δ5 = [3, 3]𝜒, Δ6 = [1, 2]𝜒, Δ7 = [0, 0]𝜒. Then 𝔪max = Δ2 +Δ4 +Δ6 +Δ7 and 𝔪max = Δ1 +Δ3 +Δ5. We
also have (𝔪max)max = Δ1 + Δ3 and (𝔪max)max = Δ5. By Proposition 2.7, we are reduced to computing
‘ram’ of the three ladder multisegments.

As explained in Section 3 of [21], the Zelevinsky dual of a ladder multisegment can be calculated
fairly easily. Let us compute the Zelevinsky of 𝔪max by drawing pictures. In the 𝑥𝑦-plane, we draw each
segment of 𝔪max so that each lies on the line 𝑦 = 𝑖 for 𝑖 = 1, . . . , 4. (See the following figure.) Whenever
there exist points (𝑒, 𝑓 ) and (𝑒 + 1, 𝑓 − 1) with 𝑒, 𝑓 ∈ Z, we draw a dotted line connecting them. Then
the dotted lines form the multisegment of the Zelevinsky dual (𝔪max)

♯. One can use the algorithm of
Mœglin–Waldspurger [32] to verify that the procedure above actually gives the Zelevinsky dual. We
obtain (𝔪max)

♯ = Δ ′
1 +Δ

′
2 +Δ

′
3 +Δ

′
4 +Δ

′
5, where Δ ′

1 = [7, 7]𝜒, Δ ′
2 = [5, 6]𝜒, Δ ′

3 = [4, 5]𝜒, Δ ′
4 = [2, 4]𝜒,

Δ ′
5 = [0, 3]𝜒.

𝔪max

Δ7

Δ6

Δ4

Δ2

0 1 2 3 4 5 6 7

Δ ′
5 Δ ′

4 Δ ′
3 Δ ′

2 Δ ′
1
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(𝔪max)
♯ 0 1 2 3 4 5 6 7

Δ ′
5

Δ ′
4

Δ ′
3

Δ ′
2

Δ ′
1

The multisegment of the highest derivative is obtained by shortening each segment by 1. Hence, we
have ((𝔪max)

♯)− as in the following figure. We obtain ((𝔪max)
♯)− = (Δ ′

1)
− + (Δ ′

2)
− + (Δ ′

3)
− + (Δ ′

4)
−

where Δ ′
1 = [5, 5]𝜒, Δ ′

2 = [4, 4]𝜒, Δ ′
3 = [2, 3]𝜒, Δ ′

4 = [0, 2]𝜒.

((𝔪max)
♯)− 0 1 2 3 4 5 6 7

(Δ ′
5)

−

(Δ ′
4)

−

(Δ ′
3)

−

(Δ ′
2)

−

Δ ′′
3 Δ ′′

2 Δ ′′
1

Taking the Zelevinsky dual again, we arrive at (𝔪max)
ram as in the following figure. We obtain

(𝔪max)
ram = Δ ′′

1 + Δ ′′
2 + Δ ′′

3 where Δ ′′
1 = [2, 5]𝜒,Δ ′′

2 = [1, 2]𝜒,Δ ′′
3 = [0, 0]𝜒.

(𝔪max)
ram 0 1 2 3 4 5 6 7

Δ ′′
3

Δ ′′
2

Δ ′′
1

Similarly, we have (Δ1 +Δ3)
ram = [4, 4]𝜒 and (Δ5)

ram = ∅. Thus 𝔪ram = [4, 4]𝜒 + [2, 5]𝜒 + [1, 2]𝜒 +
[0, 0]𝜒.
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2.6. The Weil–Deligne representations

In this subsection, we give some justification for the use of the term ‘ram’ in the notation 𝜋ram. This
comes from the Galois side of the local Langlands correspondence ([11], [12]). For several materials in
this subsection, see [40].

Let us fix an algebraic closure 𝐹 of F. Let𝑊𝐹 ⊂ Gal(𝐹/𝐹) denote the Weil group of F. By definition,
𝑊𝐹 is a locally profinite topological group. If we denote by 𝑊ab

𝐹 the quotient of 𝑊𝐹 by the closure of
[𝑊𝐹 ,𝑊𝐹 ], then there exists an isomorphism 𝑟𝐹 : 𝑊ab

𝐹

�
−→ 𝐹× that sends any lift of geometric Frobenius

to a uniformiser of F.
A Weil–Deligne representation is a triple (𝜏,𝑉, 𝑁), where (𝜏,𝑉) is a finite-dimensional complex

representation of 𝑊𝐹 and N is a linear endomorphism of V such that the kernel of 𝜏 is open in 𝑊𝐹 ,
and we have 𝜏(𝜎)𝑁 = |𝑟𝐹 (𝜎) |𝑁𝜏(𝜎) for any 𝜎 ∈ 𝑊𝐹 . Let 𝐼𝐹 ⊂ 𝑊𝐹 denote the inertia subgroup.
A Weil–Deligne representation (𝜏,𝑉, 𝑁) is called unramified if 𝐼𝐹 acts trivially and N acts as 0 on
V. Any Weil–Deligne representation 𝑉 = (𝜏, 𝑁,𝑉) has a unique maximal unramified Weil–Deligne
subrepresentation 𝑉ur. Explicitly, we have 𝑉ur = 𝑉 𝐼𝐹 ∩ Ker 𝑁 . We denote by 𝑉 ram the quotient 𝑉/𝑉ur,
and we call it the ramified quotient of V.

The local Langlands correspondence gives a one-to-one correspondence between the isomorphism
classes of irreducible complex representations of𝐺𝑛 and the isomorphism classes of Frobenius semisim-
ple n-dimensional Weil–Deligne representations over the complex numbers.

Lemma 2.9. Let 𝜋 be a unipotent irreducible admissible representation of 𝐺𝑛, and let V denote the
Weil–Deligne representation corresponding to 𝜋 via the local Langlands correspondence. Then 𝑉 ram

corresponds to 𝜋ram.

Proof. For a segment [𝑎, 𝑏]𝜌, we denote by Δ [𝑎, 𝑏]𝜌 the generalised Steinberg representation: that is,
the unique irreducible quotient of

𝜌 | · |𝑎 × 𝜌 | · |𝑎+1 × · · · × 𝜌 | · |𝑏 .

As in the Langlands classification, we write 𝜋 = 𝐿([𝑎1, 𝑏1]𝜌1 + · · · + [𝑎𝑟 , 𝑏𝑟 ]𝜌𝑟 ) if 𝜋 is the unique
irreducible subrepresentation of

Δ [𝑎1, 𝑏1]𝜌1 × · · · × Δ [𝑎𝑟 , 𝑏𝑟 ]𝜌𝑟

with 𝜌𝑖 unitary and 𝑎1 + 𝑏1 ≤ · · · ≤ 𝑎𝑟 + 𝑏𝑟 . Then the Zelevinsky dual 𝜋♯ of 𝜋 is given by

𝜋♯ = 𝑍 ([𝑎1, 𝑏1]𝜌1 + · · · + [𝑎𝑟 , 𝑏𝑟 ]𝜌𝑟 ).

By [42, 8.1 Theorem], the highest derivative (𝜋♯)− of 𝜋♯ is

(𝜋♯)− = 𝑍 ([𝑎1, 𝑏1 − 1]𝜌1 + · · · + [𝑎𝑟 , 𝑏𝑟 − 1]𝜌𝑟 ).

Here, if 𝑎𝑖 = 𝑏𝑖 , we ignore [𝑎𝑖 , 𝑏𝑖 − 1]𝜌𝑖 . Hence

𝜋ram = ((𝜋♯)−)♯ = 𝐿([𝑎1, 𝑏1 − 1]𝜌1 + · · · + [𝑎𝑟 , 𝑏𝑟 − 1]𝜌𝑟 ).

Therefore, the map 𝜋 ↦→ 𝜋ram corresponds to 𝑉 ↦→ 𝑉/Ker 𝑁 (see, e.g., [37]). Since 𝜋 is unipotent, the
corresponding V satisfies that 𝑉 = 𝑉 𝐼𝐹 so that 𝑉 ram = 𝑉/Ker 𝑁 . �

3. Proofs of Propositions 2.4 and 2.7

The purpose of this section is to prove Propositions 2.4 and 2.7. To do these, we introduce the notions
of 𝑉𝑁-pairs and 𝑊𝐿-pairs.
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3.1. 𝑽𝑵-pairs and 𝑾𝑳-pairs

A 𝑉𝑁-pair (over C) is a pair (𝑉, 𝑁) of a finite-dimensional Z-graded vector space V over C and a
C-linear endomorphism 𝑁 : 𝑉 → 𝑉 of degree 1. Similarly, a 𝑊𝐿-pair (over C) is a pair (𝑊, 𝐿) of
a finite-dimensional Z-graded vector space W over C and a C-linear endomorphism 𝐿 : 𝑊 → 𝑊 of
degree −1.

Let (𝑉, 𝑁) and (𝑉 ′, 𝑁 ′) be two 𝑉𝑁-pairs. A morphism 𝑓 : (𝑉, 𝑁) → (𝑉 ′, 𝑁 ′) is a C-linear map
𝑉 → 𝑉 ′ preserving the degrees such that 𝑓 ◦ 𝑁 = 𝑁 ′ ◦ 𝑓 .

Lemma 3.1. Let (𝑉, 𝑁) and (𝑉 ′, 𝑁 ′) be two 𝑉𝑁-pairs. Then (𝑉, 𝑁) � (𝑉 ′, 𝑁 ′) if and only if 𝑉 � 𝑉 ′

as graded vector spaces and (Image 𝑁, 𝑁 |Image 𝑁 ) � (Image 𝑁 ′, 𝑁 ′ |Image 𝑁 ′ ).

Proof. The ‘only if’ part is trivial. We prove the ‘if’ part. Assume the two conditions. Let us choose an
isomorphism

𝑓1 : (Image 𝑁, 𝑁 |Image 𝑁 )
�
−→ (Image 𝑁 ′, 𝑁 ′ |Image 𝑁 ′ )

of 𝑉𝑁-pairs. Let us also choose homogeneous elements 𝑣1, . . . , 𝑣𝑟 ∈ Image 𝑁 whose images in
Image 𝑁/Image 𝑁2 form a basis of this space. For 𝑖 = 1, . . . , 𝑟 , let us choose homogeneous elements
𝑒1, . . . , 𝑒𝑟 ∈ 𝑉 and 𝑒′1, . . . , 𝑒

′
𝑟 ∈ 𝑉 ′ in such a way that we have 𝑁 (𝑒𝑖) = 𝑣𝑖 and 𝑁 ′(𝑒′𝑖) = 𝑓1 (𝑣𝑖) for

𝑖 = 1, . . . , 𝑟 . Let W (respectively, 𝑊 ′) denote the graded vector subspace of V (respectively, 𝑉 ′) gener-
ated by Image 𝑁 and 𝑒1, . . . , 𝑒𝑟 (respectively, Image 𝑁 ′ and 𝑒′1, . . . , 𝑒

′
𝑟 ).

Let 𝑁 : 𝑉/Image 𝑁 → Image 𝑁/Image 𝑁2 denote the homomorphism induced by N. It follows from
the construction of W that the restriction of 𝑁 to 𝑊/Image 𝑁 gives an isomorphism 𝑊/Image 𝑁

�
−→

Image 𝑁/Image 𝑁2. Hence we have𝑉/Image 𝑁 = Ker 𝑁 ⊕ (𝑊/Image 𝑁). By applying the snake lemma
to the commutative diagram

0 −−−−−−→ Image 𝑁 −−−−−−→ 𝑉 −−−−−−→ 𝑉/Image 𝑁 −−−−−−→ 0

𝑁
⏐⏐� 𝑁

⏐⏐� ⏐⏐�𝑁
0 −−−−−−→ Image 𝑁2 −−−−−−→ Image 𝑁 −−−−−−→ Image 𝑁/Image 𝑁2 −−−−−−→ 0,

we see that the homomorphism 𝛼 : Ker 𝑁 → Ker 𝑁 induced by the quotient map 𝑉 � 𝑉/Image 𝑁 is
surjective. Let us choose a graded vector subspace 𝑈 ⊂ Ker 𝑁 such that the restriction of 𝛼 to U gives
an isomorphism 𝑈

�
−→ Ker 𝑁 . Since 𝑉/Image 𝑁 = Ker 𝑁 ⊕ (𝑊/Image 𝑁), we have 𝑉 = 𝑈 ⊕𝑊 .

A similar argument shows that there exists a graded vector subspace 𝑈 ′ ⊂ Ker 𝑁 ′ such that 𝑉 ′ =
𝑈 ′ ⊕ 𝑊 ′. Since V and 𝑉 ′ are isomorphic as graded vector spaces, U and 𝑈 ′ are isomorphic as graded
vector spaces. Let us choose an isomorphism 𝑓2 : 𝑈 → 𝑈 ′ of graded vector spaces.

Let 𝑓 : 𝑉 → 𝑉 ′ denote the homomorphism defined as follows: 𝑓 (𝑣) = 𝑓1 (𝑣) for 𝑣 ∈ Image 𝑁 ,
𝑓 (𝑒𝑖) = 𝑒′𝑖 for 𝑖 = 1, . . . , 𝑟 and 𝑓 (𝑢) = 𝑓2(𝑢) for 𝑢 ∈ 𝑈. Then f is an isomorphism of 𝑉𝑁-pairs from
(𝑉, 𝑁) to (𝑉 ′, 𝑁 ′). This completes the proof. �

Let (𝑉, 𝑁) be a 𝑉𝑁-pair. For an integer 𝑐 ∈ Z, we let (𝑉, 𝑁) (𝑐) denote the cth degree-shift of
(𝑉, 𝑁). By definition, (𝑉, 𝑁) (𝑐) = (𝑉 (𝑐), 𝑁 (𝑐)), where 𝑉 (𝑐) is the Z-graded vector space over C
whose degree-a-part is equal to the degree-(𝑎 − 𝑐)-part of V for any 𝑎 ∈ Z, and 𝑁 (𝑐) : 𝑉 (𝑐) → 𝑉 (𝑐)
is the endomorphism induced by N. (This notation of degree-shift corresponds to the Tate twist on the
Galois side of the local Langlands correspondence.)

For a segment Δ = [𝑎, 𝑏]𝜒 with 𝑎, 𝑏 ∈ Z, we let (𝑉Δ , 𝑁Δ ) denote the 𝑉𝑁-pair such that 𝑉Δ is
the graded complex vector space with basis 𝑒𝑎, 𝑒𝑎+1, . . . , 𝑒𝑏 , where for 𝑖 = 𝑎, . . . , 𝑏, the vector 𝑒𝑖 is
homogeneous of degree i and 𝑁Δ : 𝑉Δ → 𝑉Δ is the endomorphism that sends 𝑒𝑖 to 𝑒𝑖+1 for 𝑖 = 𝑎, . . . , 𝑏−1
and sends 𝑒𝑏 to 0. Similarly, we denote by (𝑊Δ , 𝐿Δ ) the𝑊𝐿-pair such that𝑊Δ = 𝑉Δ and 𝐿Δ : 𝑊Δ → 𝑊Δ

is the endomorphism that sends 𝑒𝑖 to 𝑒𝑖−1 for 𝑖 = 𝑎 + 1, . . . , 𝑏 and sends 𝑒𝑎 to 0.
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Let 𝜒 be an unramified character of 𝐹×. For a multisegment 𝔪 = Δ1 + · · · + Δ𝑟 of type 𝜒, we define
the 𝑉𝑁-pair (𝑉𝔪, 𝑁𝔪) and the 𝑊𝐿-pair (𝑊𝔪, 𝐿𝔪) as the direct sums

(𝑉𝔪, 𝑁𝔪) =

(
𝑟⊕
𝑖=1

𝑉Δ𝑖 ,
𝑟⊕
𝑖=1

𝑁Δ𝑖

)
and

(𝑊𝔪, 𝐿𝔪) =

(
𝑟⊕
𝑖=1

𝑊Δ𝑖 ,
𝑟⊕
𝑖=1

𝐿Δ𝑖

)
.

It follows from the Gabriel theory [7], or from the theory of Jordan normal forms and some elementary
argument (compare to [16]), that these give one-to-one correspondence among the multisegments of
type 𝜒, the isomorphism classes of 𝑉𝑁-pairs and the isomorphism classes of 𝑊𝐿-pairs.

For a 𝑉𝑁-pair (𝑉, 𝑁) (respectively, a 𝑊𝐿-pair (𝑊, 𝐿)), let us consider the set 𝑆(𝑉, 𝑁) (respectively,
𝑆(𝑊, 𝐿)) of C-linear endomorphisms 𝐿 : 𝑉 → 𝑉 (respectively, 𝑁 : 𝑉 → 𝑉) of degree −1 (respectively,
degree 1) satisfying 𝐿 ◦ 𝑁 = 𝑁 ◦ 𝐿. We sometimes regard 𝑆(𝑉, 𝑁) and 𝑆(𝑊, 𝐿) as algebraic varieties
over C. Since 𝑆(𝑉, 𝑁) and 𝑆(𝑊, 𝐿) are finite-dimensional complex vector spaces, 𝑆(𝑉, 𝑁) and 𝑆(𝑊, 𝐿)
are, as algebraic varieties over C, isomorphic to affine spaces over C.

Lemma 3.2. Let (𝑉, 𝑁) be a 𝑉𝑁-pair and (𝑊, 𝐿) be a 𝑊𝐿-pair:

(1) The map 𝑆(𝑉, 𝑁) → 𝑆(Image 𝑁, 𝑁 |Image 𝑁 ) that sends L to 𝐿 |Image 𝑁 is surjective.
(2) The map 𝑆(𝑊, 𝐿) → 𝑆(Image 𝐿, 𝐿 |Image 𝐿) that sends N to 𝑁 |Image 𝐿 is surjective.

Proof. We only give a proof of assertion (1). We can prove assertion (2) in a similar manner.
Let us choose homogeneous, linearly independent elements 𝑣1, . . . , 𝑣𝑚 ∈ 𝑉 such that V is a direct

sum of Image 𝑁 and the subspace of V generated by 𝑣1, . . . , 𝑣𝑚. For 𝑖 = 1, . . . , 𝑚, we let 𝑑𝑖 denote the
degree of 𝑣𝑖 . Given 𝐿 ′ ∈ 𝑆(Image 𝑁, 𝑁 |Image 𝑁 ), choose a homogeneous element 𝑤𝑖 ∈ 𝑉 of degree 𝑑𝑖−1
that satisfies 𝐿 ′(𝑁 (𝑣𝑖)) = 𝑁 (𝑤𝑖) for each 𝑖 = 1, . . . , 𝑚. Let L denote the unique C-linear map 𝑉 → 𝑉
such that 𝐿(𝑣) = 𝐿 ′(𝑣) for 𝑣 ∈ Image 𝑁 and that 𝐿(𝑣𝑖) = 𝑤𝑖 for 𝑖 = 1, . . . , 𝑚. It is then straightforward
to check that 𝐿 ∈ 𝑆(𝑉, 𝑁). It follows from the construction of L that 𝐿 |Image 𝑁 = 𝐿 ′. Hence the claim
follows. �

Let (𝑉, 𝑁) be a 𝑉𝑁-pair, and let 𝔪 be the multisegment (of type 𝜒) corresponding to (𝑉, 𝑁). It
follows from [43] and [31] that there exists a Zariski open dense subset 𝑆𝑜 (𝑉, 𝑁) ⊂ 𝑆(𝑉, 𝑁) such that,
for 𝐿 ∈ 𝑆(𝑉, 𝑁), the multisegment (of type 𝜒) corresponding to (𝑉, 𝐿) is equal to 𝔪♯ if and only if
𝐿 ∈ 𝑆𝑜 (𝑉, 𝑁).

Let V be a finite-dimensional Z-graded vector space over C and 𝑁, 𝐿 : 𝑉 → 𝑉 be C-linear endomor-
phisms of degree 1, −1, respectively. We say that the triple (𝑉, 𝑁, 𝐿) is admissible if 𝑁 ◦ 𝐿 = 𝐿 ◦ 𝑁 and
the multisegment corresponding to the 𝑊𝐿-pair (𝑉, 𝐿) is the Zelevinsky dual of the one corresponding
to the 𝑉𝑁-pair (𝑉, 𝑁).

Lemma 3.3. Let (𝑉, 𝑁) (respectively, (𝑊, 𝐿)) be a 𝑉𝑁-pair (respectively, a 𝑊𝐿-pair), and let 𝔪
denote the multisegment corresponding to (𝑉, 𝑁) (respectively, (𝑊, 𝐿)). Then the multisegment 𝔪−

corresponds to (Image 𝑁, 𝑁 |Image 𝑁 ) (−1) (respectively, (Image 𝐿, 𝐿 |Image 𝐿)).

Proof. Easy. �

Let us give an example. Let 𝔪 = Δ1 +Δ2 +Δ3 +Δ4, where Δ1 = [3, 7]𝜒, Δ2 = [2, 5]𝜒, Δ3 = [1, 2]𝜒
and Δ4 = [0, 0]𝜒.
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We see that this corresponds to 𝔪−.

Lemma 3.4. Let (𝑉, 𝑁) be a 𝑉𝑁-pair, and let 𝔪 be the multisegment corresponding to (𝑉, 𝑁). Then
there exists a Zariski open dense subset 𝑆𝜃 (𝑉, 𝑁) ⊂ 𝑆(𝑉, 𝑁) such that for 𝐿 ∈ 𝑆(𝑉, 𝑁), both (𝑉, 𝑁, 𝐿)
and (Image 𝐿, 𝑁 |Image 𝐿 , 𝐿 |Image 𝐿) are admissible triples if and only if 𝐿 ∈ 𝑆𝜃 (𝑉, 𝑁).

Proof. It is easy to see that there exists a Zariski open subset 𝑆𝜃 (𝑉, 𝑁) ⊂ 𝑆(𝑉, 𝑁) such that for
𝐿 ∈ 𝑆(𝑉, 𝑁), both (𝑉, 𝑁, 𝐿) and (Image 𝐿, 𝑁 |Image 𝐿 , 𝐿 |Image 𝐿) are admissible triples if and only if
𝐿 ∈ 𝑆𝜃 (𝑉, 𝑁).

It remains to show that 𝑆𝜃 (𝑉, 𝑁) is dense in 𝑆(𝑉, 𝑁). Since 𝑆(𝑉, 𝑁) is irreducible as an algebraic
variety over C, it suffices to show that 𝑆𝜃 (𝑉, 𝑁) is nonempty. Let us choose 𝐿 ∈ 𝑆𝑜 (𝑉, 𝑁). Since the
morphism 𝑆(𝑉, 𝐿) → 𝑆(Image 𝐿, 𝐿 |Image 𝐿) is surjective by Lemma 3.2, there exists 𝑁 ′ ∈ 𝑆(𝑉, 𝐿) such
that both (𝑉, 𝑁 ′, 𝐿) and(Image 𝐿, 𝑁 ′ |Image 𝐿 , 𝐿 |Image 𝐿) are admissible triples. Then (𝑉, 𝑁) and (𝑉, 𝑁 ′)

are isomorphic since both correspond to the same multisegment. Hence (𝑉, 𝑁 ′, 𝐿) is isomorphic to
(𝑉, 𝑁, 𝐿 ′) for some 𝐿 ′ ∈ 𝑆(𝑉, 𝑁). Since 𝐿 ′ belongs to 𝑆𝜃 (𝑉, 𝑁), it follows that 𝑆𝜃 (𝑉, 𝑁) is nonempty,
as desired. �

3.2. Proof of Proposition 2.4

Now we prove Proposition 2.4.

Proof of Proposition 2.4. Let 𝜋 = 𝑍 (𝔪) be an irreducible representation of 𝐺𝑛. We decompose 𝔪 as

𝔪 = 𝔪′ +𝔪1 + · · · +𝔪𝑡 ,
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where

• each segment in 𝔪′ is not unipotent;
• each 𝔪𝑖 is of type 𝜒𝑖 for some unramified character 𝜒𝑖 of 𝐹× for 1 ≤ 𝑖 ≤ 𝑡;
• if 𝑖 ≠ 𝑗 , then 𝜒𝑖𝜒

−1
𝑗 is not of the form | · |𝑎 for any 𝑎 ∈ Z.

Set 𝜋′ = 𝑍 (𝔪′) and 𝜋𝑖 = 𝑍 (𝔪𝑖). Then 𝜋 is isomorphic to the parabolic induction 𝜋′ × 𝜋1 × · · · × 𝜋𝑡 .
For Π = 𝜋, 𝜋′, 𝜋1, . . . , 𝜋𝑡 , let Π (0) = Π and Π (𝑖) denote the highest derivative of Π (𝑖−1) for 𝑖 ≥ 1.

Then we have 𝜋 (𝑖) = 𝜋′(𝑖) × 𝜋 (𝑖)
1 × · · · × 𝜋 (𝑖)

𝑡 for any integer 𝑖 ≥ 0. Thus, to prove the claim, we may
assume that 𝔪 = 𝔪′ or 𝔪 = 𝔪1.

First, we consider the case where𝔪 = 𝔪′. Let us write 𝜋 = 𝑍 (𝔪) and𝔪 = [𝑎1, 𝑏1]𝜌1+· · ·+[𝑎𝑟 , 𝑏𝑟 ]𝜌𝑟 .
Then 𝜌1, . . . , 𝜌𝑟 are ramified cuspidal representations. For 𝑖 = 1, . . . , 𝑟 , let 𝑐𝑖 = 𝑐𝜌𝑖 denote the conductor
of 𝜌𝑖 . Then for 𝑗 ≥ 0, we have 𝜋 ( 𝑗) = 𝑍 (𝔪 ( 𝑗) ), where

𝔪 ( 𝑗) =
∑
1≤𝑖≤𝑟

𝑏𝑖−𝑎𝑖≥ 𝑗

[𝑎𝑖 , 𝑏𝑖 − 𝑗]𝜌𝑖 .

This shows that the conductor of 𝜋 ( 𝑗) is equal to

𝑐 ( 𝑗) =
∑
1≤𝑖≤𝑟

𝑏𝑖−𝑎𝑖≥ 𝑗

(𝑏𝑖 − 𝑎𝑖 + 1 − 𝑗)𝑐𝑖 .

Hence we have

𝑐 ( 𝑗) − 𝑐 ( 𝑗+1) =
∑
1≤𝑖≤𝑟

𝑏𝑖−𝑎𝑖≥ 𝑗

𝑐𝑖 .

From this, one can easily see that

𝜆𝜋 =
𝑟∑
𝑖=1

(0, . . . , 0, 𝑐𝑖 , . . . , 𝑐𝑖︸�����︷︷�����︸
𝑏𝑖−𝑎𝑖+1

) = 𝜆𝔪,

as desired.
Now we consider the case where 𝜋 = 𝑍 (𝔪) is of type 𝜒 for an unramified character 𝜒 of 𝐹×.

Let us consider the 𝑉𝑁-pair (𝑉, 𝑁) corresponding to 𝔪. For 𝑖 ≥ 0, let us write 𝜋 (𝑖) = 𝑍 (𝔪 (𝑖) ).
As we remarked at the beginning of Section 2.3, we have 𝜋 (1) = 𝑍 (𝔪−). Hence 𝔪 (𝑖) is obtained
from 𝔪 by the i-fold iteration of the operation ( )−. Therefore, it follows from Lemma 3.3 that 𝔪 (𝑖)

corresponds to the𝑉𝑁-pair (Image 𝑁 𝑖 , 𝑁 |Image 𝑁 𝑖 ) (−𝑖). Let us choose 𝐿 ∈ 𝑆𝜃 (𝑉, 𝑁) such that 𝐿 |Image 𝑁 𝑖

belongs to 𝑆𝑜 (Image 𝑁 𝑖 , 𝑁 |Image 𝑁 𝑖 ) for any integer 𝑖 ≥ 0. By Lemma 3.2, such an L exists. Then the
conductor of 𝜋 (𝑖) is equal to the dimension of Image 𝐿 ◦ 𝑁 𝑖 . Hence if we write 𝜆𝜋 = (𝜆1, . . . , 𝜆𝑛) and
𝑑𝑖 = dim Image 𝐿 ◦ 𝑁 𝑖 for 𝑖 ≥ 0, then we have

𝜆𝑘 = 𝑑𝑛−𝑘 − 𝑑𝑛−𝑘+1

for 𝑘 = 1, . . . , 𝑛. Let us write 𝜋ram = 𝑍 (𝔪ram) with 𝔪ram = Δ1 + · · · + Δ𝑟 and Δ 𝑖 = [𝑎𝑖 , 𝑏𝑖]𝜒 for
1 ≤ 𝑖 ≤ 𝑟 . Then 𝜆𝔪 = (𝜆′

1, . . . , 𝜆
′
𝑛), with

𝜆′
𝑘 =

∑
1≤𝑖≤𝑟

𝑏𝑖−𝑎𝑖≥𝑛−𝑘

1
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for 𝑘 = 1, . . . , 𝑛. By Lemmas 3.3 and 3.4, 𝔪ram corresponds to the 𝑉𝑁-pair (Image 𝐿, 𝑁 |Image 𝐿). Since
L and N commute, we have dim Image 𝑁 𝑖 ◦ 𝐿 = 𝑑𝑖 for 𝑖 ≥ 0. Hence we have

𝑑𝑖 − 𝑑𝑖+1 =
∑

1≤𝑖≤𝑟
𝑏𝑖−𝑎𝑖≥𝑖

1

for 𝑖 = 0, . . . , 𝑛 − 1. Therefore, we have

𝜆′
𝑘 = 𝑑𝑛−𝑘 − 𝑑𝑛−𝑘+1 = 𝜆𝑘

for 𝑘 = 1, . . . , 𝑛. This completes the proof. �

We do not use the following proposition, but it might be interesting.

Proposition 3.5. For any multisegment 𝔪, we have (𝔪−)ram = (𝔪ram)−.

Proof. Let (𝑉, 𝑁) be the 𝑉𝑁-pair corresponding to the multisegment 𝔪. If we choose a sufficiently
general 𝐿 ∈ 𝑆(𝑉, 𝑁), then (𝔪−)ram and (𝔪ram)− correspond to the pairs (Image 𝐿◦𝑁, 𝑁 |Image 𝐿◦𝑁 ) (−1)
and (Image 𝑁 ◦ 𝐿, 𝑁 |Image 𝑁 ◦𝐿) (−1), respectively. Since 𝐿 ◦ 𝑁 = 𝑁 ◦ 𝐿, the claim follows. �

3.3. Proof of Proposition 2.7

The following statement is easy to check. However, we record it as a lemma for later use. A proof is
omitted.

Lemma 3.6. For any multisegment 𝔪, we have (𝔪−)max = (𝔪max)
− and (𝔪−)max = (𝔪max)−.

For a multisegment 𝔪, a full-sub-multisegment of 𝔪 is a multisegment 𝔪′ such that for any segment
Δ in 𝔪′, its multiplicity in 𝔪′ is equal to that in 𝔪.

We say that a multisegment 𝔪 is totally ordered if for any two segments Δ ,Δ ′ in 𝔪, we have either
Δ ⊂ Δ ′ or Δ ′ ⊂ Δ .

Proposition 3.7. Let 𝔪 = Δ1 + · · · + Δ𝑟 be a multisegment of type 𝜒 and 𝑎 ∈ Z an integer. Let us write
𝛿𝑎 = [𝑎, 𝑎 + 1]𝜒. Let 𝔪𝑎 denote the full-sub-multisegment of 𝔪 that consists of segments that intersect
𝛿𝑎, and let 𝔪♯

(𝑎)
denote the full-sub-multisegment of 𝔪♯ = Δ ′

1 + · · · + Δ ′
𝑠 that consists of segments that

contain 𝛿𝑎. Namely,

𝔪𝑎 �
∑
1≤𝑖≤𝑟

Δ𝑖∩𝛿𝑎≠∅

Δ 𝑖 , 𝔪♯
(𝑎)
�
∑
1≤𝑖≤𝑠
Δ′
𝑖
⊃𝛿𝑎

Δ ′
𝑖 .

Then we have the equality

Card(𝔪♯
(𝑎)

) = Card(𝔪𝑎) − max
𝔪′

Card(𝔪′),

where 𝔪′ runs over the set of totally ordered full-sub-multisegments of 𝔪𝑎.

Proof. By replacing 𝜒 with 𝜒 | · |𝑐 for some integer c, we may and will assume that there exists an integer
r such that any segment in 𝔪 is contained in [1, 𝑟]𝜒.

For two integers 𝑎, 𝑏 with 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑟 , let 𝑑𝑎,𝑏 = 𝑑𝑎,𝑏 (𝔪) denote the multiplicity of the segment
[𝑎, 𝑏]𝜒 in 𝔪. When 𝑎 > 𝑏, we set 𝑑𝑎,𝑏 = 0. Then it follows from the result of Knight–Zelevinsky
[16, Theorem 1.2] that Card(𝔪♯

(𝑎)
) is equal to the right-hand side of the equality (1.6) in [16] for

(𝑖, 𝑗) = (𝑎, 𝑎 + 1).
For two integers 𝑥, 𝑦 with 𝑥 ≤ 𝑦, let [𝑥, 𝑦] denote the set of integers c satisfying 𝑥 ≤ 𝑐 ≤ 𝑦. Let

𝑎 ∈ [1, 𝑟 − 1]. We rewrite the right-hand side of (1.6) in [16] for (𝑖, 𝑗) = (𝑎, 𝑎 + 1). Let us first recall
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𝐿

𝑅

Figure 1.

some notation in [16]. They fix a positive integer r and consider the set S of pairs of integers (𝑖, 𝑗) such
that 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟 . For 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟 , they consider the set 𝑇𝑖, 𝑗 of functions 𝜈 : [1, 𝑖] × [ 𝑗 , 𝑟] → [𝑖, 𝑗]
such that 𝜈(𝑘, 𝑙) ≤ 𝜈(𝑘 ′, 𝑙 ′) whenever 𝑘 ≤ 𝑘 ′, 𝑙 ≤ 𝑙 ′.

Let 1 ≤ 𝑎 ≤ 𝑟 . We only use the case 𝑖 = 𝑎, 𝑗 = 𝑎 + 1 and consider 𝑇𝑎,𝑎+1. In this case, any function
𝜈 ∈ 𝑇𝑎,𝑎+1 takes one of two values 𝑎, 𝑎 + 1. We express this using Figure 1. The rectangle depicts the set
[1, 𝑎] × [𝑎 + 1, 𝑟]. The upper-left corner is (1, 𝑎 + 1), the lower-left corner is (𝑎, 𝑎 + 1), the upper-right
corner is (1, 𝑟) and the lower-right corner is (𝑎, 𝑟). Because of the condition on 𝜈, there exists a bold
line as in the picture such that 𝜈 takes the value a on the left (call the region L) and the value 𝑎 + 1 on
the right (call the region R).

We look at the sum from (1.6) [16]:∑
(𝑘,𝑙) ∈[1,𝑎]×[𝑎+1,𝑟 ]

𝑑𝜈 (𝑘,𝑙)+𝑘−𝑎,𝜈 (𝑘,𝑙)+𝑙−𝑎−1.

This equals ∑
(𝑘,𝑙) ∈𝐿

𝑑𝑘,𝑙−1 +
∑

(𝑘,𝑙) ∈𝑅

𝑑𝑘+1,𝑙 .

Now consider Figure 2. The rectangle depicts the set𝑈 = [1, 𝑎+1] × [𝑎, 𝑟]. Let 𝐿 ′ be the region L moved
to the left by 1 and 𝑅′ be the region R moved down by 1. These are subsets of U, and the complement
𝑉𝜈 = 𝑈 \ (𝐿 ′ ∪ 𝑅′) is shown in blue in the picture.

A path from (𝑎 + 1, 𝑎) to (1, 𝑟) is a map 𝑝 : [0, 𝑟] → Z × Z satisfying the following conditions:

(1) 𝑝(0) = (𝑎 + 1, 𝑎).
(2) For 𝑖 = 1, . . . , 𝑟 , the element 𝑝(𝑖) ∈ Z × Z is equal to 𝑝(𝑖 − 1) − (1, 0) or 𝑝(𝑖 − 1) + (0, 1).
(3) 𝑝(𝑟) = (1, 𝑟).

Then 𝑉𝜈 is equal to the image of a path from [𝑎 + 1, 𝑎] to [1, 𝑟]. By sending 𝜈 to this path, we obtain a
bijection from 𝑇𝑎,𝑎+1 to the set 𝐴𝑎 of paths from (𝑎 + 1, 𝑎) to (1, 𝑟).

Notice now that the sum above is equal to∑
(𝑘,𝑙) ∈𝐿′

𝑑𝑘,𝑙 +
∑

(𝑘,𝑙) ∈𝑅′

𝑑𝑘,𝑙 =
∑

(𝑘,𝑙) ∈𝑈

𝑑𝑘,𝑙 −
∑

(𝑘,𝑙) ∈𝑉𝜈

𝑑𝑘,𝑙 .
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Figure 2.

Conversely, given a path from [𝑎 + 1, 𝑎] to [𝑎, 1], we obtain a function 𝜈 ∈ 𝑇𝑎,𝑎+1 such that 𝑉𝜈 is the
image of the given path. Thus, the right-hand side of (1.6) of [16] is equal to∑

(𝑘,𝑙) ∈𝑈

𝑑𝑘,𝑙 − max
𝑝∈𝐴𝑎

𝑟∑
𝑖=0

𝑑𝑝 (𝑖) .

Notice that Card(𝔪𝑎) =
∑

(𝑘,𝑙) ∈𝑈 𝑑𝑘,𝑙 . From this, we see that Card(𝔪♯
(𝑎)

) is equal to

Card(𝔪𝑎) − 𝐸𝑎 (𝔪),

where

𝐸𝑎 (𝔪) = max
𝑝∈𝐴𝑎

𝑟∑
𝑖=0

𝑑𝑝 (𝑖) .

For 𝑝 ∈ 𝐴𝑎, let 𝔪𝑎,𝑝 denote the full-sub-multisegment of 𝔪𝑎 that consists of the segments [𝑎′, 𝑏′]𝜒
in 𝔪𝑎 of the form (𝑎′, 𝑏′) = 𝑝(𝑖) for some integer 𝑖 ∈ [0, 𝑟]. Then 𝔪𝑎,𝑝 is totally ordered, and we
have

∑𝑟
𝑖=0 𝑑𝑝 (𝑖) = Card(𝔪𝑎,𝑝). By sending p to 𝔪𝑎,𝑝 , we obtain a map from 𝐴𝑎 to the set 𝑇𝑎 of totally

ordered full-sub-multisegments of 𝔪𝑎. In general, this map is neither injective nor surjective. However,
for any totally ordered full-sub-multisegment 𝔪′ of 𝔪𝑎, there exists a path 𝑝 ∈ 𝐴𝑎 such that 𝔪′ is a
full-sub-multisegment of 𝔪𝑎,𝑝 . In particular Card(𝔪′) ≤ Card(𝔪𝑎,𝑝) for this p.

Thus, we obtain an equality

max
𝔪′ ∈𝑇𝑎

Card(𝔪′) = max
𝑝∈𝐴𝑎

Card(𝔪𝑎,𝑝) = 𝐸𝑎 (𝔪),

which completes the proof. �

Now we can prove Proposition 2.7.

Proof of Proposition 2.7. We prove the claim by induction on 𝑙 (𝔪).
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Let (𝑉, 𝑁), (𝑉1, 𝑁1) and (𝑉2, 𝑁2) be the 𝑉𝑁-pairs corresponding to the multisegments 𝔪, 𝔪max and
𝔪max, respectively. Let us consider the sets 𝑆(𝑉, 𝑁), 𝑆(𝑉1, 𝑁1) and 𝑆(𝑉2, 𝑁2) introduced in Section 3.1.
Let us choose sufficiently general 𝐿 ∈ 𝑆(𝑉, 𝑁), 𝐿1 ∈ 𝑆(𝑉1, 𝑁1) and 𝐿2 ∈ 𝑆(𝑉2, 𝑁2). Then the six
multisegments 𝔪ram, (𝔪−)ram, (𝔪max)

ram, ((𝔪max)
−)ram, (𝔪max)ram and ((𝔪max)−)ram correspond to

the pairs (Image 𝐿, 𝑁 |Image 𝐿), (Image 𝐿 ◦ 𝑁, 𝑁 |Image 𝐿◦𝑁 ) (−1), (Image 𝐿1, 𝑁1 |Image 𝐿1 ), (Image 𝐿1 ◦

𝑁1, 𝑁1 |Image 𝐿1◦𝑁1) (−1), (Image 𝐿2, 𝑁2 |Image 𝐿2 ) and (Image 𝐿2 ◦ 𝑁2, 𝑁2 |Image 𝐿2◦𝑁2) (−1), respectively.
To prove the claim, it suffices to show that the pair (Image 𝐿, 𝑁 |Image 𝐿) is isomorphic to the pair

(Image 𝐿1 ⊕ Image 𝐿2, 𝑁1 |Image 𝐿1 ⊕ 𝑁2 |Image 𝐿2 ). By the inductive hypothesis, the claim is true for the
multisegment 𝔪−. Hence it follows from Lemma 3.6 that

(Image 𝐿 ◦ 𝑁, 𝑁 |Image 𝐿◦𝑁 ) � (Image 𝐿1 ◦ 𝑁1 ⊕ Image 𝐿2 ◦ 𝑁2, 𝑁1 |Image 𝐿1◦𝑁1 ⊕ 𝑁2 |Image 𝐿2◦𝑁2).

Hence by Lemma 3.1, it suffices to show that the graded vector space Image 𝐿 is isomorphic to the
graded vector space Image 𝐿1 ⊕ Image 𝐿2.

Let 𝔪𝑎 and 𝔪♯
(𝑎)

be as in Proposition 3.7. Note that the dimension of the degree-a-part of Image 𝐿

is equal to Card(𝔪♯
(𝑎)

). Let 𝔪′ be a totally ordered full-sub-multisegment of 𝔪𝑎 with the maximum
cardinality. When 𝔪𝑎 is nonempty, the maximal segment Δ1 of𝔪′ must belong to𝔪max, since otherwise
one can find a totally ordered full-sub-multisegment of 𝔪𝑎 that strictly contains 𝔪′ by adding to 𝔪′ a
segment of 𝔪max that contains Δ1, which is a contradiction. It is then easy to see that

• when 𝔪𝑎 is nonempty, 𝔪′ − Δ1 is a totally ordered full-sub-multisegment of (𝔪max)𝑎 with the
maximum cardinality; and

• Δ1, which is regarded as a multisegment with Card(Δ1) = 1, is a totally ordered
full-sub-multisegment of (𝔪max)𝑎 with the maximum cardinality.

Thus, it follows from Proposition 3.7 that the dimension of the degree-a-part of Image 𝐿 is equal to the
sum of those of Image 𝐿1 and Image 𝐿2, as desired. �

4. Preliminaries on 𝖔-modules

To prove our main theorems, we prepare some results on 𝔬-modules in this section.

4.1. On 𝖔-modules of finite length

In this subsection, we introduce some terminologies on 𝔬-modules and give two basic results (Propo-
sitions 4.4, 4.6), which we call convexity and uniqueness, respectively. The authors suspect that these
two results are well-known to some experts. In fact, one can deduce them from the description of Hall
polynomials given in [25, II, (4.3)] in terms of sequences of partitions related with the Littlewood–
Richardson rule. However, for the sake of completeness, we do not omit the proof of these results, which
the authors believe to be helpful for most readers.

Let |C | denote the set of isomorphism classes of 𝔬-modules of finite length. For an 𝔬-module M of
finite length, we denote by [𝑀] ∈ |C | its isomorphism class.

For an integer 𝑛 ≥ 1, let |C𝑛 | ⊂ |C | denote the subset of isomorphism classes [𝑀] such that M is
generated by at most n elements. We denote by 𝜄𝑛 : |C𝑛 | ↩→ |C𝑛+1 | the inclusion map.

Recall that Λ𝑛 is the set of n-tuples (𝜆1, . . . , 𝜆𝑛) of integers satisfying 0 ≤ 𝜆1 ≤ · · · ≤ 𝜆𝑛. For
[𝑀] ∈ |C𝑛 |, there exists a unique element (𝜆1, . . . , 𝜆𝑛) of Λ𝑛 such that the 𝔬-module M is isomorphic to

𝔬/𝔭𝜆1 ⊕ · · · ⊕ 𝔬/𝔭𝜆𝑛 .
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By sending [𝑀] to the n-tuple (𝜆1, . . . , 𝜆𝑛), we obtain a bijective map seq𝑛 : |C𝑛 | → Λ𝑛. We denote by
𝚥𝑛 : Λ𝑛 → Λ𝑛+1 the injective map that sends (𝜆1, . . . , 𝜆𝑛) to (0, 𝜆1, . . . , 𝜆𝑛). Then the diagram

|C𝑛 |
seq𝑛

−−−−−−→ Λ𝑛

𝜄𝑛
⏐⏐� ⏐⏐� 𝚥𝑛

|C𝑛+1 |
seq𝑛+1

−−−−−−→ Λ𝑛+1

is commutative.
For two elements [𝑀], [𝑀 ′] ∈ |C𝑛 |, we write [𝑀] ≤ [𝑀 ′] if seq𝑛 ([𝑀]) ≤ seq𝑛 ([𝑀 ′]) with respect

to the lexicographic order on Λ𝑛. This gives a total order on the set |C𝑛 |. The map 𝜄𝑛 is compatible with
the total orders on |C𝑛 | and on |C𝑛+1 | since the map 𝚥𝑛 is compatible with the lexicographic orders on
Λ𝑛 and on Λ𝑛+1. Hence the total orders on |C𝑛 | for all n induce a total order ≤ on the set |C |.

We regard Λ𝑛 as a subset of Z𝑛. Then Λ𝑛 is closed under the addition + on Z𝑛 and becomes a
commutative submonoid of Z𝑛 with the addition +. For two elements [𝑀], [𝑀 ′] ∈ |C𝑛 |, we denote by
[𝑀] ∨ [𝑀 ′] the unique element of |C𝑛 | whose image under seq𝑛 is equal to seq𝑛 ([𝑀]) + seq𝑛 ([𝑀 ′]).
Then the set |C𝑛 | becomes a commutative monoid with the operation ∨ and the diagram

|C𝑛 | × |C𝑛 | ∨
−−−−−−→ |C𝑛 |

seq𝑛×seq𝑛
⏐⏐� ⏐⏐�seq𝑛

Λ𝑛 × Λ𝑛
+

−−−−−−→ Λ𝑛

is commutative. The map 𝜄𝑛 is compatible with the monoid structures on |C𝑛 | and |C𝑛+1 | since the map
𝚥𝑛 is compatible with the addition +. Hence the binary operations ∨ on |C𝑛 | for all n induce a binary
operation on the set |C |, also denoted by ∨. This gives a structure of a commutative monoid on the set |C |.

The following lemma says that the total order ≤ on |C | is compatible with the monoid structure on |C |.

Lemma 4.1. Let [𝑀], [𝑀 ′], [𝑁], [𝑁 ′] ∈ |C | and suppose that [𝑀] ≤ [𝑁] and [𝑀 ′] ≤ [𝑁 ′]. Then we
have [𝑀] ∨ [𝑀 ′] ≤ [𝑁] ∨ [𝑁 ′].

Proof. We can easily see that the lexicographic order on Λ𝑛 is compatible with the monoid structure on
Λ𝑛 given by +. Hence the claim follows. �

Recall that F is the field of fractions of 𝔬. For an 𝔬-module M of finite length, we let 𝑀∨ denote the
𝔬-module Hom𝔬 (𝑀, 𝐹/𝔬).

Lemma 4.2. For any 𝔬-module M of finite length, we have [𝑀] = [𝑀∨].

Proof. We may assume 𝑀 = 𝔬/𝔭𝜆1 ⊕ · · · ⊕ 𝔬/𝔭𝜆𝑛 . Since ( )∨ commutes with finite direct sums, we may
further assume that 𝑀 = 𝔬/𝔭𝜆. Then we have 𝑀∨ � 𝔭−𝜆/𝔬. Hence by choosing a uniformiser 𝜛 ∈ 𝔭,
we obtain a desired isomorphism 𝑀 � 𝑀∨. �

Lemma 4.3. Let 𝑀, 𝑀 ′ be 𝔬-modules of finite length.

(1) If there exists an injective homomorphism 𝑀 ′ ↩→ 𝑀 , then we have [𝑀 ′] ≤ [𝑀].
(2) If there exists a surjective homomorphism 𝑀 � 𝑀 ′, then we have [𝑀 ′] ≤ [𝑀].

Proof. Since an injective homomorphism 𝑀 ′ ↩→ 𝑀 induces a surjective homomorphism 𝑀∨ � 𝑀 ′∨,
claim (1) follows from claim (2) and Lemma 4.2. Let us prove claim (2) below.

Let 𝑀, 𝑀 ′ be 𝔬-modules of finite length, and suppose that there exists a surjective homomorphism
𝑀 � 𝑀 ′. Let us take an integer 𝑛 ≥ 1 such that both [𝑀] and [𝑀 ′] belong to |C𝑛 |. We prove the claim by
induction on n. If 𝑛 = 1, then the claim is clear. We assume 𝑛 > 1. Let us write seq𝑛 ([𝑀]) = (𝜆1, . . . , 𝜆𝑛)
and seq𝑛 ([𝑀 ′]) = (𝜆′

1, . . . , 𝜆
′
𝑛).
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First, suppose that 𝜆1 > 𝜆′
1. Then we have [𝑀 ′] < [𝑀] as claimed. Next, suppose that 𝜆1 = 𝜆′

1. Then
both 𝑀/𝔭𝜆1 𝑀 and 𝑀 ′/𝔭𝜆1 𝑀 ′ are isomorphic to (𝔬/𝔭𝜆1 )⊕𝑛, and we have [𝑀] = [𝔭𝜆1 𝑀] ∨ [(𝔬/𝔭𝜆1 )⊕𝑛]

and [𝑀 ′] = [𝔭𝜆1 𝑀 ′] ∨ [(𝔬/𝔭𝜆1 )⊕𝑛]. Note that the surjective homomorphism 𝑀 � 𝑀 ′ induces a
surjective homomorphism 𝔭𝜆1 𝑀 � 𝔭𝜆1 𝑀 ′. Hence by Lemma 4.1, we are reduced to proving claim (2)
for 𝔭𝜆1 𝑀 and 𝔭𝜆1 𝑀 ′. Since both [𝔭𝜆1 𝑀] and [𝔭𝜆1 𝑀 ′] belong to |C𝑛−1 |, the inductive hypothesis proves
the claim in the case where 𝜆1 = 𝜆′

1.
Finally, suppose that 𝜆1 < 𝜆′

1. Again in this case, the surjective homomorphism 𝑀 � 𝑀 ′ induces
a surjective homomorphism 𝔭𝜆1 𝑀 � 𝔭𝜆1 𝑀 ′. Note that 𝔭𝜆1 𝑀 is generated by fewer than n elements,
whereas the minimum number of generators of 𝔭𝜆1 𝑀 ′ is equal to n. This leads to a contradiction. �

Proposition 4.4 (Convexity). Let

0 → 𝑀 ′ → 𝑀 → 𝑀 ′′ → 0 (4.1)

be a short exact sequence of 𝔬-modules of finite length. Then we have the inequality

[𝑀] ≥ [𝑀 ′] ∨ [𝑀 ′′] .

Proof. Let n, 𝑛′ and 𝑛′′ denote the minimal numbers of generators of the 𝔬-modules M, 𝑀 ′ and 𝑀 ′′,
respectively. We prove the claim by induction on 𝑛′ + 𝑛′′.

If 𝑛′ + 𝑛′′ = 0, then we have 𝑀 ′ = 𝑀 ′′ = 0, and the claim is clear. Since 𝑀 → 𝑀 ′′ and 𝑀∨ → 𝑀 ′∨

are surjective, we have 𝑛 ≥ 𝑛′′ and 𝑛 ≥ 𝑛′. If 𝑛 > max{𝑛′, 𝑛′′}, then the claim is obvious. Hence we
may assume that 𝑛 = max{𝑛′, 𝑛′′}. By considering the short exact sequence

0 → 𝑀 ′′∨ → 𝑀∨ → 𝑀 ′∨ → 0

instead of equation (4.1), if necessary, we may further assume that 𝑛 = 𝑛′′. Let us write seq𝑛 (𝑀 ′′) =
(𝜆′′

1 , . . . , 𝜆
′′
𝑛 ) and 𝐼 = 𝔭𝜆

′′
1 . Then both 𝑀/𝐼𝑀 and 𝑀 ′′/𝐼𝑀 ′′ are isomorphic to (𝔬/𝐼)⊕𝑛, and we have

[𝑀] = [𝐼𝑀] ∨ [(𝔬/𝐼)⊕𝑛] and [𝑀 ′′] = [𝐼𝑀 ′′] ∨ [(𝔬/𝐼)⊕𝑛]. Moreover, equation (4.1) induces a short
exact sequence

0 → 𝑀 ′ → 𝐼𝑀 → 𝐼𝑀 ′′ → 0.

Since seq𝑛 (𝐼𝑀 ′′) = (0, 𝜆′′
2 − 𝜆′′

1 , . . . , 𝜆
′′
𝑛 − 𝜆′′

1 ), the minimal number of generators of 𝐼𝑀 ′′ is strictly
smaller than 𝑛′′. Hence, by induction, we have [𝐼𝑀] ≥ [𝑀 ′] ∨ [𝐼𝑀 ′′]. By adding [(𝔬/𝐼)⊕𝑛] to both
sides and using Lemma 4.1, we obtain the desired inequality. �

Lemma 4.5. Let M be an 𝔬-module of finite length. Then for any nonzero ideal 𝐼 ⊂ 𝔬, we have
[𝑀] = [𝐼𝑀] ∨ [𝑀/𝐼𝑀].

Proof. Let us write 𝐼 = 𝔭𝜆. Let us choose a positive integer n such that [𝑀] ∈ |C𝑛 |. Let us write
seq𝑛 ([𝑀]) = (𝜆1, . . . , 𝜆𝑛). For 𝑖 = 1, . . . , 𝑛, set 𝜆′′

𝑖 = min{𝜆, 𝜆𝑖}. Then 𝑀/𝐼𝑀 is isomorphic to⊕𝑛
𝑖=1 𝔬/𝔭

𝜆′′𝑖 and 𝐼𝑀 is isomorphic to
⊕𝑛

𝑖=1 𝔭
𝜆′′𝑖 /𝔭𝜆𝑖 . Thus, we have [𝑀] = [𝐼𝑀] ∨ [𝑀/𝐼𝑀], as

desired. �

Proposition 4.6 (Uniqueness). Suppose that [𝑀], [𝑀 ′], [𝑀 ′′] ∈ |C | satisfy [𝑀] = [𝑀 ′] ∨ [𝑀 ′′]. Then
there exists a unique 𝔬-submodule 𝑁 ⊂ 𝑀 satisfying [𝑁] = [𝑀 ′] and [𝑀/𝑁] = [𝑀 ′′]. Moreover, for
any 𝔬-submodule 𝑁 ′ ⊂ 𝑀 other than N, we have either [𝑁 ′] < [𝑀 ′] or [𝑀/𝑁 ′] < [𝑀 ′′].

Proof. First, we prove the existence and uniqueness of N. Let n, 𝑛′ and 𝑛′′ denote the minimal numbers
of generators of the 𝔬-modules M, 𝑀 ′ and 𝑀 ′′, respectively. We prove the claim by induction on 𝑛′ +𝑛′′.

If 𝑛′ + 𝑛′′ = 0, then we have 𝑀 = 𝑀 ′ = 𝑀 ′′ = 0, and the claim is obvious. The relation [𝑀] =
[𝑀 ′] ∨ [𝑀 ′′] implies that 𝑛 = max{𝑛′, 𝑛′′}. By considering 𝑀∨ instead of M if necessary, we may
assume that 𝑛 = 𝑛′′. Let us write seq𝑛 (𝑀 ′′) = (𝜆′′

1 , . . . , 𝜆
′′
𝑛 ) and 𝐼 = 𝔭𝜆

′′
1 . Then for any 𝔬-submodule

𝑁 ⊂ 𝑀 satisfying [𝑀/𝑁] = [𝑀 ′′], we have 𝑁 ⊂ 𝐼𝑀 . Since seq𝑛 (𝐼𝑀 ′′) = (0, 𝜆′′
2 − 𝜆′′

1 , . . . , 𝜆
′′
𝑛 − 𝜆′′

1 ),
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the minimal number of generators of 𝐼𝑀 ′′ is strictly smaller than 𝑛′′. Hence, by induction, there exists
a unique 𝔬-submodule 𝑁 ⊂ 𝐼𝑀 satisfying [𝑁] = [𝑀 ′] and [𝐼𝑀/𝑁] = [𝐼𝑀 ′′]. Since N is contained
in 𝐼𝑀 , the 𝔬-module 𝐼 (𝑀/𝑁) is isomorphic to 𝐼𝑀/𝑁 , and hence (𝑀/𝑁)/𝐼 (𝑀/𝑁) is isomorphic to
𝑀/𝐼𝑀 . It follows from Lemma 4.5 that we have [𝑀/𝑁] = [𝐼𝑀/𝑁] ∨ [𝑀/𝐼𝑀] = [𝑀 ′′]. Hence the
claim follows.

Finally, let us prove the last assertion of the proposition. Let 𝑁 ′ ⊂ 𝑀 be an 𝔬-submodule other than
N. Suppose that [𝑁 ′] ≥ [𝑀 ′] and [𝑀/𝑁 ′] ≥ [𝑀 ′′]. Since 𝑁 ′ ≠ 𝑁 , we have either [𝑁 ′] > [𝑀 ′] or
[𝑀/𝑁 ′] > [𝑀 ′′]. Hence it follows from Lemma 4.1 and Proposition 4.4 that

[𝑀] ≥ [𝑁 ′] ∨ [𝑀/𝑁 ′] > [𝑀 ′] + [𝑀 ′′] = [𝑀],

which is a contradiction. Hence we have either [𝑁 ′] < [𝑀 ′] or [𝑀/𝑁 ′] < [𝑀 ′′]. This completes the
proof. �

Corollary 4.7. Suppose that [𝑀], [𝑀1], . . . , [𝑀𝑟 ] ∈ |C | satisfy [𝑀] = [𝑀1] ∨ · · · ∨ [𝑀𝑟 ]. Then there
exists a unique increasing filtration

0 = F0
0𝑀 ⊂ · · · ⊂ F0

𝑟𝑀 = 𝑀

of M by 𝔬-submodules satisfying [𝑀𝑖] = [GrF0

𝑖 𝑀] for 𝑖 = 1, . . . , 𝑟 , where GrF0

𝑖 𝑀 = F0
𝑖𝑀/F0

𝑖−1𝑀 .
Moreover, for any filtration

0 = F0𝑀 ⊂ · · · ⊂ F𝑟𝑀 = 𝑀

of M by 𝔬-submodules other than F0
•𝑀 , we have [GrF

𝑖 𝑀] < [𝑀𝑖] for some 𝑖 ∈ {1, . . . , 𝑟}.

Proof. We prove the existence and uniqueness of F0
•𝑀 by induction on r. If 𝑟 = 1, it is obvious. If 𝑟 > 1,

set [𝑀 ′] = [𝑀1] and [𝑀 ′′] = [𝑀2] ∨ · · ·∨ [𝑀𝑟 ]. By Proposition 4.6, there exists a unique 𝔬-submodule
N of M such that [𝑁] = [𝑀1] and [𝑀/𝑁] = [𝑀2] ∨ · · · ∨ [𝑀𝑟 ]. By the inductive hypothesis, we have
a unique filtration F0

•(𝑀/𝑁) satisfying the conditions with respect to [𝑀/𝑁] = [𝑀2] ∨ · · · ∨ [𝑀𝑟 ]. By
setting F0

𝑖+1𝑀 to be the inverse image of F0
𝑖 (𝑀/𝑁) for 1 ≤ 𝑖 ≤ 𝑟 − 1, and F0

1𝑀 = 𝑁 , we obtain F0
•𝑀 .

The last assertion follows from the same argument as in the proof of Proposition 4.6. �

4.2. Generators of 𝖔-modules

Lemma 4.8. Let 𝑓 : 𝑀 � 𝑁 be a surjective homomorphism of𝔬-modules, and 𝑀 ′ ⊂ 𝑀 an𝔬-submodule.
Let 𝑥 ∈ 𝑁 and 𝑦 ∈ 𝑀/𝑀 ′ be elements whose images in 𝑁/ 𝑓 (𝑀 ′) coincide. Then there exists a lift
�̃� ∈ 𝑀 of y satisfying 𝑓 ( �̃�) = 𝑥.

Proof. Let us take an arbitrary lift �̃�′ ∈ 𝑀 of y and set 𝑥 ′ = 𝑓 ( �̃�′). Since the images of x and 𝑥 ′ coincide
in 𝑁/ 𝑓 (𝑀 ′), there exists 𝑧 ∈ 𝑀 ′ satisfying 𝑥 − 𝑥 ′ = 𝑓 (𝑧). Then the element �̃� = 𝑦′ + 𝑧 ∈ 𝑀 has the
desired property. �

Lemma 4.9. Let N be an 𝔬-module of finite length. Let L and 𝐿 ′ be finitely generated free 𝔬-modules of
the same rank, and let 𝑓 : 𝐿 � 𝑁 and 𝑓 ′ : 𝐿 ′ � 𝑁 be surjective homomorphisms of 𝔬-modules. Then
there exists an isomorphism 𝛼 : 𝐿

�
−→ 𝐿 ′ of 𝔬-modules satisfying 𝑓 = 𝑓 ′ ◦ 𝛼.

Proof. Since N is of finite length over a noetherian local ring 𝔬, one can take a projective cover
𝛽 : 𝑃 → 𝑁 of N (see [1, 17.16 Examples (3)]). Then there exist homomorphisms 𝛾 : 𝐿 → 𝑃 and
𝛾′ : 𝐿 ′ → 𝑃 satisfying 𝑓 = 𝛽 ◦ 𝛾 and 𝑓 ′ = 𝛽 ◦ 𝛾′. Since projective covers are essential surjections,
the homomorphisms 𝛾 and 𝛾′ are surjective. Hence by the projectivity of P, one can choose a right
inverse s and 𝑠′ of 𝛾 and 𝛾′, respectively. Since Ker 𝛾 and Ker 𝛾′ are free 𝔬-modules of the same rank,
there exists an isomorphism 𝛼′ : Ker 𝛾 �

−→ Ker 𝛾′ of 𝔬-modules. By taking the direct sum of 𝛼′ and the
isomorphism 𝑠(𝑃)

�
−→ 𝑠′(𝑃) given by 𝑠′ ◦ 𝛾, we obtain a desired isomorphism 𝛼 : 𝐿 → 𝐿 ′. �
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Corollary 4.10. Let N be an 𝔬-module of finite length generated by n elements 𝑥1, . . . , 𝑥𝑛. Then for any
free 𝔬-module L of rank n and for any surjective homomorphism 𝑓 : 𝐿 → 𝑁 , there exists an 𝔬-basis
𝑦1, . . . , 𝑦𝑛 of L satisfying 𝑓 (𝑦𝑖) = 𝑥𝑖 for 𝑖 = 1, . . . , 𝑛.

Proof. Let 𝐿 ′ = 𝔬⊕𝑛, and let 𝑓 ′ : 𝐿 ′ � 𝑁 denote the surjection that sends the standard basis of 𝐿 ′ to
the elements 𝑥1, . . . , 𝑥𝑛. By applying Lemma 4.9, we obtain an isomorphism 𝛼 : 𝐿

�
−→ 𝐿 ′ satisfying

𝑓 = 𝑓 ′ ◦ 𝛼. Then the image under 𝛼−1 of the standard basis of 𝐿 ′ gives a desired basis of L. �

From now until the end of this section, we fix an integer 𝑛 ≥ 1 and a partition

n = (𝑛1, . . . , 𝑛𝑟 ), 𝑛 = 𝑛1 + · · · + 𝑛𝑟 , 𝑛𝑖 ≥ 1

of n. For 𝑖 = 1, . . . , 𝑟 , we set

𝑎𝑖 = 𝑛1 + · · · + 𝑛𝑖−1 + 1, 𝑏𝑖 = 𝑛1 + · · · + 𝑛𝑖 .

We use the following terminology.

Definition 4.11. Let M be an 𝔬-module generated by at most n elements.

(1) We say that an increasing filtration F•𝑀 of M by 𝔬-submodules is n-admissible if the following
conditions are satisfied:
• F0𝑀 = 0 and F𝑟𝑀 = 𝑀 .
• For 𝑖 = 1, . . . , 𝑟 , the graded quotient GrF

𝑖 𝑀 = F𝑖𝑀/F𝑖−1𝑀 is generated by at most 𝑛𝑖 elements.
(2) Let F•𝑀 be an n-admissible filtration of M. We say that a sequence 𝑦1, . . . , 𝑦𝑛 of elements of M is

compatible with F•𝑀 if, for 𝑖 = 1, . . . , 𝑟 , the 𝑏𝑖 elements 𝑦1, . . . , 𝑦𝑏𝑖 generate the 𝔬-module F𝑖𝑀 .

Lemma 4.12. Let M be an𝔬-module of finite length. Let L be a free𝔬-module of rank n, and let 𝑓 : 𝐿 � 𝑀
be a surjective homomorphism of 𝔬-modules. Suppose that an n-admissible filtration F•𝐿 of L is given.
Let F•𝑀 denote the filtration on M induced from F•𝐿 via f: that is, F𝑖𝑀 = 𝑓 (F𝑖𝐿). For 𝑖 = 1, . . . , 𝑟 , let
𝑓𝑖 : GrF

𝑖 𝐿 � GrF
𝑖 𝑀 denote the surjective homomorphism induced by f. Then we have the following.

(1) F•𝑀 is an n-admissible filtration of M.
(2) Let 𝑥1, . . . , 𝑥𝑛 be a sequence of elements of M compatible with F•𝑀 . Then there exists a sequence

𝑦1, . . . , 𝑦𝑛 of elements of L compatible with F•𝐿 such that 𝑥 𝑗 = 𝑓 (𝑦 𝑗 ) for 𝑗 = 1, . . . , 𝑛.
(3) Let 𝑥1, . . . , 𝑥𝑛 be a sequence of elements of M compatible with F•𝑀 . Suppose that, for 𝑖 = 1, . . . , 𝑟 ,

an 𝔬-basis 𝑧𝑎𝑖 , . . . , 𝑧𝑏𝑖 of GrF
𝑖 𝐿 is given in such a way that for 𝑗 = 𝑎𝑖 , . . . , 𝑏𝑖 , the image 𝑓𝑖 (𝑧 𝑗 ) is

equal to the class of 𝑥 𝑗 in GrF
𝑖 𝑀 . Then there exists a sequence 𝑦1, . . . , 𝑦𝑛 of elements of L compatible

with F•𝐿 such that 𝑥 𝑗 = 𝑓 (𝑦 𝑗 ) for 𝑗 = 1, . . . , 𝑛 and such that the class of 𝑦 𝑗 in GrF
𝑖 𝐿 is equal to 𝑧 𝑗

for 𝑗 = 𝑎𝑖 , . . . , 𝑏𝑖 .

Proof. Assertion (1) is clear. We can deduce assertion (2) from assertion (3), since in the situation of
(2), one can find, by using Corollary 4.10, an 𝔬-basis 𝑧𝑎𝑖 , . . . , 𝑧𝑏𝑖 of GrF

𝑖 𝐿 as in the statement of the
assertion of (3) for 𝑖 = 1, . . . , 𝑟 . (Here, we note that F𝑖𝐿 is a free 𝔬-module of rank 𝑛1 + · · · + 𝑛𝑖 .)

We prove assertion (3). Using Lemma 4.8, one can choose an element 𝑦 𝑗 ∈ F𝑖𝐿 for 𝑗 = 𝑎𝑖 , . . . , 𝑏𝑖 in
such a way that 𝑓 (𝑦 𝑗 ) = 𝑥 𝑗 and the image of 𝑦 𝑗 in GrF

𝑖 𝐿 is equal to 𝑧 𝑗 . Then the sequence 𝑦1, . . . , 𝑦𝑛 of
elements of L has the desired property. �

The following is well-known.

Lemma 4.13. Let M be an 𝔬-module of finite length and 𝑚1, . . . , 𝑚𝑟 be nonnegative integers. Then the
number of filtrations 0 = F0𝑀 ⊂ · · · ⊂ F𝑟𝑀 = 𝑀 with GrF

𝑖 𝑀 generated by exactly 𝑚𝑖 elements for any
1 ≤ 𝑖 ≤ 𝑟 is invariant under the permutations of 𝑚1, . . . , 𝑚𝑟 .

Outline of proof. First, reduce to the case where the permutation is an adjacent transposition. Then
reduce to the case where 𝑟 = 2. Finally, use the duality (Lemma 4.2) to treat this case. �
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5. The Mackey decomposition

In this section, we give the Mackey decomposition (Proposition 5.2) of the invariants by compact open
subgroups of the form K𝑛,𝜆. As an application, we give a reduction step in the proof of our main results.

5.1. Invariant subspaces of parabolically induced representations

Fix an integer 𝑛 ≥ 1. Let us consider the F-vector space 𝐹𝑛. We regard an element of 𝐹𝑛 as a column
vector. The group 𝐺𝑛 = GL𝑛 (𝐹) acts on 𝐹𝑛 from the left by the multiplication. Let 𝐿1, 𝐿2 ⊂ 𝐹𝑛 be
𝔬-lattices with 𝐿1 ⊃ 𝐿2. We denote by K𝐿1 ,𝐿2 the set of elements 𝑔 ∈ 𝐺𝑛 satisfying the following
conditions:

• We have 𝑔𝐿1 = 𝐿1 and 𝑔𝐿2 = 𝐿2.
• The endomorphism of the 𝔬-module 𝐿1/𝐿2 induced by the multiplication by g is the identity map.

Then K𝐿1 ,𝐿2 is a compact open subgroup of 𝐺𝑛.

Lemma 5.1. The 𝐺𝑛-conjugacy class of K𝐿1 ,𝐿2 depends only on n and an isomorphism class [𝐿1/𝐿2]
of the 𝔬-module 𝐿1/𝐿2.

Proof. Let 𝐿1, 𝐿2, 𝐿
′
1, 𝐿

′
2 be 𝔬-lattices of 𝐹𝑛 such that 𝐿1 ⊃ 𝐿2, 𝐿 ′

1 ⊃ 𝐿 ′
2 and 𝐿1/𝐿2 is isomorphic to

𝐿 ′
1/𝐿

′
2 as 𝔬-modules. Let us choose an isomorphism 𝐿1/𝐿2 � 𝐿 ′

1/𝐿
′
2, and let f (respectively, 𝑓 ′) denote

the composite 𝐿1 � 𝐿1/𝐿2
�
−→ 𝐿 ′

1/𝐿
′
2 (respectively, the quotient map 𝐿 ′

1 → 𝐿 ′
1/𝐿

′
2). Then it follows

from Lemma 4.9 that there exists an isomorphism 𝛼 : 𝐿1
�
−→ 𝐿 ′

1 satisfying 𝑓 = 𝑓 ′ ◦ 𝛼. By extending 𝛼

to an automorphism 𝐹𝑛
�
−→ 𝐹𝑛 by F-linearity, we obtain an element 𝑔 ∈ 𝐺𝑛 such that 𝛼(𝑥) = 𝑔𝑥. It is

then straightforward to check that K𝐿′
1 ,𝐿

′
2
= 𝑔K𝐿1 ,𝐿2𝑔

−1. This completes the proof. �

By abuse of notation, we denote the group K𝐿1 ,𝐿2 by K𝑛, [𝐿1/𝐿2 ] . We note that, for [𝑀] in |C𝑛 |, the
group K𝑛, [𝑀 ] is well-defined only up to 𝐺𝑛-conjugation. If 𝜆 = seq𝑛 ([𝑀]), the 𝐺𝑛-conjugacy class of
K𝑛, [𝑀 ] is equal to the class of K𝑛,𝜆. Indeed, if we set 𝐿1 = 𝔬𝑛 and 𝐿1 = ⊕𝑛𝑖=1𝔭

𝜆𝑖 with 𝜆 = (𝜆1, . . . , 𝜆𝑛),
then we see that K𝐿1 ,𝐿2 = K𝑛,𝜆.

Fix a partition n = (𝑛1, . . . , 𝑛𝑟 ) of n with integers 𝑛1, . . . , 𝑛𝑟 ≥ 1. Let 𝜋1, . . . , 𝜋𝑟 be representations
of 𝐺𝑛1 , . . . , 𝐺𝑛𝑟 of finite length, respectively. Consider the representation 𝜋1 × · · · × 𝜋𝑟 of 𝐺𝑛, which is
parabolically induced from the representation 𝜋1� · · ·�𝜋𝑟 of the standard Levi subgroup 𝐺𝑛1 ×· · ·×𝐺𝑛𝑟

of 𝐺𝑛. Then for any [𝑀] ∈ |C𝑛 |, the Mackey decomposition gives the following description of the
K𝑛, [𝑀 ]-invariant part of 𝜋1 × · · · × 𝜋𝑟 .

Proposition 5.2 (The Mackey decomposition). There exists an isomorphism

(𝜋1 × · · · × 𝜋𝑟 )
K𝑛, [𝑀 ] �

⊕
F•𝑀

𝜋
K
𝑛1 , [GrF1 𝑀 ]

1 ⊗ · · · ⊗ 𝜋
K
𝑛𝑟 , [GrF𝑟 𝑀 ]

𝑟

of complex vector spaces. Here F•𝑀 in the direct sum above runs over the set of n-admissible filtrations
of M: that is, the increasing filtrations

0 = F0𝑀 ⊂ · · · ⊂ F𝑟𝑀 = 𝑀

on M by 𝔬-submodules such that for 𝑖 = 1, . . . , 𝑟 , the 𝔬-module GrF
𝑖 𝑀 = F𝑖𝑀/F𝑖−1𝑀 is generated by at

most 𝑛𝑖 elements.

Proof. Let 𝑃n ⊂ 𝐺𝑛 denote the standard parabolic subgroup corresponding to the partition n =
(𝑛1, . . . , 𝑛𝑟 ). Consider the quotient homomorphism 𝑞 : 𝑃n → 𝐺𝑛1 ×· · ·×𝐺𝑛𝑟 . Let us choose a complete
set 𝑆 ⊂ 𝐺𝑛 of representatives of the double coset 𝑃n\𝐺𝑛/K𝑛, [𝑀 ] .
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Then the Mackey decomposition yields an isomorphism

(𝜋1 × · · · × 𝜋𝑟 )
K𝑛, [𝑀 ] �

⊕
𝑔∈𝑆

(𝜋1 � · · · � 𝜋𝑟 )
𝑞 (𝑃n∩𝑔K𝑛, [𝑀 ]𝑔

−1) . (5.1)

LetF𝑀 denote the set of n-admissible filtrations on M. In view of equation (5.1), it suffices to construct
a bijection 𝛼 : 𝑃n\𝐺𝑛/K𝑛, [𝑀 ]

�
−→ F𝑀 satisfying the following property: If 𝑃n𝑔K𝑛, [𝑀 ] corresponds to

the filtration F•𝑀 via 𝛼, then the subgroup 𝑞(𝑃n ∩ 𝑔K𝑛, [𝑀 ]𝑔
−1) of 𝐺𝑛1 × · · · × 𝐺𝑛𝑟 is a conjugate of

the subgroup K𝑛1 , [GrF
1𝑀 ] × · · · × K𝑛𝑟 , [GrF

𝑟𝑀 ] .

Lemma 5.3. By choosing a pair (𝐿1, 𝐿2) of𝔬-lattices with 𝐿1 ⊃ 𝐿2 and an isomorphism 𝛾 : 𝐿1/𝐿2 � 𝑀

of 𝔬-modules, we identify K𝑛, [𝑀 ] with K𝐿1 ,𝐿2 . We denote the composite 𝐿1 � 𝐿1/𝐿2
𝛾
−→ 𝑀 by 𝑓1.

(1) Let L𝑀 (𝐹𝑛) be the set of pairs (𝐿, 𝑓 ) of an 𝔬-lattice 𝐿 ⊂ 𝐹𝑛 and a surjective homomorphism
𝑓 : 𝐿 � 𝑀 of 𝔬-modules. Then there is a (canonical) bijection 𝐺𝑛/K𝑛, [𝑀 ] → L𝑀 (𝐹𝑛) given by
𝑔K𝐿1 ,𝐿2 ↦→ (𝑔𝐿1, 𝑦 ↦→ 𝑓1(𝑔

−1𝑦)).
(2) There is a bijection from 𝐺𝑛/𝑃n to the set of n-admissible filtrations on 𝐿1 given by ℎ𝑃n ↦→ Fℎ• 𝐿1 �

𝐿1 ∩ ℎ(𝐹𝑒1 + · · · + 𝐹𝑒𝑏• ), where {𝑒1, . . . , 𝑒𝑛} is the standard basis of 𝐹𝑛.
(3) Let L′

𝑀 (𝐹𝑛) be the set of triples (𝐿, F•𝐿, 𝑓 ) of an 𝔬-lattice 𝐿 ⊂ 𝐹𝑛, an n-admissible filtration
F•𝐿 on L and a surjective homomorphism 𝑓 : 𝐿 � 𝑀 of 𝔬-modules. We let the group 𝐺𝑛 act
on L′

𝑀 (𝐹𝑛) by 𝑔.(𝐿, F•𝐿, 𝑓 ) = (𝑔𝐿, 𝑔F•𝐿, 𝑦 ↦→ 𝑓 (𝑔−1𝑦)). Then there is a (canonical) bijection
𝑃n\𝐺𝑛/K𝑛, [𝑀 ] → 𝐺𝑛\L′

𝑀 (𝐹𝑛) given by sending 𝑃n𝑔K𝐿1 ,𝐿2 to the 𝐺𝑛-orbit of (𝑔𝐿1, F•𝑔𝐿1, 𝑦 ↦→

𝑓1(𝑔
−1𝑦)), where F𝑖𝑔𝐿1 � 𝑔𝐿1 ∩ (𝐹𝑒1 + · · · + 𝐹𝑒𝑏𝑖 ).

Proof. We show (1). We let the group 𝐺𝑛 act from the left on the set L𝑀 (𝐹𝑛) by the rule 𝑔.(𝐿, 𝑓 ) =
(𝑔𝐿, 𝑦 ↦→ 𝑓 (𝑔−1𝑦)). One can prove that the action of 𝐺𝑛 on L𝑀 (𝐹𝑛) is transitive in the following way.
Let (𝐿, 𝑓 ) and (𝐿 ′, 𝑓 ′) be two elements of L𝑀 (𝐹𝑛). Then by Lemma 4.9, there exists an isomorphism
𝛽 : 𝐿

�
−→ 𝐿 ′ satisfying 𝑓 = 𝑓 ′ ◦ 𝛽. By extending 𝛽 to an automorphism of 𝐹𝑛 by F-linearity, we obtain an

element 𝑔 ∈ 𝐺𝑛 such that 𝛽(𝑥) = 𝑔𝑥. Then we have (𝐿 ′, 𝑓 ′) = 𝑔.(𝐿, 𝑓 ). Hence the map 𝑔 ↦→ 𝑔.(𝐿1, 𝑓1)
gives a surjective map 𝐺𝑛 → L𝑀 (𝐹𝑛). Since the stabiliser of (𝐿1, 𝑓1) with respect to the action of 𝐺𝑛

is equal to K𝐿1 ,𝐿2 , it gives the desired bijection.
It is straightforward to check that this bijection does not depend on the choice of the triple (𝐿1, 𝐿2, 𝛾)

in the following sense. Let (𝐿 ′
1, 𝐿

′
2, 𝛾

′) be another choice. It follows from the proof of Lemma 5.1 that
there exists 𝑔 ∈ 𝐺𝑛 satisfying 𝑔𝐿1 = 𝐿 ′

1, 𝑔𝐿2 = 𝐿 ′
2 and 𝛾(𝑦 mod 𝐿2) = 𝛾′(𝑔𝑦 mod 𝐿 ′

2) for all 𝑦 ∈ 𝐿1.
Then for any such 𝑔 ∈ 𝐺𝑛, we have K𝐿′

1 ,𝐿
′
2
= 𝑔K𝐿1 ,𝐿2𝑔

−1, and the diagram

𝐺𝑛/K𝐿1 ,𝐿2 −−−−−−→ L𝑀 (𝐹𝑛)⏐⏐� ���
𝐺𝑛/K𝐿′

1 ,𝐿
′
2
−−−−−−→ L𝑀 (𝐹𝑛)

is commutative. Here the left vertical map sends ℎK𝐿1 ,𝐿2 to ℎ𝑔−1K𝐿′
1 ,𝐿

′
2
. Hence we obtain (1).

Note that 𝐺𝑛/𝑃n is naturally identified with the set of partial flags 0 = 𝑉0 ⊂ · · · ⊂ 𝑉𝑟 = 𝐹𝑛 with
dim(𝑉𝑖/𝑉𝑖−1) = 𝑛𝑖 for 𝑖 = 1, . . . , 𝑟 . Note that (𝐿1∩𝑉 ′) ⊗𝔬𝐹 = 𝑉 ′ for any subspace𝑉 ′ of 𝐹𝑛. On the other
hand, if F•𝐿1 is an n-admissible filtration of 𝐿1, since 𝐿1 is a free 𝔬-module of rank 𝑛 = 𝑛1 + · · · + 𝑛𝑟 ,
each subquotient GrF

𝑖 𝐿1 is a free 𝔬-module of rank 𝑛𝑖 for any i. Hence we have 𝐿1 ∩ (F𝑖𝐿1 ⊗𝔬 𝐹) = F𝑖𝐿1
for any i. Therefore we have (2).

Since the double cosets in 𝑃n\𝐺𝑛/K𝑛, [𝑀 ] are in one-to-one correspondence with the 𝐺𝑛-orbits in
(𝐺𝑛/𝑃n) × (𝐺𝑛/K𝑛, [𝑀 ] ) with respect to the diagonal left 𝐺𝑛-action, assertion (3) follows from (1) and
(2). �

We continue the proof of Proposition 5.2. We identify 𝑃n\𝐺𝑛/K𝑛, [𝑀 ] with 𝐺𝑛\L′
𝑀 (𝐹𝑛) by

Lemma 5.3. By sending the triple (𝐿, F•𝐿, 𝑓 ) ∈ L′
𝑀 (𝐹𝑛) to the filtration on M induced from F•𝐿 via f,
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we obtain a map 𝛼 : 𝑃n\𝐺𝑛/K𝑛, [𝑀 ] → F𝑀 . Let Fst
•𝔬

𝑛 be the standard n-admissible filtration on 𝔬𝑛: that
is, the unique n-admissible filtration on 𝔬𝑛 such that the standard basis of 𝔬𝑛 is a sequence compatible
with Fst

•𝔬
𝑛. Let us fix a surjective homomorphism 𝑓 : 𝔬𝑛 → 𝑀 , and let L denote its kernel. Then we can

regardK𝑛, [𝑀 ] asK𝔬𝑛 ,𝐿 . In this case, one can describe the map 𝛼 as follows. Let 𝑠 ∈ 𝑃n\𝐺𝑛/K𝔬𝑛 ,𝐿 . Then
by the Iwasawa decomposition, we have 𝑠 = 𝑃n𝑘K𝔬𝑛 ,𝐿 for some 𝑘 ∈ GL𝑛 (𝔬). Then 𝛼(𝑠) is the filtration

0 = 𝑓 (𝑘−1Fst
0𝔬

𝑛) ⊂ · · · ⊂ 𝑓 (𝑘−1Fst
𝑟 𝔬

𝑛) = 𝑀

on M. We note that 𝑘−1Fst
𝑖 𝔬

𝑛 is the 𝔬-submodule of 𝔬𝑛 generated by the first 𝑏𝑖 columns of 𝑘−1.
Now let us choose a filtration F•𝑀 on M in F𝑀 . Let us fix a sequence 𝑥1, . . . , 𝑥𝑛 ∈ 𝑀 com-

patible with F•𝑀 . By considering the homomorphism 𝔬𝑛 → 𝑀 that sends the standard basis to the
sequence 𝑥1, . . . , 𝑥𝑛, one can check that the map 𝛼 is surjective. Suppose that two triples (𝐿, F•𝐿, 𝑓 )
and (𝐿 ′, F′

•𝐿
′, 𝑓 ′) are sent to F•𝑀 via 𝛼. Let us choose a basis 𝑦1, . . . , 𝑦𝑛 of L and a basis 𝑦′1, . . . , 𝑦

′
𝑛

of 𝐿 ′ as in assertion (2) of Lemma 4.12. By considering the change-of-basis matrix, we can see
that the two triples are in the same 𝐺𝑛-orbit. This proves that the map 𝛼 is injective. In conclusion,
𝛼 : 𝑃n\𝐺𝑛/K𝑛, [𝑀 ] → F𝑀 is bijective.

Again, we realise K𝑛, [𝑀 ] as K𝔬𝑛 ,𝐿 for a lattice 𝐿 ⊂ 𝔬𝑛 with a surjection 𝑓 : 𝔬𝑛 � 𝑀 such that
Ker 𝑓 = 𝐿. Then by the Iwasawa decomposition, any 𝑠 ∈ 𝑃n\𝐺𝑛/K𝔬𝑛 ,𝐿 is of the form 𝑠 = 𝑃n𝑘𝑠K𝔬𝑛 ,𝐿
for some 𝑘𝑠 ∈ GL𝑛 (𝔬). In this case, the corresponding triple is the 𝐺𝑛-orbit of (𝔬𝑛, Fst

•𝔬
𝑛, 𝑓𝑠), where

𝑓𝑠 (𝑦) = 𝑓 (𝑘−1
𝑠 𝑦). In particular, Ker 𝑓𝑠 = 𝑘𝑠𝐿. Then

𝑃n ∩ 𝑘𝑠K𝔬𝑛 ,𝐿𝑘
−1
𝑠 = {𝑝 ∈ 𝑃n ∩ GL𝑛 (𝔬) | 𝑓𝑠 ◦ 𝑚(𝑝) = 𝑓𝑠},

where 𝑚(𝑝) : 𝔬𝑛 → 𝔬𝑛 denotes the homomorphism given by the multiplication by p from the left.
Recall that {𝑒1, . . . , 𝑒𝑛} is the standard basis of 𝐹𝑛. For 1 ≤ 𝑖 ≤ 𝑟 , we set 𝐿𝑖 to be the image of
𝑘𝑠𝐿 ∩ (𝔬𝑒1 + · · · + 𝔬𝑒𝑏𝑖 ) under the canonical projection

𝔬𝑏𝑖 = 𝔬𝑒1 + · · · + 𝔬𝑒𝑏𝑖 � 𝔬𝑛𝑖 = 𝔬𝑒𝑎𝑖 + · · · + 𝔬𝑒𝑏𝑖 .

Then 𝔬𝑛𝑖 ⊃ 𝐿𝑖 are lattices in 𝐹𝑛𝑖 = 𝐹𝑒𝑎𝑖 + · · · + 𝐹𝑒𝑏𝑖 such that 𝔬𝑛𝑖/𝐿𝑖 � GrF
𝑖 𝑀 , where F•𝑀 is the

filtration corresponding to the 𝐺𝑛-orbit of (𝔬𝑛, Fst
•𝔬

𝑛, 𝑓𝑠). Moreover, we have

𝑞(𝑃n ∩ 𝑘𝑠K𝔬𝑛 ,𝐿𝑘
−1
𝑠 ) ⊂ K𝔬𝑛1 ,𝐿1 × · · · × K𝔬𝑛𝑟 ,𝐿𝑟 .

We show that this inclusion is indeed an equality. Let (𝑘1, . . . , 𝑘𝑟 ) ∈ K𝔬𝑛1 ,𝐿1 × · · · × K𝔬𝑛𝑟 ,𝐿𝑟 be
given. Set 𝑥 𝑗 = 𝑓𝑠 (𝑒 𝑗 ) ∈ 𝑀 for 1 ≤ 𝑗 ≤ 𝑛, and set 𝑧 𝑗 = 𝑘𝑖𝑒 𝑗 ∈ 𝔬𝑛𝑖 = Gr𝐹 st

𝑖 𝔬𝑛 for 𝑎𝑖 ≤ 𝑗 ≤ 𝑏𝑖 . Since
𝑘𝑖 fixes 𝔬𝑛𝑖 � 𝑥 ↦→ 𝑓𝑠 (𝑥) mod F𝑖−1𝑀 ∈ GrF

𝑖 𝑀 � 𝔬𝑛𝑖/𝐿𝑖 , we see that the image of 𝑓𝑠 (𝑧 𝑗 ) in GrF
𝑖 𝑀 is

the same as the one of 𝑥 𝑗 . By assertion (3) of Lemma 4.12, one can take a sequence 𝑒′1, . . . , 𝑒
′
𝑛 ∈ 𝔬𝑛

which is compatible with Fst
•𝔬

𝑛 such that 𝑥 𝑗 = 𝑓𝑠 (𝑒
′
𝑗 ) and the class of 𝑒′𝑗 in GrFst

𝑖 𝔬𝑛 = 𝔬𝑛𝑖 is equal
to 𝑧 𝑗 . Define 𝑘 ∈ 𝐺𝑛 so that 𝑒′𝑗 = 𝑘𝑒 𝑗 for 1 ≤ 𝑗 ≤ 𝑛. Since 𝐹𝑒′1 + · · · + 𝐹𝑒′𝑛𝑖 = 𝐹𝑒1 + · · · + 𝐹𝑒𝑛𝑖
for 1 ≤ 𝑖 ≤ 𝑟 , we have 𝑘 ∈ 𝑃n. Moreover, since k preserves 𝔬𝑛 and 𝑓𝑠 (𝑘𝑥) = 𝑓𝑠 (𝑥), it also preserves
𝑘𝑠𝐿 = Ker 𝑓𝑠 . Hence 𝑘 ∈ K𝔬𝑛 ,𝑘𝑠𝐿 = 𝑘𝑠K𝔬𝑛 ,𝐿𝑘

−1
𝑠 . Since 𝑞(𝑘) = (𝑘1, . . . , 𝑘𝑟 ), we conclude that

𝑞(𝑃n ∩ 𝑘𝑠K𝔬𝑛 ,𝐿𝑘
−1
𝑠 ) = K𝔬𝑛1 ,𝐿1 × · · · × K𝔬𝑛𝑟 ,𝐿𝑟 . Namely, 𝑞(𝑃n ∩ 𝑔K𝑛, [𝑀 ]𝑔

−1) is a 𝐺𝑛1 × · · · × 𝐺𝑛𝑟 -
conjugate of K𝑛1 , [GrF

1𝑀 ] × · · · × K𝑛𝑟 , [GrF
𝑟𝑀 ] . This completes the proof of Proposition 5.2. �

Remark 5.4. One can interpret the statement and the proof of Proposition 5.2 in terms of the topos
theory. For more precise statements, see the previous paper of the second and third authors [18].

5.2. Proof of the main theorems: a reduction step

Let 𝜋 be an irreducible representation of 𝐺𝑛. Then we can write 𝜋 = 𝜋′ × 𝜋1 × · · · × 𝜋𝑟 as an irreducible
parabolic induction such that
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• 𝜋′ is an irreducible representation such that 𝐿(𝑠, 𝜋′) = 1;
• 𝜋𝑖 = 𝑍 (𝔪𝑖) with 𝔪𝑖 of type 𝜒𝑖 for some unramified character 𝜒𝑖 of 𝐹×;
• if 𝑖 ≠ 𝑗 , then 𝜒𝑖𝜒

−1
𝑗 is not of the form | · |𝑎 for any 𝑎 ∈ Z.

If we knew Theorem 2.1 (respectively, Theorem 2.2) for 𝜋′ and 𝜋𝑖 for 1 ≤ 𝑖 ≤ 𝑟 , by Proposition 5.2
and Corollary 4.7, we would obtain the same theorem for 𝜋. In other words, Theorems 2.1 and 2.2 are
reduced to the following two cases:
• The case where 𝜋 = 𝑍 (𝔪) with 𝔪 of type 𝜒 for some unramified character 𝜒 of 𝐹×;
• The case where 𝐿(𝑠, 𝜋) = 1.

We will deal with the first case in Section 6, and the second case will be treated in Sections 7 and 9.

6. Proof of the main theorems: the unipotent case

In this section, we prove Theorems 2.1 and 2.2 for 𝜋 = 𝑍 (𝔪) with 𝔪 of type 𝜒 for some unramified
character 𝜒 of 𝐹×.

6.1. Proof of Theorem 2.1 for ladder representations of type 𝝌

In this section, we prove Theorem 2.1 in the case where 𝜋 = 𝑍 ([𝑥1, 𝑦1]𝜒, . . . , [𝑥𝑡 , 𝑦𝑡 ]𝜒) ∈ Irr(𝐺𝑛) is of
type 𝜒 with an unramified character 𝜒 of 𝐹× such that 𝜋 is a ladder representation: that is, 𝑥1 > · · · > 𝑥𝑡
and 𝑦1 > · · · > 𝑦𝑡 . Recall from Example 2.5 (2) that

𝜆𝜋 =
𝑡∑
𝑖=2

(0, . . . , 0, 1, . . . , 1︸���︷︷���︸
max{𝑦𝑖−𝑥𝑖−1+2,0}

) ∈ Λ𝑛.

For [𝑀] ∈ |C𝑛 |, and for a partition n = (𝑛1, . . . , 𝑛𝑡 ) of n with 𝑛𝑖 ∈ Z, we set Nn (𝑀) to be the number
of n-admissible filtrations of M. Here, when 𝑛𝑖 < 0 for some i, we understand that Nn (𝑀) = 0.
Proposition 6.1. We have

dim(𝜋K𝑛, [𝑀 ] ) =
∑
𝑤 ∈𝑆𝑡

sgn(𝑤)Nn𝑤 (𝑀),

where n𝑤 = (𝑦1 − 𝑥𝑤 (1) + 1, . . . , 𝑦𝑡 − 𝑥𝑤 (𝑡) + 1).
Proof. By the determinantal formula [21], in the Grothendieck group of the category of representations
of 𝐺𝑛 of finite length, we have

𝜋 =
∑
𝑤 ∈𝑆𝑡

sgn(𝑤)𝑍 ([𝑥𝑤 (1) , 𝑦1]𝜒) × · · · × 𝑍 ([𝑥𝑤 (𝑡) , 𝑦𝑡 ]𝜒).

Here, when 𝑥 = 𝑦 + 1 (respectively, 𝑥 > 𝑦 + 1), we formally set 𝑍 ([𝑥, 𝑦]𝜒) = 1𝐺0 (respectively,
𝑍 ([𝑥, 𝑦]𝜒) = 0). Note that in [21], the determinantal formula was formulated using the Langlands
classification, but by taking the Zelevinsky dual, it translates to the statement above.

Recall that for a compact open subgroup K of 𝐺𝑛, the functor 𝜋 ↦→ 𝜋K is exact. Hence, by Proposi-
tion 5.2, we have

𝜋K𝑛, [𝑀 ] =
∑
𝑤 ∈𝑆𝑡

sgn(𝑤)

(
𝑡∏
𝑖=1

𝑍 ([𝑥𝑤 (𝑖) , 𝑦𝑖]𝜒)

)K𝑛, [𝑀 ]

=
∑
𝑤 ∈𝑆𝑡

sgn(𝑤)
∑

F𝑤
• 𝑀

𝑡⊗
𝑖=1

𝑍 ([𝑥𝑤 (𝑖) , 𝑦𝑖]𝜒)
K
𝑛𝑖 , [GrF𝑤

𝑖
𝑀 ] ,
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where F𝑤• 𝑀 runs over the set of n𝑤 -admissible filtrations with n𝑤 = (𝑦1 −𝑥𝑤 (1) +1, . . . , 𝑦𝑡 −𝑥𝑤 (𝑡) +1).
Here, if 𝑦𝑖 − 𝑥𝑤 (𝑖) + 1 < 0 for some i, we understand that there is no n𝑤 -admissible filtra-
tion. Since 𝑍 ([𝑥𝑤 (𝑖) , 𝑦𝑖]𝜒) is a character which is trivial on GL𝑦𝑖−𝑥𝑤 (𝑖) +1(𝔬), the dimension of

𝑍 ([𝑥𝑤 (𝑖) , 𝑦𝑖]𝜒)
K
𝑛𝑖 , [GrF𝑤

𝑖
𝑀 ] is always one if 𝑦𝑖 − 𝑥𝑤 (𝑖) + 1 ≥ 0. Hence we obtain the assertion. �

Set 𝑏 = max2≤𝑖≤𝑡 max{𝑦𝑖 − 𝑥𝑖−1 + 2, 0}. If 𝑏 = 0, then 𝜋 is unramified so that Theorem 2.1 is
trivial for 𝜋. Hence we may assume that 𝑏 > 0. Let [𝑀𝜋] ∈ |C𝑛 | be such that seq𝑛 ([𝑀𝜋]) = 𝜆𝜋 . Then
𝑀𝜋 � ⊕𝑏𝑖=1𝔬/𝔭

𝑎𝑖 for some 𝑎𝑖 ≥ 1.

Lemma 6.2. If [𝑀] ≤ [𝑀𝜋], for any filtration F•𝑀 , the 𝔬-module [GrF
𝑖 𝑀] can be generated by at most

b elements.

Proof. This follows from Lemma 4.3. �

Now we calculate the alternating sum on the right-hand side of Proposition 6.1. We will see that there
are many nontrivial cancellations. See Section 6.2 below for an explicit example of this calculation.

Choose 2 ≤ 𝑎 ≤ 𝑡 such that 𝑦𝑎 − 𝑥𝑎−1 + 2 = 𝑏. The following lemma is a key in computing the
alternating sum in the right-hand side of Proposition 6.1.

Lemma 6.3. Suppose that [𝑀] ≤ [𝑀𝜋].

(1) Let 𝑋1 be the subset of 𝑆𝑡 consisting of w such that 𝑤(𝑘) ≥ 𝑎 − 1 for any 𝑘 ≥ 𝑎. For 𝑤 ∈ 𝑆𝑡 \ 𝑋1,
take 1 ≤ 𝑖, 𝑗 ≤ 𝑎 − 1 such that 𝑤(𝑖) achieves the largest value and 𝑤( 𝑗) achieves the second-largest
value among {𝑤(1), . . . , 𝑤(𝑎 − 1)}, and set 𝑤′ = 𝑤(𝑖, 𝑗). Then 𝑤(𝑖), 𝑤( 𝑗) ≥ 𝑎 − 1, and the map
𝑤 ↦→ 𝑤′ is an involution on 𝑆𝑡 \ 𝑋1. Moreover, Nn𝑤 (𝑀) = Nn𝑤′ (𝑀). In particular,∑

𝑤 ∈𝑆𝑡\𝑋1

sgn(𝑤)Nn𝑤 (𝑀) = 0.

(2) Let 𝑋2 be the subset of 𝑋1 consisting of w such that 𝑤(𝑘) ≥ 𝑎 for any 𝑘 > 𝑎. For 𝑤 ∈ 𝑋1 \ 𝑋2,
take a unique 1 ≤ 𝑖 ≤ 𝑎 − 1 such that 𝑤(𝑖) ≥ 𝑎, and set 𝑤′ = 𝑤(𝑖, 𝑎). Then the map 𝑤 ↦→ 𝑤′ is an
involution on 𝑋1 \ 𝑋2. Moreover, Nn𝑤 (𝑀) = Nn𝑤′ (𝑀). In particular,∑

𝑤 ∈𝑋1\𝑋2

sgn(𝑤)Nn𝑤 (𝑀) = 0.

(3) Let 𝑆 (𝑎−1,𝑡−𝑎+1) be the subgroup of 𝑆𝑡 consisting of w such that 𝑤(𝑘) ≥ 𝑎 for any 𝑘 ≥ 𝑎, and set
𝑋3 = {(𝑎 − 1, 𝑤(𝑎))𝑤 | 𝑤 ∈ 𝑆 (𝑎−1,𝑡−𝑎+1) }. Then

𝑋2 = 𝑆 (𝑎−1,𝑡−𝑎+1) � 𝑋3.

(4) Let 𝑋4 be the subset of 𝑆𝑡 consisting of w such that 𝑤(𝑎) = 𝑎 − 1 and 𝑤(𝑘) < 𝑎 − 1 for some 𝑘 > 𝑎.
Then 𝑋4 ⊂ 𝑆𝑡 \ 𝑋1, and the involution in (1) preserves 𝑋4. Moreover, the disjoint union 𝑋3 � 𝑋4 is
equal to the subset of 𝑆𝑡 consisting of w such that 𝑤(𝑎) = 𝑎 − 1.

(5) For 𝑤 ∈ 𝑋4, take 1 ≤ 𝑖 ≤ 𝑎−1 such that 𝑤(𝑖) achieves the largest value among {𝑤(1), . . . , 𝑤(𝑎−1)},
in particular 𝑤(𝑖) ≥ 𝑎. Set 𝑤 = 𝑤(𝑎, 𝑖) and 𝑋5 = {𝑤 | 𝑤 ∈ 𝑋4}. Then 𝑋5 ⊂ 𝑆𝑡 \ 𝑋1, and the
involution in (1) preserves 𝑋5.

Proof. We prove (1). Let 𝑤 ∈ 𝑆𝑡 \ 𝑋1 and 1 ≤ 𝑖, 𝑗 ≤ 𝑎 − 1 be as in the statement. Note that i and j
depend on w, but the map 𝑤 ↦→ 𝑤′ gives a well-defined involution on 𝑆𝑡 \ 𝑋1. Since there exists 𝑘 ≥ 𝑎
such that 𝑤(𝑘) < 𝑎 − 1, we notice that 𝑤(𝑖), 𝑤( 𝑗) ≥ 𝑎 − 1. Hence

min{𝑦𝑖 − 𝑥𝑤 (𝑖) + 1, 𝑦 𝑗 − 𝑥𝑤 ( 𝑗) + 1, 𝑦𝑖 − 𝑥𝑤 ( 𝑗) + 1, 𝑦 𝑗 − 𝑥𝑤 (𝑖) + 1} ≥ 𝑦𝑎 − 𝑥𝑎−1 + 2 = 𝑏.

By Lemma 6.2, we see that Nn𝑤 (𝑀) = Nn𝑤′ (𝑀). Since sgn(𝑤′) = −sgn(𝑤), the last part follows.
Hence we obtain (1).
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We prove (2). When 𝑤 ∈ 𝑋1 \ 𝑋2, there exists 𝑘 > 𝑎 such that 𝑤(𝑘) = 𝑎 − 1. In particular, 𝑤(𝑎) ≥ 𝑎.
Hence the map 𝑤 ↦→ 𝑤′ gives a well-defined involution on 𝑋1 \ 𝑋2. By the same argument as in (1), we
obtain (2).

Assertions (3) are (4) are obvious from the definitions.
We prove (5). Let 𝑤 ∈ 𝑋4. Then 𝑤(𝑘) = 𝑤(𝑘) < 𝑎 − 1 for some 𝑘 > 𝑎 so that 𝑤 ∉ 𝑋1. Take

1 ≤ 𝑖 ≤ 𝑎 − 1 as in the statement so that 𝑤 = 𝑤(𝑎, 𝑖). Note that 𝑤(𝑎) = 𝑤(𝑖) ≥ 𝑎. Let 1 ≤ 𝑗1, 𝑗2 ≤ 𝑎 − 1
be such that 𝑤( 𝑗1) (respectively, 𝑤( 𝑗2)) achieves the largest (respectively, the second-largest) value
among {𝑤(1), . . . , 𝑤(𝑎 − 1)}. Note that 𝑎 ≤ 𝑤( 𝑗1) < 𝑤(𝑖) and 𝑤( 𝑗2) ≥ 𝑎 − 1. If 𝑤( 𝑗2) ≥ 𝑎, then
𝑗1, 𝑗2, 𝑖, 𝑎 are all distinct from each other. In this case,

(𝑤)′ = 𝑤( 𝑗1, 𝑗2) = 𝑤(𝑎, 𝑖) ( 𝑗1, 𝑗2) = 𝑤( 𝑗1, 𝑗2) (𝑎, 𝑖) = �𝑤( 𝑗1, 𝑗2).

Hence we have (𝑤)′ ∈ 𝑋5. If 𝑤( 𝑗2) = 𝑎 − 1, then 𝑗2 = 𝑖. In this case,

(𝑤)′ = 𝑤( 𝑗1, 𝑖) = 𝑤(𝑎, 𝑖) ( 𝑗1, 𝑖) = 𝑤( 𝑗1, 𝑖) (𝑎, 𝑗1) = 𝑤′(𝑎, 𝑗1) = 𝑤′.

Hence we again have (𝑤)′ ∈ 𝑋5. �

Now we prove Theorem 2.1 for a ladder representation 𝜋 = 𝑍 ([𝑥1, 𝑦1]𝜒, . . . , [𝑥𝑡 , 𝑦𝑡 ]𝜒) of type 𝜒
with unramified character 𝜒.

Proof of Theorem 2.1 for ladder representations of type 𝜒. When 𝑏 = 0, since 𝜋 is unramified, the
assertion is trivial. From now on, we assume that 𝑏 > 0. In particular, one has 𝑡 ≥ 2.

Set

𝜋′ = 𝑍 ([𝑥1, 𝑦1]𝜒, . . . , [𝑥𝑎−2, 𝑦𝑎−2]𝜒, [𝑥𝑎, 𝑦𝑎−1]𝜒, [𝑥𝑎+1, 𝑦𝑎+1]𝜒, . . . , [𝑥𝑡 , 𝑦𝑡 ]𝜒).

This is a ladder representation of some 𝐺𝑛′ . We claim that

dim(𝜋K𝑛, [𝑀 ] ) =
∑
𝑀 ′ ⊂𝑀

dim(𝜋′K𝑛′, [𝑀/𝑀′ ] ),

where 𝑀 ′ runs over the set of 𝔬-submodules of M generated by exactly b elements.
Suppose for a moment that this claim is true. Note that

𝜆𝜋 = 𝜆𝜋′ + (0, . . . , 0, 1, . . . , 1︸���︷︷���︸
𝑏

).

By induction on t, we may assume that we have dim(𝜋′K𝑛′, [𝑀/𝑀′ ] ) = 0 if [𝑀/𝑀 ′] < [𝑀𝜋′ ]. In particular,
dim(𝜋K𝑛, [𝑀 ] ) = 0 if [𝑀] < [𝑀𝜋]. Moreover, when [𝑀] = [𝑀𝜋], by Corollary 4.7, there exists a unique
𝔬-submodule 𝑀 ′ of M generated by exactly b elements such that [𝑀/𝑀 ′] = [𝑀𝜋′ ]. Hence we have∑

𝑀 ′ ⊂𝑀

dim(𝜋′K𝑛′, [𝑀/𝑀′ ] ) = 1.

Therefore, the claim implies that

dim(𝜋K𝑛, [𝑀 ] ) =

{
1 if [𝑀] = [𝑀𝜋],

0 if [𝑀] < [𝑀𝜋] .

For the rest of the proof, we show the claim.
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Let 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5 ⊂ 𝑆𝑡 be as in Lemma 6.3. We denote the inverse map of 𝑆 (𝑎−1,𝑡−𝑎+1) � 𝑤 ↦→

(𝑎 − 1, 𝑤(𝑎))𝑤 ∈ 𝑋3 by 𝑋3 � 𝑤 ↦→ 𝑤 ∈ 𝑆 (𝑎−1,𝑡−𝑎+1) . Then by Lemma 6.3 (1)–(3), we have

dim(𝜋K𝑛, [𝑀 ] ) =
∑
𝑤 ∈𝑋2

sgn(𝑤)Nn𝑤 (𝑀)

=
∑
𝑤 ∈𝑋3

sgn(𝑤)
(
Nn𝑤

(𝑀) −Nn𝑤 (𝑀)
)
.

For 𝑤 ∈ 𝑋3, there exists 1 ≤ 𝑖0 ≤ 𝑎−1 uniquely such that 𝑤(𝑖0) = 𝑤(𝑎) ≥ 𝑎. Since 𝑤(𝑎) = 𝑤(𝑖0) = 𝑎−1,
we have

• min{𝑦𝑖0 − 𝑥𝑤 (𝑖0) + 1, 𝑦𝑖0 − 𝑥𝑤 (𝑖0) + 1} ≥ 𝑦𝑎 − 𝑥𝑎−1 + 2 = 𝑏;
• 𝑦𝑎 − 𝑥𝑤 (𝑎) + 1 ≥ 𝑏, whereas 𝑦𝑎 − 𝑥𝑤 (𝑎) + 1 = 𝑏 − 1.

By Lemma 6.2, Nn𝑤
(𝑀) −Nn𝑤 (𝑀) is equal to the number of filtrations

0 = F0𝑀 ⊂ · · · ⊂ F𝑡𝑀 = 𝑀

of M by 𝔬-submodules such that

• GrF
𝑖 𝑀 is generated by at most 𝑦𝑖 − 𝑥𝑤 (𝑖) + 1 elements for 𝑖 ≠ 𝑎;

• GrF
𝑎𝑀 is generated by exactly b elements.

By Lemma 4.13, this number is equal to the number of pairs (𝑀 ′, F′
• (𝑀/𝑀 ′)), where 𝑀 ′ ⊂ 𝑀 is an

𝔬-submodule generated by exactly b elements and F′
• (𝑀/𝑀 ′) is a filtration

0 = F′
0 (𝑀/𝑀 ′) ⊂ · · · ⊂ F′

𝑎−1 (𝑀/𝑀 ′) ⊂ F′
𝑎+1 (𝑀/𝑀 ′) ⊂ · · · ⊂ F′

𝑡 (𝑀/𝑀 ′) = 𝑀/𝑀 ′

of 𝑀/𝑀 ′ by 𝔬-submodules such that GrF′

𝑖 (𝑀/𝑀 ′) is generated by at most 𝑦𝑖 − 𝑥𝑤 (𝑖) + 1 elements for
𝑖 ≠ 𝑎. Here, we set GrF′

𝑖 (𝑀/𝑀 ′) = F′
𝑖 (𝑀/𝑀 ′)/F′

𝑖−1(𝑀/𝑀 ′) unless 𝑖 = 𝑎, 𝑎 + 1, and GrF′

𝑎+1(𝑀/𝑀 ′) =
F′
𝑎+1 (𝑀/𝑀 ′)/F′

𝑎−1(𝑀/𝑀 ′). Therefore,∑
𝑤 ∈𝑋2

sgn(𝑤)Nn𝑤 (𝑀) =
∑
𝑤 ∈𝑋3

∑
𝑀 ′ ⊂𝑀

sgn(𝑤)Nn′
𝑤
(𝑀/𝑀 ′),

where 𝑀 ′ runs over the set of 𝔬-submodules of M generated by exactly b elements, and we set n′
𝑤 =

(𝑛𝑤,1, . . . , 𝑛𝑤,𝑎−1, 𝑛𝑤,𝑎+1, . . . , 𝑛𝑤,𝑡 ) with 𝑛𝑤,𝑖 = 𝑦𝑖 − 𝑥𝑤 (𝑖) + 1 for 𝑖 ≠ 𝑎.
Note that 𝑋4 ∩ 𝑋5 = ∅. By the same argument as above, we have∑

𝑤 ∈𝑋4�𝑋5

sgn(𝑤)Nn𝑤 (𝑀) =
∑
𝑤 ∈𝑋4

sgn(𝑤)
(
Nn𝑤

(𝑀) −Nn𝑤 (𝑀)
)

=
∑
𝑤 ∈𝑋4

∑
𝑀 ′ ⊂𝑀

sgn(𝑤)Nn′
𝑤
(𝑀/𝑀 ′),

where 𝑀 ′ runs over the set of 𝔬-submodules of M generated by exactly b elements, and n′
𝑤 is as above.

However, by Lemma 6.3 (1), (4), (5), we see that the left-hand side is zero. Therefore,

dim(𝜋K𝑛, [𝑀 ] ) =
∑
𝑀 ′ ⊂𝑀

∑
𝑤 ∈𝑋3�𝑋4

sgn(𝑤)Nn′
𝑤
(𝑀/𝑀 ′).

Next, we consider the alternating sum

dim(𝜋′K𝑛′, [𝑀/𝑀′ ] ) =
∑

𝑤′ ∈𝑆𝑡−1

sgn(𝑤′)Nn′
𝑤′
(𝑀/𝑀 ′).
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Here, we regard 𝑆𝑡−1 as the set of bijective maps

𝑤′ : {1, . . . , 𝑎 − 1, 𝑎 + 1, . . . , 𝑡} → {1, . . . , 𝑎 − 2, 𝑎, . . . , 𝑡}

by identifying 𝑎−1 and a. For𝑤 ∈ 𝑋3�𝑋4, define𝑤′ to be the restriction of w to {1, . . . , 𝑎−1, 𝑎+1, . . . , 𝑡}.
Then we have a bijective map 𝑋3 � 𝑋4 → 𝑆𝑡−1 since 𝑋3 � 𝑋4 is the subset of 𝑆𝑡 consisting of w such that
𝑤(𝑎) = 𝑎−1. Note that for 𝑤 ∈ 𝑋3�𝑋4, the sign sgn(𝑤′) of 𝑤′ as an element of 𝑆𝑡−1 is equal to sgn(𝑤).

Therefore,

dim(𝜋K𝑛, [𝑀 ] ) =
∑
𝑀 ′ ⊂𝑀

∑
𝑤 ∈𝑋3�𝑋4

sgn(𝑤)Nn′
𝑤
(𝑀/𝑀 ′)

=
∑
𝑀 ′ ⊂𝑀

∑
𝑤′ ∈𝑆𝑡−1

sgn(𝑤′)Nn′
𝑤′
(𝑀/𝑀 ′)

=
∑
𝑀 ′ ⊂𝑀

dim(𝜋′K𝑛′, [𝑀/𝑀′ ] ).

Hence we obtain the claim. This completes the proof of Theorem 2.1 for ladder representations of
type 𝜒. �

6.2. Example of calculation of the alternating sum

To understand the proof of Theorem 2.1 for ladder representations of type 𝜒, the following explicit
example may be helpful.

Example 6.4. For simplicity, we drop 𝜒 from the notation. Let us consider a ladder representation

𝜋 = 𝑍 ([5, 7], [3, 6], [2, 5], [0, 3]) ∈ Irr(𝐺15).

Then 𝜆𝜋 = (0, . . . , 0, 1, 3, 3, 3) ∈ Λ15 so that 𝑀𝜋 = 𝔬/𝔭 ⊕ (𝔬/𝔭3)⊕3. By the determinantal formula, we
have

𝜋 = 𝑍 ([5, 7]) × 𝑍 ([3, 6]) × 𝑍 ([2, 5]) × 𝑍 ([0, 3]) − 𝑍 ([3, 7]) × 𝑍 ([5, 6]) × 𝑍 ([2, 5]) × 𝑍 ([0, 3])
− 𝑍 ([5, 7]) × 𝑍 ([3, 6]) × 𝑍 ([0, 5]) × 𝑍 ([2, 3]) + 𝑍 ([3, 7]) × 𝑍 ([5, 6]) × 𝑍 ([0, 5]) × 𝑍 ([2, 3])
− 𝑍 ([5, 7]) × 𝑍 ([2, 6]) × 𝑍 ([3, 5]) × 𝑍 ([0, 3]) + 𝑍 ([2, 7]) × 𝑍 ([5, 6]) × 𝑍 ([3, 5]) × 𝑍 ([0, 3])
+ 𝑍 ([5, 7]) × 𝑍 ([0, 6]) × 𝑍 ([3, 5]) × 𝑍 ([2, 3]) − 𝑍 ([0, 7]) × 𝑍 ([5, 6]) × 𝑍 ([3, 5]) × 𝑍 ([2, 3])
− 𝑍 ([5, 7]) × 𝑍 ([0, 6]) × 𝑍 ([2, 5]) × 𝑍 ([3, 3]) + 𝑍 ([5, 7]) × 𝑍 ([2, 6]) × 𝑍 ([0, 5]) × 𝑍 ([3, 3])
+ 𝑍 ([0, 7]) × 𝑍 ([5, 6]) × 𝑍 ([2, 5]) × 𝑍 ([3, 3]) − 𝑍 ([2, 7]) × 𝑍 ([5, 6]) × 𝑍 ([0, 5]) × 𝑍 ([3, 3])
− 𝑍 ([2, 7]) × 𝑍 ([3, 6]) × 𝑍 ([5, 5]) × 𝑍 ([0, 3]) + 𝑍 ([3, 7]) × 𝑍 ([2, 6]) × 𝑍 ([5, 5]) × 𝑍 ([0, 3])
+ 𝑍 ([0, 7]) × 𝑍 ([3, 6]) × 𝑍 ([5, 5]) × 𝑍 ([2, 3]) − 𝑍 ([3, 7]) × 𝑍 ([0, 6]) × 𝑍 ([5, 5]) × 𝑍 ([2, 3])
+ 𝑍 ([2, 7]) × 𝑍 ([0, 6]) × 𝑍 ([5, 5]) × 𝑍 ([3, 3]) − 𝑍 ([0, 7]) × 𝑍 ([2, 6]) × 𝑍 ([5, 5]) × 𝑍 ([3, 3])
+ 𝑍 ([2, 7]) × 𝑍 ([3, 6]) × 𝑍 ([0, 5]) × 𝑍 ([5, 3]) − 𝑍 ([3, 7]) × 𝑍 ([2, 6]) × 𝑍 ([0, 5]) × 𝑍 ([5, 3])
− 𝑍 ([0, 7]) × 𝑍 ([3, 6]) × 𝑍 ([2, 5]) × 𝑍 ([5, 3]) + 𝑍 ([3, 7]) × 𝑍 ([0, 6]) × 𝑍 ([2, 5]) × 𝑍 ([5, 3])
+ 𝑍 ([0, 7]) × 𝑍 ([2, 6]) × 𝑍 ([3, 5]) × 𝑍 ([5, 3]) − 𝑍 ([2, 7]) × 𝑍 ([0, 6]) × 𝑍 ([3, 5]) × 𝑍 ([5, 3]).

By Proposition 5.2, we have

dim(𝜋K15,𝜆𝜋 )

= N(3,4,4,4) (𝑀𝜋) −N(5,2,4,4) (𝑀𝜋) −N(3,4,6,2) (𝑀𝜋) +N(5,2,6,2) (𝑀𝜋)

−N(3,5,3,4) (𝑀𝜋) +N(6,2,3,4) (𝑀𝜋) +N(3,7,3,2) (𝑀𝜋) −N(8,2,3,2) (𝑀𝜋)
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−N(3,5,4,1) (𝑀𝜋) +N(3,5,6,1) (𝑀𝜋) +N(8,2,4,1) (𝑀𝜋) −N(6,2,6,1) (𝑀𝜋)

−N(6,4,1,4) (𝑀𝜋) +N(5,5,1,4) (𝑀𝜋) +N(8,4,1,2) (𝑀𝜋) −N(5,7,1,2) (𝑀𝜋)

+N(6,7,1,1) (𝑀𝜋) −N(8,5,1,1) (𝑀𝜋) +N(6,4,6,−1) (𝑀𝜋) −N(5,5,6,−1) (𝑀𝜋)

−N(8,4,4,−1) (𝑀𝜋) +N(5,7,4,−1) (𝑀𝜋) +N(8,5,3,−1) (𝑀𝜋) −N(6,7,3,−1) (𝑀𝜋).

By Lemma 6.2, we have

dim(𝜋K15,𝜆𝜋 ) = N(3,4,4,4) (𝑀𝜋) −N(4,2,4,4) (𝑀𝜋) −N(3,4,4,2) (𝑀𝜋) +N(4,2,4,2) (𝑀𝜋)

−N(3,4,3,4) (𝑀𝜋) +N(4,2,3,4) (𝑀𝜋) +N(3,4,3,2) (𝑀𝜋) −N(4,2,3,2) (𝑀𝜋)

−N(3,4,4,1) (𝑀𝜋) +N(3,4,4,1) (𝑀𝜋) +N(4,2,4,1) (𝑀𝜋) −N(4,2,4,1) (𝑀𝜋)

−N(4,4,1,4) (𝑀𝜋) +N(4,4,1,4) (𝑀𝜋) +N(4,4,1,2) (𝑀𝜋) −N(4,4,1,2) (𝑀𝜋)

+N(4,4,1,1) (𝑀𝜋) −N(4,4,1,1) (𝑀𝜋)

= N(3,4,4,4) (𝑀𝜋) −N(4,2,4,4) (𝑀𝜋) −N(3,4,4,2) (𝑀𝜋) +N(4,2,4,2) (𝑀𝜋)

−N(3,4,3,4) (𝑀𝜋) +N(4,2,3,4) (𝑀𝜋) +N(3,4,3,2) (𝑀𝜋) −N(4,2,3,2) (𝑀𝜋).

Note that if a filtration F•𝑀𝜋 satisfies that GrF
3𝑀𝜋 is generated by exactly 4 elements, then GrF

𝑖 𝑀𝜋 for
𝑖 = 1, 2, 4 can be generated by at most 3 elements by Lemmas 4.13, 4.3 and 6.2. Hence

N(3,4,4,4) (𝑀𝜋) −N(3,4,3,4) (𝑀𝜋) = N(3,3,4,3) (𝑀𝜋) −N(3,3,3,3) (𝑀𝜋),

N(4,2,4,4) (𝑀𝜋) −N(4,2,3,4) (𝑀𝜋) = N(3,2,4,3) (𝑀𝜋) −N(3,2,3,3) (𝑀𝜋),

N(3,4,4,2) (𝑀𝜋) −N(3,4,3,2) (𝑀𝜋) = N(3,3,4,2) (𝑀𝜋) −N(3,3,3,2) (𝑀𝜋),

N(4,2,4,2) (𝑀𝜋) −N(4,2,3,2) (𝑀𝜋) = N(3,2,4,2) (𝑀𝜋) −N(3,2,3,2) (𝑀𝜋).

Therefore,

dim(𝜋K15,𝜆𝜋 ) = [(N(3,3,4,3) (𝑀𝜋) −N(3,3,3,3) (𝑀𝜋)) − (N(3,2,4,3) (𝑀𝜋) −N(3,2,3,3) (𝑀𝜋))]

− [(N(3,3,4,2) (𝑀𝜋) −N(3,3,3,2) (𝑀𝜋)) − (N(3,2,4,2) (𝑀𝜋) −N(3,2,3,2) (𝑀𝜋))] .

The right-hand side is equal to the number of filtrations

0 = F0𝑀𝜋 ⊂ F1𝑀𝜋 ⊂ F2𝑀𝜋 ⊂ F3𝑀𝜋 ⊂ F4𝑀𝜋 = 𝑀𝜋

such that

• GrF
2𝑀𝜋 is generated by exactly 3 elements;

• GrF
3𝑀𝜋 is generated by exactly 4 elements;

• GrF
4𝑀𝜋 is generated by exactly 3 elements.

Since 𝑀𝜋 = 𝔬/𝔭 ⊕ (𝔬/𝔭3)⊕3, such a filtration exists uniquely and is given by

F1𝑀𝜋 = 0, F2𝑀𝜋 = (𝔭2/𝔭3)⊕3, F3𝑀𝜋 = 𝔬/𝔭 ⊕ (𝔭1/𝔭3)⊕3, F4𝑀𝜋 = 𝑀𝜋 .

Therefore, we conclude that dim(𝜋K15,𝜆𝜋 ) = 1, as desired.

6.3. Proof of Theorem 2.1 for general 𝒁(𝖒) of type 𝝌

Now we consider 𝜋 = 𝑍 (𝔪) with 𝔪 of type 𝜒 for some unramified character 𝜒 of 𝐹×.

Lemma 6.5. Let 𝔪1 and 𝔪2 be multisegments. Then 𝑍 (𝔪1 +𝔪2) appears as a subquotient of 𝑍 (𝔪1) ×
𝑍 (𝔪2) with multiplicity one.
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Proof. See [38, Proposition 2.3] (or [22, Proposition 3.5 (5)]). �

Recall that when 𝔪 = Δ1 + · · · + Δ𝑟 , we set Card(𝔪) = 𝑟 .

Lemma 6.6. Let 𝔪, 𝔪1 and 𝔪2 be multisegments. Suppose that 𝑍 (𝔪) appears as a subquotient of
𝑍 (𝔪1) × 𝑍 (𝔪2). Then 𝑍 (𝔪−) appears as a subquotient of 𝑍 (𝔪−

1 ) × 𝑍 (𝔪−
2 ) if and only if Card(𝔪) =

Card(𝔪1) + Card(𝔪2).

Proof. Suppose that 𝑍 (𝔪−) appears as a subquotient of 𝑍 (𝔪−
1 ) × 𝑍 (𝔪−

2 ). By considering cuspidal
supports, we have 𝑙 (𝔪−) = 𝑙 (𝔪−

1 ) + 𝑙 (𝔪−
2 ). For a similar reason, we have 𝑙 (𝔪) = 𝑙 (𝔪1) + 𝑙 (𝔪2). Since

𝑙 (𝔪) = 𝑙 (𝔪−) + Card(𝔪), we have the desired equality Card(𝔪) = Card(𝔪1) + Card(𝔪2).
Conversely, suppose that the equality Card(𝔪) = Card(𝔪1) +Card(𝔪2) holds. We set 𝑐 = Card(𝔪).

Then the cth derivatives of 𝑍 (𝔪) and 𝑍 (𝔪1) × 𝑍 (𝔪2) are equal to 𝑍 (𝔪−) and 𝑍 (𝔪−
1 ) × 𝑍 (𝔪−

2 ),
respectively. Since the cth derivative is an exact functor (compare to [4, 3.2, 3.5]), the assertion
follows. �

Proof of Theorem 2.1 for 𝜋 = 𝑍 (𝔪) of type 𝜒. Let 𝜋 = 𝑍 (𝔪) be an irreducible representation of 𝐺𝑛,
where 𝔪 = Δ1 + · · · +Δ𝑟 is a multisegment of type 𝜒 for some unramified character 𝜒 of 𝐹×. Let 𝑡𝔪 be
the number of pairs of linked segments in {Δ1, . . . ,Δ𝑟 }. Note that 𝑡𝔪 ≤

(𝑙 (𝔪)
2
)

since 𝑟 ≤ 𝑙 (𝔪).
We prove the claim by induction on the element (𝑙 (𝔪), 𝑡𝔪) in the set 𝑆 = {(𝑙, 𝑡) ∈ Z2

≥0 | 𝑡 ≤
(𝑙
2
)
}.

Here we endow this set with the following total order. We have (𝑙, 𝑡) ≤ (𝑙 ′, 𝑡 ′) if and only if we have
either 𝑙 < 𝑙 ′, or 𝑙 = 𝑙 ′ and 𝑡 ≤ 𝑡 ′. Note that for a fixed element (𝑙, 𝑡) ∈ 𝑆, there are only finitely many
elements in S that are less than (𝑙, 𝑡).

Recall that we have a decomposition 𝔪 = 𝔪max +𝔪max as in Section 2.3. We note that 𝑍 (𝔪max) is a
ladder representation. In particular, if 𝔪 = 𝔪max, then we have the claim for 𝔪 (Section 6.1).

From now on, we assume that 𝔪max ≠ 𝔪. Set

Π = 𝑍 (𝔪max) × 𝑍 (𝔪max).

Since 𝑙 (𝔪max) < 𝑙 (𝔪), it follows from Proposition 5.2, Corollary 2.8 and the inductive hypothesis that

dim(ΠK𝑛,𝜆 ) =

{
1 if 𝜆 = 𝜆𝔪,

0 if 𝜆 < 𝜆𝔪 .

It follows from Lemma 6.5 that 𝑍 (𝔪) appears as a subquotient of Π. This implies that theK𝑛,𝜆-invariant
part of 𝑍 (𝔪) is equal to zero if 𝜆 < 𝜆𝔪. Hence it remains to show that the K𝑛,𝜆𝔪 -invariant part of 𝑍 (𝔪)

is one-dimensional. To do this, we may assume that Π is reducible, which implies that 𝑡𝔪 > 0.
For an irreducible representation 𝜋 of 𝐺𝑛 and a representation 𝜎 of 𝐺𝑛 of finite length, we write

𝜋 � 𝜎 if 𝜋 appears as a subquotient of 𝜎. Let 𝔪′ ≠ 𝔪 be a multisegment, and suppose that 𝑍 (𝔪′) � Π.
It follows from [42, 7.1 Theorem] that 𝔪′ is obtained by successively applying elementary operations
to 𝔪. In particular, we have 𝑙 (𝔪′) = 𝑙 (𝔪) and 𝑡𝔪′ < 𝑡𝔪. Hence, by the inductive hypothesis, we have

dim(𝑍 (𝔪′)K𝑛,𝜆′ ) =

{
1 if 𝜆′ = 𝜆𝔪′ ,

0 if 𝜆′ < 𝜆𝔪′ .

Note that this implies 𝜆𝔪′ ≥ 𝜆𝔪. In fact, if 𝜆𝔪′ < 𝜆𝔪, then the K𝑛,𝜆𝔪′ -invariant part of Π would be
nonzero, which is a contradiction.

Now we claim that 𝜆𝔪′ > 𝜆𝔪. For a proof by contradiction, suppose that 𝜆𝔪′ = 𝜆𝔪. Since 𝑙 (𝔪ram) =
|𝜆𝔪 | and 𝑙 (𝔪′ram) = |𝜆𝔪′ |, by Proposition 2.7, we have

𝑙 (𝔪′ram) = 𝑙 (𝔪ram) = 𝑙 ((𝔪max)
ram) + 𝑙 ((𝔪max)ram).
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In particular, we have

Card(𝔪′♯) = 𝑙 (𝔪′) − 𝑙 (𝔪′ram) = 𝑙 (𝔪) − 𝑙 (𝔪ram) = Card(𝔪♯).

By our assumption, we have 𝑍 (𝔪), 𝑍 (𝔪′) � 𝑍 (𝔪max) × 𝑍 (𝔪max). Proposition 2.7 together with
Lemma 6.5 implies that 𝑍 (𝔪ram) � 𝑍 ((𝔪max)

ram) × 𝑍 ((𝔪max)ram). By taking the Zelevinsky duals, we
have 𝑍 (𝔪♯), 𝑍 (𝔪′♯) � 𝑍 ((𝔪max)

♯) × 𝑍 ((𝔪max)♯), and 𝑍 ((𝔪♯)−) � 𝑍 (((𝔪max)
♯)−) × 𝑍 (((𝔪max)♯)−).

Hence it follows from Lemma 6.6 that

Card(𝔪♯) = Card((𝔪max)
♯) + Card((𝔪max)♯).

Since we have seen that Card(𝔪′♯) = Card(𝔪♯), it again follows from Lemma 6.6 that 𝑍 ((𝔪′♯)−) �

𝑍 (((𝔪max)
♯)−) × 𝑍 (((𝔪max)♯)−). Again by taking the Zelevinsky duals, we see that

𝑍 (𝔪′ram) � 𝑍 ((𝔪max)
ram) × 𝑍 ((𝔪max)ram).

This implies that 𝔪′ram is obtained from 𝔪ram = (𝔪max)
ram + (𝔪max)ram by a successive chain of

elementary operations.
Since we have assumed that 𝜆𝔪′ = 𝜆𝔪, it follows that 𝔪′ram = 𝔪ram and hence (𝔪′♯)− = (𝔪♯)−.

Observe that for any integer 𝑎 ∈ Z, the number of segments in 𝔪′ that contain 𝜒 | · |𝑎 is equal to the
number of segments in 𝔪 that contain 𝜒 | · |𝑎. Hence the equality (𝔪′♯)− = (𝔪♯)− implies the equality
𝔪′♯ = 𝔪♯. By taking the Zelevinsky duals, we obtain the equality 𝔪′ = 𝔪, which is a contradiction.
This completes the proof of the inequality 𝜆𝔪′ > 𝜆𝔪.

Since 𝔪′ ≠ 𝔪 is an arbitrary multisegment satisfying 𝔪′ � Π, we see that the equation
dim(ΠK𝑛,𝜆𝔪 ) = 1 implies dim(𝑍 (𝔪)K𝑛,𝜆𝔪 ) = 1. This completes the proof. �

6.4. Proof of Theorem 2.2 for 𝒁(𝖒) of type 𝝌

In this section, we give a proof of Theorem 2.2 for 𝜋 = 𝑍 (𝔪) with 𝔪 of type 𝜒, where 𝜒 is an unramified
character of 𝐹×.

We consider the polynomial ring 𝑅 = Z[𝑥1, 𝑥2, . . .] in countably many variables {𝑥𝑖}𝑖≥1. For an 𝔬-
module M of finite length, we define a homomorphism 𝜉𝑀 : 𝑅 → Z of Z-modules as follows. We set
𝜉𝑀 (1) = 1 if 𝑀 = 0 and 𝜉𝑀 (1) = 0 otherwise. For a monomial 𝑥𝑚1 · · · 𝑥𝑚𝑠 in R, we define its image by
𝜉𝑀 to be the number of increasing filtrations

0 = F0𝑀 ⊂ · · · ⊂ F𝑠𝑀 = 𝑀

on M by 𝔬-submodules such that for 𝑖 = 1, . . . , 𝑠, the ith graded piece GrF
𝑖 𝑀 is generated exactly by 𝑚𝑖

elements. By Lemma 4.13, the homomorphism 𝜉𝑀 is well-defined.
For an integer 𝑚 ≥ 0, we set

𝑦𝑚 = 1 + 𝑥1 + · · · + 𝑥𝑚 ∈ 𝑅.

Lemma 6.7. Let M be an 𝔬-module of finite length. Then the integer 𝜉𝑀 (𝑦𝑚1 · · · 𝑦𝑚𝑠 ) is equal to the
number N(𝑚1 ,...,𝑚𝑠) (𝑀) of (𝑚1, . . . , 𝑚𝑠)-admissible filtrations on M.
Proof. This is immediate from the definition of the homomorphism 𝜉𝑀 and the definition of
(𝑚1, . . . , 𝑚𝑠)-admissible filtrations. �

By setting deg 𝑥𝑚 = 𝑚 for 𝑚 ≥ 1, we regard R as a graded ring. For any integer 𝑚 ≥ 0, let 𝑅𝑚 denote
the degree-m-part of R, and set

𝐼𝑚 =
⊕
𝑖≥𝑚

𝑅𝑖 .

Then 𝐼𝑚 is an ideal of R, and we have 𝐼𝑚 · 𝐼𝑚′ ⊂ 𝐼𝑚+𝑚′ .
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Lemma 6.8. Let 𝑚 ≥ 0 be an integer, and let M be an 𝔬-module of length less than m. Then we have
𝜉𝑀 (𝐼𝑚) = 0.

Proof. Let 𝑓 = 𝑥𝑚1 · · · 𝑥𝑚𝑠 be an arbitrary monomial that belongs to 𝐼𝑚. It suffices to show 𝜉𝑀 ( 𝑓 ) = 0.
By definition of 𝐼𝑚, we have 𝑚1 + · · · + 𝑚𝑠 ≥ 𝑚. Suppose that there exists an increasing filtration

0 = F0𝑀 ⊂ · · · ⊂ F𝑠𝑀 = 𝑀

on M by 𝔬-submodules such that for 𝑖 = 1, . . . , 𝑠, the ith graded piece GrF
𝑖 𝑀 is generated exactly by 𝑚𝑖

elements. Then since GrF
𝑖 𝑀 is of length at least 𝑚𝑖 , the length of M is at least 𝑚1 + · · · +𝑚𝑠 ≥ 𝑚, which

is a contradiction. Hence by the definition of 𝜉𝑀 , we have 𝜉𝑀 ( 𝑓 ) = 0 as desired. �

Now we prove Theorem 2.2 for 𝜋 = 𝑍 (𝔪) with 𝔪 of type 𝜒.

Proof of Theorem 2.2 for 𝜋 = 𝑍 (𝔪) of type 𝜒. Let us write

𝔪♯ = Δ1 + · · · + Δ𝑠 .

For 𝑖 = 1, . . . , 𝑠, we set 𝜋𝑖 = 𝑍 (Δ♯𝑖 ). Let n and 𝑛𝑖 be such that 𝜋 ∈ Irr(𝐺𝑛) and 𝜋𝑖 ∈ Irr(𝐺𝑛𝑖 ). Then 𝜋
appears as a subquotient of 𝜋1×· · ·×𝜋𝑠 , and we have |𝜆𝜋 | = |𝜆𝜋1 |+· · ·+ |𝜆𝜋𝑠 |. Let 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ Λ𝑛
be such that |𝜆 | < |𝜆𝜋 |. Then 𝜋K𝑛,𝜆 is a subquotient of (𝜋1 × · · · × 𝜋𝑠)

K𝑛,𝜆 . Let 𝑀 = 𝔬/𝔭𝜆1 ⊕ · · · ⊕𝔬/𝔭𝜆𝑛 .
By Proposition 5.2, we have

(𝜋1 × · · · × 𝜋𝑠)
K𝑛,𝜆 �

⊕
F•𝑀

𝜋
K
𝑛1 , [GrF1 𝑀 ]

1 ⊗ · · · ⊗ 𝜋
K
𝑛𝑠 , [GrF𝑠𝑀 ]

𝑟 ,

where F•𝑀 runs over the set of increasing filtrations

0 = F0𝑀 ⊂ · · · ⊂ F𝑠𝑀 = 𝑀

on M by 𝔬-submodules such that for 𝑖 = 1, . . . , 𝑠, the 𝔬-module GrF
𝑖 𝑀 = F𝑖𝑀/F𝑖−1𝑀 is generated by at

most 𝑛𝑖 elements. Fix such a filtration F•𝑀 . Since

|𝜆𝜋1 | + · · · + |𝜆𝜋𝑠 | = |𝜆𝜋 |

> |𝜆 | = length𝔬𝑀 = length𝔬GrF
1𝑀 + · · · + length𝔬GrF

𝑠𝑀,

we have |𝜆𝜋𝑖 | > length𝔬GrF
𝑖 𝑀 for some i. If we knew the claim for 𝜋𝑖 for any 𝑖 = 1, . . . , 𝑠, then we

would have (𝜋1 × · · · × 𝜋𝑠)
K𝑛,𝜆 = 0, which implies that 𝜋K𝑛,𝜆 = 0. Hence we reduce the claim to the

case where 𝑠 = 1.
From now on, we assume that 𝑠 = 1. Let us write Δ1 = [1, 𝑛]𝜒 for some unramified character 𝜒.

Then 𝜋 = 𝑍 ([1, 1]𝜒 + · · · + [𝑛, 𝑛]𝜒) is an unramified twist of the Steinberg representation. By Tadić’s
determinantal formula [39], we have

𝜋 =
𝑛∑
𝑟=1

(−1)𝑛−𝑟
∑

0=𝑛0<𝑛1< · · ·<𝑛𝑟=𝑛

𝑍 ([𝑛0 + 1, 𝑛1]𝜒) × · · · × 𝑍 ([𝑛𝑟−1 + 1, 𝑛𝑟 ]𝜒)

in the Grothendieck group of the category of representations of 𝐺𝑛 of finite length. Then it follows from
Proposition 5.2 that for any 𝔬-module M of finite length, the dimension of the K𝑛, [𝑀 ]-invariant part
𝜋K𝑛, [𝑀 ] is equal to the number

𝑛∑
𝑟=1

(−1)𝑛−𝑟
∑

0=𝑛0<𝑛1< · · ·<𝑛𝑟=𝑛

N(𝑛1−𝑛0 ,...,𝑛𝑟−𝑛𝑟−1) (𝑀).
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We set

𝑓𝑛 =
𝑛∑
𝑟=1

(−1)𝑛−𝑟
∑

0=𝑛0<𝑛1< · · ·<𝑛𝑟=𝑛

𝑦𝑛1−𝑛0 · · · 𝑦𝑛𝑟−𝑛𝑟−1 ∈ 𝑅. (6.1)

Then it follows from Lemma 6.7 that for any 𝔬-module M of finite length, the dimension of 𝜋K𝑛, [𝑀 ] is
equal to 𝜉𝑀 ( 𝑓𝑛). Therefore, it suffices to prove that 𝜉𝑀 ( 𝑓𝑛) = 0 for any 𝔬-module M of length at most
𝑛 − 2. By Lemma 6.8, it suffices to show that 𝑓𝑛 belongs to the ideal 𝐼𝑛−1.

Let us consider the ring 𝑅[[𝑡]] of formal power series in the variable t. We set

ℎ =
∞∑
𝑖=1

𝑦𝑖𝑡
𝑖 ∈ 𝑡𝑅[[𝑡]] .

Then 𝑓𝑛 is equal to the coefficient of 𝑡𝑛 in

𝐹 = (−1)𝑛
∞∑
𝑟=0

(−1)𝑟 ℎ𝑟 .

Since

ℎ =
𝑡 +
∑∞
𝑖=1 𝑥𝑖𝑡

𝑖

1 − 𝑡
,

we have

𝐹 =
(−1)𝑛

1 + ℎ
=

(−1)𝑛 (1 − 𝑡)

1 +
∑𝑛
𝑖=1 𝑥𝑖𝑡

𝑖
.

Since the coefficients of 𝑡𝑖 in (1 +
∑𝑛
𝑖=1 𝑥𝑖𝑡

𝑖)−1 belongs to 𝑅𝑖 for any 𝑖 ≥ 0, the claim follows. �

7. Proof of the main theorems: the case where 𝑳(𝒔, 𝝅) = 1

In this section, we prove Theorem 2.2 for 𝜋 ∈ Irr(𝐺𝑛) with 𝐿(𝑠, 𝜋) = 1, and we reduce Theorem 2.1 to
the case of Speh representations.

7.1. Proof of Theorem 2.2 when 𝑳(𝒔, 𝝅) = 1

First, we reduce Theorem 2.2 for 𝜋 to the case where 𝜋 is cuspidal. Let (𝜋,𝑉) be an irreducible
representation of 𝐺𝑛 such that 𝐿(𝑠, 𝜋) = 1. Note that there exists a partition 𝑛 = 𝑛1 + · · · + 𝑛𝑟 of n and
cuspidal representations 𝜋1, . . . , 𝜋𝑟 of 𝐺𝑛1 , . . . , 𝐺𝑛𝑟 , respectively, such that the following conditions
are satisfied:

• For 𝑖 = 1, . . . , 𝑟 , we have 𝐿(𝑠, 𝜋𝑖) = 1;
• 𝜋 appears as a subquotient of the parabolic induction 𝜋1 × · · · × 𝜋𝑟 ;
• We have |𝜆𝜋 | = |𝜆𝜋1 | + · · · + |𝜆𝜋𝑟 |.

Then by the same argument as in the proof of Theorem 2.2 for 𝜋 = 𝑍 (𝔪) of type 𝜒 in Section 6.4, we
can reduce the claim for 𝜋 to the ones for 𝜋𝑖 for 𝑖 = 1, . . . , 𝑟: that is, the case where 𝜋 is cuspidal.

To prove the claim for cuspidal 𝜋, we consider certain Hecke operators. Let 𝑋𝜆 ⊂ 𝑀𝑛 (𝔬) denote the
subset of matrices 𝐴 = (𝑎𝑖, 𝑗 ) ∈ 𝑀𝑛 (𝔬) such that 𝑎𝑖, 𝑗 ≡ 𝛿𝑖, 𝑗 mod 𝔭𝜆𝑖 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Then

• 𝑋𝜆 contains K𝑛,𝜆;
• 𝑋𝜆 is closed under the multiplication of matrices; and
• 𝑋𝜆 is bi-invariant under the action of K𝑛,𝜆.
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We letH𝜆 denote the complex vector space ofC-valued compactly supported bi-K𝑛,𝜆-invariant functions
on 𝐺𝑛 whose supports are contained in 𝑋𝜆. Then H𝜆 has a structure of C-algebra whose multiplication
law is given by the convolution with respect to the Haar measure on 𝐺𝑛 satisfying vol(K𝑛,𝜆) = 1. The
unit element 1 of H𝜆 is equal to the characteristic function of K𝑛,𝜆. Let 𝔞𝜆 ⊂ H𝜆 be the subspace of
functions whose supports are contained in the complement 𝑋𝜆 \ K𝑛,𝜆 of K𝑛,𝜆 in 𝑋𝜆. Then we have
H𝜆 = C · 1 ⊕ 𝔞𝜆, and 𝔞𝜆 is a two-sided ideal of H𝜆.

Let (𝜋,𝑉) be an irreducible representation of 𝐺𝑛. The action of 𝐺𝑛 on V induces an action of H𝜆 on
𝑉K𝑛,𝜆 . We let

𝜃𝑉 : H𝜆 → EndC(𝑉K𝑛,𝜆 )

denote the induced homomorphism of C-algebras. We set H𝜆,𝑉 = 𝜃𝑉 (H𝜆) and 𝔞𝜆,𝑉 = 𝜃𝑉 (𝔞𝜆). Then
H𝜆,𝑉 is a finite-dimensional C-algebra, and 𝔞𝜆,𝑉 is a two-sided ideal of H𝜆,𝑉 .

Lemma 7.1. Suppose that 𝜋 is cuspidal. Then any element 𝑇 ∈ 𝔞𝜆,𝑉 is nilpotent.

Proof. Since 𝑉K𝑛,𝜆 is finite-dimensional, it suffices to show that for any 𝑣 ∈ 𝑉K𝑛,𝜆 and for any linear
form �̃� : 𝑉K𝑛,𝜆 → C, we have �̃�(𝑇𝑚𝑣) = 0 for any sufficiently large integer m.

Let us choose 𝑇 ∈ 𝔞𝜆 satisfying 𝜃𝑉 (𝑇) = 𝑇 . For an integer 𝑚 ≥ 0, we let 𝑋 ≥𝑚
𝜆 denote the subset of

matrices 𝐴 ∈ 𝑋𝜆 satisfying det 𝐴 ∈ 𝔭𝑚. We note that 𝑋 ≥1
𝜆 is equal to 𝑋𝜆 \ K𝑛,𝜆. Since the product of

any m matrices in 𝑋 ≥1
𝜆 belongs to 𝑋 ≥𝑚

𝜆 , it follows that the mth power 𝑇𝑚 of 𝑇 is, as a function on 𝐺𝑛,
supported on 𝑋 ≥𝑚

𝜆 ∩ 𝐺𝑛.
Let (�̃�, 𝑉) denote the contragredient representation of (𝜋,𝑉). We regard �̃� as a vector in the K𝑛,𝜆-

invariant part (𝑉)K𝑛,𝜆 of 𝑉 . Since 𝜋 is cuspidal, the matrix coefficient

𝑓 (𝑔) = 〈𝜋(𝑔)𝑣, �̃�〉

of 𝜋 is compactly supported modulo the centre 𝑍𝑛 of 𝐺𝑛. Observe that the intersection 𝐺𝑛 ∩(⋂
𝑚≥1 𝑍𝑛𝑋

≥𝑚
𝜆

)
is empty. This implies that any subset K of 𝐺𝑛 that is compact modulo 𝑍𝑛 does not

intersect 𝑋 ≥𝑚
𝜆 for any sufficiently large m. Thus, the function 𝑓 (𝑔) is identically zero on 𝑋 ≥𝑚

𝜆 for any
sufficiently large m, which implies that �̃�(𝑇𝑚𝑣) = 0 as desired. �

Proof for Theorem 2.2 when 𝐿(𝑠, 𝜋) = 1. As we have remarked above, we may and will assume that
(𝜋,𝑉) is cuspidal.

Let us assume that 𝑉K𝑛,𝜆 ≠ 0. Since 𝑉K𝑛,𝜆 is finite-dimensional, one can take a minimal nonzero
left H𝜆,𝑉 -submodule W of 𝑉K𝑛,𝜆 . Lemma 7.1 implies that 𝔞𝜆,𝑉 is contained in the Jacobson radical of
H𝜆,𝑉 . Hence any element of 𝔞𝜆,𝑉 acts as zero on W.

Let us choose nonzero vectors 𝑤 ∈ 𝑊 and 𝑤 ∈ (𝑉)K𝑛,𝜆 such that 〈𝑤, 𝑤〉 ≠ 0. Let 𝑓 (𝑔) denote the
matrix coefficient of 𝜋 defined as

𝑓 (𝑔) = 〈𝜋(𝑔)𝑤, 𝑤〉.

Let Φ denote the characteristic function of 𝑋𝜆. Let us consider the zeta integral

𝑍 (Φ, 𝑠, 𝑓 ) =
∫
𝐺𝑛

Φ(𝑔) | det 𝑔 |𝑠 𝑓 (𝑔)𝑑𝑔

of [8]. By definition, we have

𝑍 (Φ, 𝑠, 𝑓 ) =
∑
𝑚≥0

𝐼𝑚𝑞
−𝑚𝑠 ,
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where

𝐼𝑚 =
∫
𝑋≥𝑚
𝜆 \𝑋≥𝑚+1

𝜆

𝑓 (𝑔)𝑑𝑔

=

〈∫
𝑋≥𝑚
𝜆 \𝑋≥𝑚+1

𝜆

𝜋(𝑔)𝑤𝑑𝑔, 𝑤

〉
as a formal power series in 𝑞−𝑠 . Since 𝔞𝜆 annihilates w, it follows that 𝐼𝑚 = 0 for 𝑚 ≥ 1. Hence

𝑍 (Φ, 𝑠, 𝑓 ) = 𝐼0 =

〈∫
K𝑛,𝜆

𝜋(𝑘)𝑤𝑑𝑘, 𝑤

〉
=

(∫
K𝑛,𝜆

𝑑𝑘

)
〈𝑤, 𝑤〉

is a nonzero constant.
Let us consider the Fourier transform

Φ̂(𝑥) =
∫
𝑀𝑛 (𝐹 )

Φ(𝑦)𝜓(𝑥𝑦)𝑑𝑦

of Φ with respect to 𝜓, where 𝑑𝑦 is the Haar measure on 𝑀𝑛 (𝐹) that is self-dual with respect to 𝜓. Then
Φ̂ is supported on the subset 𝑌𝜆 ⊂ 𝑀𝑛 (𝐹) of matrices 𝐵 = (𝑏𝑖, 𝑗 ) ∈ 𝑀𝑛 (𝐹) such that 𝑏𝑖, 𝑗 ∈ 𝔭−𝜆 𝑗 for
1 ≤ 𝑖, 𝑗 ≤ 𝑛. We set 𝑓 (𝑔) = 𝑓 (𝑔−1). Note that 𝑓 is a matrix coefficient of (�̃�, 𝑉). Since det 𝐵 ∈ 𝔭−|𝜆 |

for any 𝐵 ∈ 𝑌𝜆, it follows that the zeta integral 𝑍 (Φ̂, 𝑠, 𝑓 ), as a formal power series in 𝑞−𝑠 , belongs to
𝑞 |𝜆 |𝑠C[[𝑞−𝑠]].

By our assumption, we have 𝐿(𝑠, 𝜋) = 𝐿(𝑠, �̃�) = 1. Hence it follows from the local functional
equation that we have

𝑍

(
Φ̂, 1 − 𝑠 +

𝑛 − 1
2

, 𝑓

)
= 𝜀(𝑠, 𝜋, 𝜓)𝑍

(
Φ, 𝑠 +

𝑛 − 1
2

, 𝑓

)
, (7.1)

where 𝜀(𝑠, 𝜋, 𝜓) denotes the 𝜀-factor of 𝜋. It is known that 𝜀(𝑠, 𝜋, 𝜓) = 𝑐𝑞−|𝜆𝜋 |𝑠 for some nonzero
constant c. Since the left-hand side is in 𝑞−|𝜆 |𝑠C[[𝑞𝑠]], we see that |𝜆 | ≥ |𝜆𝜋 |. This proves Theorem 2.2
for 𝜋. �

As explained in Section 5.2, Proposition 5.2 and results in Section 6.4 and this subsection complete
Theorem 2.2 in all cases.

7.2. Proof of Theorem 2.1: reduction to Speh representations

In this subsection, we prove Lemma 7.2. By this lemma, Theorem 2.1 for 𝜋 with 𝐿(𝑠, 𝜋) = 1 is reduced
to the case where 𝜋 = 𝑍 (Δ).

Lemma 7.2. Let 𝜋 = 𝑍 (𝔪) ∈ Irr(𝐺𝑛) be such that 𝐿(𝑠, 𝜋) = 1. Write 𝔪 = Δ1 + · · · + Δ𝑟 . Assume that

dim(𝑍 (Δ 𝑖)
K𝑛𝑖 ,𝜆𝑖 ) =

{
1 if 𝜆𝑖 = 𝜆Δ𝑖 ,

0 if 𝜆𝑖 < 𝜆Δ𝑖

for 1 ≤ 𝑖 ≤ 𝑟 , where 𝑛𝑖 is such that 𝑍 (Δ 𝑖) ∈ Irr(𝐺𝑛𝑖 ). Then we have

dim(𝜋K𝑛,𝜆 ) =

{
1 if 𝜆 = 𝜆𝜋 ,

0 if 𝜆 < 𝜆𝜋 .
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Proof. Set Π = 𝑍 (Δ1) × · · · × 𝑍 (Δ𝑟 ). First, we claim that

dim(ΠK𝑛,𝜆 ) =

{
1 if 𝜆 = 𝜆𝜋 ,

0 if 𝜆 < 𝜆𝜋 .

Write 𝜆𝜋 = (𝜆1, . . . , 𝜆𝑛), and consider 𝑀 = ⊕𝑛𝑖=1𝔬/𝔭
𝜆𝑖 . Then K𝑛,𝜆𝜋 is conjugate to K𝑛, [𝑀 ] . By

Proposition 5.2, we have

ΠK𝑛,𝜆𝜋 �
⊕
F•𝑀

𝑍 (Δ1)
K
𝑛1 , [GrF1 𝑀 ] ⊗ · · · ⊗ 𝑍 (Δ𝑟 )

K
𝑛𝑟 , [GrF𝑟 𝑀 ] ,

where F•𝑀 runs over the set of n-admissible filtrations with n = (𝑛1, . . . , 𝑛𝑟 ). Since 𝜆𝜋 = 𝜆Δ1 +· · ·+𝜆Δ𝑟 ,
by Corollary 4.7, there exists a unique n-admissible filtration F0

•𝑀 such that seq𝑛 ([GrF0

𝑖 𝑀]) = 𝜆Δ𝑖 for
1 ≤ 𝑖 ≤ 𝑟 . Moreover, for any other filtration F•𝑀 , it holds that seq𝑛 ([GrF

𝑖 𝑀]) < 𝜆Δ𝑖 for some 1 ≤ 𝑖 ≤ 𝑟 .
Hence by our assumption, we have 𝑍 (Δ1)

K
𝑛1 , [GrF1 𝑀 ] ⊗ · · · ⊗ 𝑍 (Δ𝑟 )

K
𝑛𝑟 , [GrF𝑟 𝑀 ] = 0, and

dim
(
ΠK𝑛,𝜆𝜋

)
= dim

(
𝑍 (Δ1)

K𝑛1 ,𝜆Δ1 ⊗ · · · ⊗ 𝑍 (Δ𝑟 )
K𝑛𝑟 ,𝜆Δ𝑟

)
= 1.

Conversely, suppose that [𝑀] ∈ |C𝑛 | satisfies ΠK𝑛, [𝑀 ] ≠ 0. Then by Propositions 5.2, 4.4 and our
assumption, we have

seq𝑛 ([𝑀]) ≥ 𝜆Δ1 + · · · + 𝜆Δ𝑟 = 𝜆𝜋 .

In other words, if 𝜆 < 𝜆𝜋 , then ΠK𝑛,𝜆 = 0. Hence we obtain the claim.
In particular, since 𝜋 is a subquotient of Π, we have 𝜋K𝑛,𝜆 = 0 for 𝜆 < 𝜆𝜋 .
We show dim(𝜋K𝑛,𝜆 ) = 1 by induction on the number 𝑡𝜋 of pairs of linked segments in {Δ1, . . . ,Δ𝑟 }.

If 𝑡𝜋 = 0, then by [42, 4.2 Theorem], Π is irreducible so that 𝜋 = Π. In this case, the assertion is obtained
above.

Now assume that 𝑡𝜋 > 0. By [42, 7.1 Theorem], if 𝜋′ = 𝑍 (𝔪′) ∈ Irr(𝐺𝑛) is an irreducible constituent
of Π, then the multisegment 𝔪′ is obtained from 𝔪 by a chain of elementary operations. In particular,
if 𝜋′ � 𝜋, we have 𝑡𝜋′ < 𝑡𝜋 . Moreover, since 𝐿(𝑠, 𝜋) = 1, we see that 𝜆𝜋′ > 𝜆𝜋 . By the inductive
hypothesis, we have 𝜋′K𝑛,𝜆𝜋 = 0. Therefore, we have ΠK𝑛,𝜆𝜋 = 𝜋K𝑛,𝜆𝜋 since 𝜋 appears in the irreducible
constituents of Π with multiplicity one. It follows from the above claim that 𝜋K𝑛,𝜆𝜋 is one-dimensional.
This completes the proof. �

Note that Theorem 2.1 for 𝜋 is equivalent to the one for its unramified twist 𝜋 | · |𝑐 . Therefore, we
may assume that 𝜋 has a unitary central character. In Section 9 below, we will prove Theorem 2.1 for
𝜋 = 𝑍 (Δ) with a unitary central character such that 𝐿(𝑠, 𝜋) = 1. The proof of this case is rather similar
to the generic case in [14]. To carry out the proof, we will establish the theory of Rankin–Selberg
integrals for 𝑍 (Δ) in Section 8.

Remark 7.3. We note that Lemma 7.2 does not work for 𝜋 with 𝐿(𝑠, 𝜋) ≠ 1 since the equality
𝜆𝜋 = 𝜆Δ1 + · · · +𝜆Δ𝑟 does not hold in general. It is one of the two reasons we should treat the case where
𝐿(𝑠, 𝜋) = 1 and the other case separately. The other reason will be explained in Remark 8.8 below.

8. Rankin–Selberg integrals for Speh representations

In [14], Jacquet–Piatetskii-Shapiro–Shalika proved Theorem 2.1 for 𝜋 generic. The ingredients they
used are the Rankin–Selberg integrals [15], which express the L-factors of the products of two generic
representations of 𝐺𝑛 and 𝐺𝑛−1. (They also have expressions for products of representations of groups
of other ranks, but the one used for the study of local newforms is the one mentioned above.)
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In [20], Lapid and Mao introduced the Rankin–Selberg integrals for the products of Speh
representations in the equal rank case. To prove Theorem 2.1 for Speh representations in the next
section, we introduce the Rankin–Selberg integrals for the product of Speh representations in the case
𝐺𝑛𝑚 × 𝐺 (𝑛−1)𝑚.

8.1. Subgroups of GL𝒏𝒎(F)

Fix positive integers m and n. In this subsection, we fix notations for some subgroups of GL𝑛𝑚(𝐹).
Set 𝐺 = 𝐺𝑛𝑚 = GL𝑛𝑚 (𝐹) and 𝐾 = GL𝑛𝑚 (𝔬). Let 𝐵 = 𝑇𝑁 be the Borel subgroup of G consisting of

upper triangular matrices, where T is the diagonal torus.
We write an element of G as 𝑔 = (𝑔𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑚 with 𝑔𝑖, 𝑗 ∈ 𝑀𝑛 (𝐹). Define

• L to be the subgroup of G consisting of block diagonal matrices: that is, 𝑔 = (𝑔𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑚 ∈ 𝐺 with
𝑔𝑖, 𝑗 = 0 for 𝑖 ≠ 𝑗 ;

• U to be the subgroup of G consisting of block upper unipotent matrices: that is,
𝑔 = (𝑔𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑚 ∈ 𝐺 with 𝑔𝑖,𝑖 = 1𝑛 for 1 ≤ 𝑖 ≤ 𝑚 and 𝑔𝑖, 𝑗 = 0 for 𝑖 > 𝑗 ;

• S to be the subgroup of G consisting of 𝑔 = (𝑔𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑚 ∈ 𝐺 such that each 𝑔𝑖, 𝑗 is a diagonal matrix;
• V to be the subgroup of G consisting of 𝑔 = (𝑔𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑚 ∈ 𝐺 such that each 𝑔𝑖, 𝑗 − 𝛿𝑖, 𝑗1𝑛 is a

strictly upper triangular matrix;
• D to be the subgroup of G consisting of 𝑔 = (𝑔𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑚 ∈ 𝐺 such that each 𝑔𝑖, 𝑗 is of the form

𝑔𝑖, 𝑗 =

(
𝑔′𝑖, 𝑗 𝑢𝑖, 𝑗
0 𝛿𝑖, 𝑗

)
for some 𝑔′𝑖, 𝑗 ∈ 𝑀𝑛−1 (𝐹) and 𝑢𝑖, 𝑗 ∈ 𝐹𝑛−1.

Then 𝑃 = 𝐿𝑈 is the standard parabolic subgroup with 𝐿 � 𝐺𝑛×· · ·×𝐺𝑛 (m-times) as its Levi subgroup,
and 𝑄 = 𝑆𝑉 is a nonstandard parabolic subgroup with 𝑆 � 𝐺𝑚×· · ·×𝐺𝑚 (n-times) as its Levi subgroup.

We set 𝐺 ′ = 𝐺 (𝑛−1)𝑚. We denote analogous subgroups by taking ′, for example, 𝐾 ′ = GL(𝑛−1)𝑚(𝔬),
𝑃′ = 𝐿 ′𝑈 ′, 𝑄 ′ = 𝑆′𝑉 ′ and so on. Define an embedding 𝜄 : 𝐺 ′ ↩→ 𝐺 by

𝜄(𝑔′) =

((
𝑔′𝑖, 𝑗 0
0 𝛿𝑖, 𝑗

))
1≤𝑖, 𝑗≤𝑚

,

where we write 𝑔′ = (𝑔′𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑚 with 𝑔′𝑖, 𝑗 ∈ 𝑀𝑛−1 (𝐹). Sometimes we identify 𝐺 ′ with the image of 𝜄.
Note that 𝐺 ′ is contained in D.

For example, when 𝑛 = 3 and 𝑚 = 2, the subgroups above are as follows:

𝐿 =

�							


∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

��������

, 𝑈 =

�							


1 ∗ ∗ ∗

1 ∗ ∗ ∗

1 ∗ ∗ ∗

1
1

1

��������

,

𝑆 =

�							


∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

��������

, 𝑉 =

�							


1 ∗ ∗ ∗ ∗

1 ∗ ∗

1
∗ ∗ 1 ∗ ∗

∗ 1 ∗

1

��������

,
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𝐷 =

�							


∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

1
∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

1

��������

, 𝐺 ′ =

�							


∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

1
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

1

��������

.

It is easy to see the following:
Lemma 8.1.
(1) 𝐷 = 𝑉𝐺 ′ and 𝐺 ′ ∩𝑉 = 𝑉 ′ so that 𝑉\𝐷 � 𝑉 ′\𝐺 ′.
(2) 𝑁 ∩ 𝐷 = (𝑁 ∩𝑉)𝑁 ′ and (𝑁 ∩𝑉) ∩ 𝑁 ′ = 𝑁 ′ ∩𝑉 ′ so that (𝑁 ∩𝑉)\(𝑁 ∩ 𝐷) � (𝑁 ′ ∩𝑉 ′)\𝑁 ′.
Proof. Omitted. �

8.2. Two models of Speh representations

We introduce the Zelevinsky model and the Shalika model of a Speh representation. For the detail of
these models and the relation between them, see [20, Section 3].

We define a function Ψ of 𝐺 = 𝐺𝑛𝑚 by

Ψ(𝑔) = 𝜓
�			

∑

1≤𝑖<𝑛𝑚
𝑛�𝑖

𝑔𝑖,𝑖+1

����
 .
We denote the restriction of Ψ to N (respectively, V) by the same symbol Ψ, which is a character of N
(respectively, V).

Let 𝜋 be an irreducible tempered representation of 𝐺𝑛. Then the parabolically induced representation

𝜋 | · |−
𝑚−1

2 × 𝜋 | · |−
𝑚−3

2 × · · · × 𝜋 | · |
𝑚−1

2

of G has a unique irreducible subrepresentation Sp(𝜋, 𝑚). We call Sp(𝜋, 𝑚) a Speh representation. Note
that if 𝜋 = 𝜌 is cuspidal, then Sp(𝜌, 𝑚) = 𝑍 ([−𝑚−1

2 , 𝑚−1
2 ]𝜌).

From now on, we set 𝜎 = Sp(𝜋, 𝑚) for some irreducible tempered representation 𝜋 of 𝐺𝑛. By [42,
8.3], we know that

Hom𝐺 (𝜎, Ind𝐺𝑁 (Ψ))

is one-dimensional. Following [20, Section 3.1], we write W𝜓
Ze(𝜎) for the image of a nonzero element

and call it the Zelevinsky model of 𝜎.
In the case 𝑚 = 1, the Zelevinsky model W𝜓 (𝜋) = W𝜓

Ze(𝜋) is what is known as the Whittaker model
of 𝜋. Note that the character Ψ is a generic character of N in this case, and the one-dimensionality above
implies that every tempered representation 𝜋 of 𝐺𝑛 is generic.

As explained in [20, Section 3.1], for any 𝑊 ∈ W𝜓
Ze (𝜎), we have

𝑊 |𝐿 ∈ W𝜓 (𝜋 | · |
(𝑚−1) (𝑛−1)

2 ) ⊗ W𝜓 (𝜋 | · |
(𝑚−3) (𝑛−1)

2 ) ⊗ · · · ⊗ W𝜓 (𝜋 | · |−
(𝑚−1) (𝑛−1)

2 ).

By [32], we know that

Hom𝐺 (𝜎, Ind𝐺𝑉 (Ψ))

is also one-dimensional. Following [20, Section 3.1], we write W𝜓
Sh (𝜎) for the image of a nonzero

element and call it the Shalika model of 𝜎. As explained in [20, Section 3.1], the usage of this
terminology may not be a common one.
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We recall a theorem of Lapid and Mao.

Theorem 8.2 [20, Theorem 4.3]. For 𝑊1,𝑊2 ∈ W𝜓
Sh (𝜎), the integral

B(𝑊1,𝑊2, 𝑠) =
∫
𝑉 \𝐷

𝑊1(𝑔)𝑊2(𝑔) | det 𝑔 |𝑠𝑑𝑔

converges for Re(𝑠) > −1 and admits meromorphic continuation to the complex plane. Moreover,
(𝑊1,𝑊2) ↦→ B(𝑊1,𝑊2, 0) is a G-invariant inner product on W𝜓

Sh (𝜎).

Proof. See [20, Theorem 4.3]. See also [20, Propositions 4.1, 6.2]. �

Note that W𝜓
Ze(𝜎) and W𝜓

Sh (𝜎) are isomorphic to each other since both are isomorphic to 𝜎. We can
give isomorphisms explicitly as follows.

Proposition 8.3 [20, Lemmas 3.8, 3.11]. Let 𝑊Ze ∈ W𝜓
Ze(𝜎) and 𝑊Sh ∈ W𝜓

Sh (𝜎). Then 𝑊Ze (respec-
tively, 𝑊Sh) is compactly supported on (𝑉 ∩ 𝑁)\𝑉 (respectively, (𝑁 ∩ 𝑉)\(𝑁 ∩ 𝐷)). Moreover, an
isomorphism T = T 𝜓 : W𝜓

Ze(𝜎)
∼
−→ W𝜓

Sh (𝜎) is given by the integral

T𝑊Ze(𝑔) =
∫
(𝑉∩𝑁 )\𝑉

𝑊Ze (𝑢𝑔)Ψ(𝑢)−1𝑑𝑢.

The inverse of T is given by the integral

T −1𝑊Sh (𝑔) =
∫
(𝑁∩𝑉 )\(𝑁∩𝐷)

𝑊Sh (𝑢𝑔)Ψ(𝑢)−1𝑑𝑢.

Proof. See [20, Lemmas 3.8, 3.11]. �

8.3. Rankin–Selberg integrals in the Zelevinsky models

For irreducible tempered representations 𝜋 and 𝜋′ of 𝐺𝑛 and 𝐺𝑛−1, respectively, we have Speh repre-
sentations 𝜎 = Sp(𝜋, 𝑚) ∈ Irr(𝐺) and 𝜎′ = Sp(𝜋′, 𝑚) ∈ Irr(𝐺 ′). For 𝑊 ∈ 𝑊

𝜓
Ze(𝜎), 𝑊

′ ∈ 𝑊
𝜓−1

Ze (𝜎′)

and 𝑠 ∈ C, consider the integral

𝐼𝑚(𝑠,𝑊,𝑊 ′) =
∫
𝑁 ′\𝐺′

𝑊 (𝜄(𝑔))𝑊 ′(𝑔) | det 𝑔 |𝑠−
𝑚
2 𝑑𝑔.

We call this the Rankin–Selberg integral in the Zelevinsky models.

Lemma 8.4. Formally, 𝐼𝑚(𝑠,𝑊,𝑊 ′) is equal to∫
𝑃′\𝐺′

(∫
(𝑁 ′∩𝐿′)\𝐿′

𝑊 (𝜄(𝑙𝑔))𝑊 ′(𝑙𝑔) | det 𝑙 |𝑠−
𝑚
2 𝛿−1

𝑃′ (𝑙)𝑑𝑙

)
| det 𝑔 |𝑠−

𝑚
2 𝑑𝑔.

Proof. This follows from a well-known integral formula. �

When 𝑚 = 1, several properties of 𝐼1(𝑠,𝑊,𝑊 ′) were obtained in [15]. The following is a generali-
sation of [15, (2.7) Theorem], whose proof is analogous to that of [20, Theorem 5.1].

Theorem 8.5. Let 𝜋 and 𝜋′ be irreducible tempered representations of 𝐺𝑛 and 𝐺𝑛−1, respectively. We
denote the central character of 𝜋′ by 𝜔𝜋′ .
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(1) The integral 𝐼𝑚(𝑠,𝑊,𝑊 ′) is absolutely convergent for Re(𝑠) � 0.
(2) The function (

𝑚∏
𝑖=1

𝐿(𝑠 − 𝑚 + 𝑖, 𝜋 × 𝜋′)

)−1

𝐼𝑚(𝑠,𝑊,𝑊 ′)

is in C[𝑞−𝑠 , 𝑞𝑠]. In particular, it is entire.
(3) The functional equation

𝐼𝑚(𝑚 − 𝑠,𝑊,𝑊 ′) = 𝜔𝜋′ (−1) (𝑛−1)𝑚

(
𝑚∏
𝑖=1

𝛾(𝑠 − 𝑚 + 𝑖, 𝜋 × 𝜋′, 𝜓)

)
𝐼𝑚(𝑠,𝑊,𝑊 ′)

holds, where 𝑊 (𝑔) = 𝑊 (𝑤𝑛𝑚
𝑡𝑔−1𝑤′

𝑛) and 𝑊 ′(𝑔′) = 𝑊 ′(𝑤 (𝑛−1)𝑚
𝑡𝑔′−1𝑤′

𝑛−1) with

𝑤𝑛𝑚 =
�		


1

. .
.

1

���
 , 𝑤′
𝑛 =
�		


1𝑛
. .
.

1𝑛

���
 ∈ 𝐺.

Here 𝛾(𝑠, 𝜋 × 𝜋′, 𝜓) is the gamma factor defined by

𝛾(𝑠, 𝜋 × 𝜋′, 𝜓) = 𝜀(𝑠, 𝜋 × 𝜋′, 𝜓)
𝐿(1 − 𝑠, �̃� × �̃�′)

𝐿(𝑠, 𝜋 × 𝜋′)
.

Proof. When 𝑚 = 1, the assertions are [15, (2.7) Theorem].
Note that 𝛿𝑃′ (𝑙) =

∏𝑚
𝑖=1 | det 𝑙𝑖 | (𝑚+1−2𝑖) (𝑛−1) for 𝑙 = diag(𝑙1, . . . , 𝑙𝑚) ∈ 𝐿 ′. Moreover,

𝑚∏
𝑖=1

| det 𝑙𝑖 |
(𝑚+1−2𝑖) (1−𝑛)

2 𝑊 (𝜄(𝑙𝑔)) ∈ W𝜓 (𝜋)⊗𝑚 and

𝑚∏
𝑖=1

| det 𝑙𝑖 |
(𝑚+1−2𝑖) (2−𝑛)

2 𝑊 ′(𝑙𝑔) ∈ W𝜓−1
(𝜋′) ⊗𝑚

for fixed 𝑔 ∈ 𝐺 ′. It follows that the inner integral of Lemma 8.4 is of the form∑
𝛼,𝛽

𝑚∏
𝑖=1

𝐼1(𝑠 − 𝑚 + 𝑖,𝑊𝑖,𝛼,𝑊
′
𝑖,𝛽)

for some𝑊𝑖,𝛼 ∈ W𝜓 (𝜋) and𝑊 ′
𝑖,𝛽 ∈ W𝜓−1

(𝜋′) (depending on g). Hence we obtain assertions (1) and (2).
We prove assertion (3). For 𝑔 ∈ 𝐺 ′ and 𝑙 = diag(𝑙1, . . . , 𝑙𝑚) ∈ 𝐿 ′ with 𝑙𝑖 ∈ GL𝑛−1 (𝐹), we note that

𝑤′
𝑛
𝑡 𝜄(𝑔)−1𝑤′

𝑛 = 𝜄
(
𝑤′
𝑛−1

𝑡𝑔−1𝑤′
𝑛−1

)
,

𝑤𝑛𝑚
𝑡 𝜄(𝑙)−1𝑤′

𝑛 = diag
(
𝑤𝑛

(
𝑡 𝑙−1
𝑚 0
0 1

)
, . . . , 𝑤𝑛

(
𝑡 𝑙−1

1 0
0 1

))
.

Hence we have

𝑊 (𝜄(𝑙𝑔)) = 𝑊 (𝑤𝑛𝑚
𝑡 𝜄(𝑙)−1𝑤′

𝑛 · 𝑤
′
𝑛
𝑡 𝜄(𝑔)−1𝑤′

𝑛)

= 𝑊

(
diag

(
𝑤𝑛

(
𝑡 𝑙−1
𝑚 0
0 1

)
, . . . , 𝑤𝑛

(
𝑡 𝑙−1

1 0
0 1

))
𝜄(𝑤′

𝑛−1
𝑡𝑔−1𝑤′

𝑛−1)

)
.
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Similarly, we have

𝑊 ′(𝑙𝑔) = 𝑊 ′(𝑤 (𝑛−1)𝑚
𝑡 𝑙−1𝑤′

𝑛−1 · 𝑤
′
𝑛−1

𝑡𝑔−1𝑤′
𝑛−1)

= 𝑊 ′(diag(𝑤𝑛−1
𝑡 𝑙−1
𝑚 , . . . , 𝑤𝑛−1

𝑡 𝑙−1
1 ) · 𝑤′

𝑛−1
𝑡𝑔−1𝑤′

𝑛−1).

Moreover, the map 𝑔 ↦→ 𝜃 (𝑔) � 𝑤′
𝑛−1

𝑡𝑔−1𝑤′
𝑛−1 is a homeomorphism on 𝑃′\𝐺 ′ such that 𝑑𝜃 (𝑔) = 𝑑𝑔

and | det 𝜃 (𝑔) | = | det 𝑔 |−1. Hence

𝐼𝑚(𝑚 − 𝑠,𝑊,𝑊 ′)

=
∫
𝑃′\𝐺′

(∫
(𝑁 ′∩𝐿′)\𝐿′

𝑊 (𝜄(𝑙𝑔))𝑊 ′(𝑙𝑔) | det 𝑙 |−(𝑠−
𝑚
2 )𝛿−1

𝑃′ (𝑙)𝑑𝑙

)
| det 𝑔 |−(𝑠−

𝑚
2 )𝑑𝑔

=
∫
𝑃′\𝐺′

(∫
(𝑁 ′∩𝐿′)\𝐿′

𝑊 (𝜄(𝑙𝑔))𝑊 ′(𝑙𝑔)
𝑚∏
𝑖=1

| det 𝑙𝑖 |
(𝑚+1−2𝑖) (3−2𝑛)

2 −𝑠+𝑖− 1
2 𝑑𝑙

)
| det 𝑔 |−(𝑠−

𝑚
2 )𝑑𝑔

= 𝜔𝜋′ (−1) (𝑛−1)𝑚

(
𝑚∏
𝑖=1

𝛾(𝑠 − 𝑚 + 𝑖, 𝜋 × 𝜋′, 𝜓)

)
×

∫
𝑃′\𝐺′

(∫
(𝑁 ′∩𝐿′)\𝐿′

𝑊 (𝜄(𝑙𝑔))𝑊 ′(𝑙𝑔)
𝑚∏
𝑖=1

| det 𝑙𝑖 |
(𝑚+1−2𝑖) (3−2𝑛)

2 +𝑠−𝑚+𝑖− 1
2 𝑑𝑙

)
| det 𝑔 |𝑠−

𝑚
2 𝑑𝑔

= 𝜔𝜋′ (−1) (𝑛−1)𝑚

(
𝑚∏
𝑖=1

𝛾(𝑠 − 𝑚 + 𝑖, 𝜋 × 𝜋′, 𝜓)

)
𝐼𝑚(𝑠,𝑊,𝑊 ′).

Here, in the third equation, we made the change of variables 𝑙𝑖 ↦→ 𝑙𝑚+1−𝑖 and 𝑔 ↦→ 𝜃 (𝑔). This completes
the proof. �

Lemma 8.6. For any 𝑊 ′ ∈ 𝑊
𝜓−1

Ze (𝜎′) with 𝑊 ′(1(𝑛−1)𝑚) ≠ 0, there exists 𝑊 ∈ 𝑊
𝜓
Ze(𝜎) such that

𝐼𝑚(𝑠,𝑊,𝑊 ′) = 1 for all 𝑠 ∈ C.

Proof. By [20, Corollary 3.15], the space {𝑊 |𝐷 | 𝑊 ∈ 𝑊
𝜓
Ze(𝜎)} contains the compact induction

ind𝐷𝑁∩𝐷 (Ψ). Hence the assertion follows by taking𝑊 ∈ 𝑊
𝜓
Ze(𝜎) such that𝑊 |𝐷 is supported on (𝑁∩𝐷)Ω

for a small neighbourhood Ω of 1𝑛𝑚 ∈ 𝐷. �

Proposition 8.7. The C-span of the integrals 𝐼𝑚(𝑠,𝑊,𝑊 ′) for 𝑊 ∈ 𝑊𝜓 (𝜎) and 𝑊 ′ ∈ 𝑊𝜓−1
(𝜎′)

is a fractional ideal of C[𝑞−𝑠 , 𝑞𝑠], which is generated by 𝑃𝑚 (𝑞
−𝑠)−1 for some 𝑃𝑚 (𝑋) ∈ C[𝑋] with

𝑃𝑚 (0) = 1. Moreover, 𝑃1 (𝑞
−𝑠) = 𝐿(𝑠, 𝜋 × 𝜋′)−1 and 𝑃𝑚 (𝑋) divides

∏𝑚
𝑖=1 𝑃1 (𝑞

𝑚−𝑖𝑋).

Proof. Note that

𝐼𝑚(𝑠, 𝜄(ℎ)𝑊, ℎ𝑊 ′) = | det ℎ|−(𝑠−
𝑚
2 ) 𝐼𝑚(𝑠,𝑊,𝑊 ′)

for ℎ ∈ 𝐺 ′, where (𝜄(ℎ)𝑊) (𝑔) = 𝑊 (𝑔𝜄(ℎ)) and (ℎ𝑊 ′) (𝑔′) = 𝑊 ′(𝑔′ℎ). Hence the C-span of the
integrals 𝐼𝑚(𝑠,𝑊,𝑊 ′) is a fractional ideal of C[𝑞−𝑠 , 𝑞𝑠]. The other assertions follow from Lemma 8.6
and Theorem 8.5 (2). �

Remark 8.8. One might expect that 𝑃𝑚(𝑋) =
∏𝑚
𝑖=1 𝑃1 (𝑞

𝑚−𝑖𝑋), but we do not know if this holds in
general. This is a reason we cannot prove Theorem 9.1 below for 𝜎 = Sp(𝜋, 𝑚) when 𝐿(𝑠, 𝜋) ≠ 1 by a
method similar to that in [14]. However, as an application of Theorem 2.1, we will prove the equation
𝑃𝑚 (𝑋) =

∏𝑚
𝑖=1 𝑃1 (𝑞

𝑚−𝑖𝑋) when 𝜋′ is unramified (see Theorem 9.1 below).
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8.4. Rankin–Selberg integrals in the Shalika models

Now we translate the results for the Zelevinsky models obtained in the previous subsection to those for
the Shalika models.

Recall that 𝜎 = Sp(𝜋, 𝑚) ∈ Irr(𝐺) and 𝜎′ = Sp(𝜋′, 𝑚) ∈ Irr(𝐺 ′). For 𝑊Sh ∈ 𝑊
𝜓
Sh (𝜎), 𝑊

′
Sh ∈

𝑊
𝜓−1

Sh (𝜎′) and 𝑠 ∈ C, consider the integral

𝑍𝑚 (𝑠,𝑊Sh,𝑊
′
Sh) =

∫
𝑉 ′\𝐺′

𝑊Sh (𝜄(𝑔))𝑊
′
Sh(𝑔) | det 𝑔 |𝑠−

𝑚
2 𝑑𝑔.

We call this the Rankin–Selberg integral in the Shalika models.

Proposition 8.9. If 𝑊Sh = T 𝜓𝑊Ze and 𝑊 ′
Sh = T 𝜓−1

𝑊 ′
Ze, we have

𝑍𝑚 (𝑠,𝑊Sh,𝑊
′
Sh) = 𝐼𝑚(𝑠,𝑊Ze,𝑊

′
Ze).

Proof. By Lemma 8.1 and Proposition 8.3, we have

𝑍𝑚 (𝑠,𝑊Sh,𝑊
′
Sh) =

∫
𝑉 ′\𝐺′

𝑊Sh (𝜄(𝑔))

(∫
(𝑉 ′∩𝑁 ′)\𝑉 ′

𝑊 ′
Ze(𝑢𝑔)Ψ(𝑢)𝑑𝑢

)
| det 𝑔 |𝑠−

𝑚
2 𝑑𝑔

=
∫
𝑉 ′\𝐺′

∫
(𝑉 ′∩𝑁 ′)\𝑉 ′

𝑊Sh (𝜄(𝑢𝑔))𝑊
′
Ze(𝑢𝑔) | det(𝑢𝑔) |𝑠−

𝑚
2 𝑑𝑢𝑑𝑔

=
∫
(𝑉 ′∩𝑁 ′)\𝐺′

𝑊Sh (𝜄(𝑔))𝑊
′
Ze(𝑔) | det 𝑔 |𝑠−

𝑚
2 𝑑𝑔

=
∫
𝑁 ′\𝐺′

∫
(𝑉 ′∩𝑁 ′)\𝑁 ′

𝑊Sh (𝜄(𝑢𝑔))𝑊
′
Ze(𝑢𝑔) | det(𝑢𝑔) |𝑠−

𝑚
2 𝑑𝑢𝑑𝑔

=
∫
𝑁 ′\𝐺′

(∫
(𝑁∩𝑉 )\(𝑁∩𝐷)

𝑊Sh (𝜄(𝑢𝑔))Ψ(𝑢)−1𝑑𝑢

)
𝑊 ′

Ze(𝑔) | det 𝑔 |𝑠−
𝑚
2 𝑑𝑔

= 𝐼𝑚(𝑠,𝑊Ze,𝑊
′
Ze).

This proves the proposition. �

Therefore, assertions similar to those in Theorem 8.5, Lemma 8.6 and Proposition 8.7 hold for
𝑍𝑚 (𝑠,𝑊Sh,𝑊

′
Sh). Here, we note the following. If 𝑊Ze ∈ W𝜓

Ze (𝜎), we define 𝑊Ze ∈ W𝜓−1

Ze (�̃�), where �̃�

is the contragredient representation of 𝜎, by 𝑊Ze(𝑔) = 𝑊Ze(𝑤𝑛𝑚
𝑡𝑔−1𝑤′

𝑛). One can easily check that

T 𝜓−1
𝑊Ze(𝑔) = T 𝜓𝑊Ze(𝑤𝑛𝑚

𝑡𝑔−1𝑤′
𝑛).

Hence we define 𝑊Sh ∈ W𝜓−1

Sh (�̃�) for 𝑊Sh ∈ W𝜓
Sh (𝜎) by 𝑊Sh (𝑔) = 𝑊Sh (𝑤𝑛𝑚

𝑡𝑔−1𝑤′
𝑛).

8.5. The case where 𝝅′ is unramified

In the following section, we need sharper results when 𝜋′ is unramified.
Let 𝜋′ be an irreducible unramified representation of 𝐺𝑛−1 with Satake parameter (𝑥1, . . . , 𝑥𝑛−1) ∈

(C×)𝑛−1/𝑆𝑛−1. Hence 𝜋′ is the unique irreducible unramified constituent of

𝐼 (𝑠1, . . . , 𝑠𝑛−1) = | · |𝑠1 × · · · × | · |𝑠𝑛−1 ,

where 𝑠 𝑗 is a complex number such that 𝑞−𝑠 𝑗 = 𝑥 𝑗 . Since the principal series 𝐼 (𝑠1, . . . , 𝑠𝑛−1) is generic
and unramified, there exists a unique Whittaker function 𝑊0(𝑥1, . . . , 𝑥𝑛−1) ∈ W𝜓−1

(𝐼 (𝑠1, . . . , 𝑠𝑛−1))
such that 𝑊0(𝑘1; 𝑥1, . . . , 𝑥𝑛−1) = 1 for any 𝑘1 ∈ GL𝑛−1 (𝔬). When 𝜋′ is tempered, that is, |𝑥 𝑗 | = 1 for
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any 1 ≤ 𝑗 ≤ 𝑛 − 1, the function 𝑊0 (𝑥1, . . . , 𝑥𝑛−1) belongs to W𝜓−1
(𝜋′). Note that 𝑊0(𝑥1, . . . , 𝑥𝑛−1)

is a Hecke eigenfunction whose Hecke eigenvalues are uniquely determined by (𝑥1, . . . , 𝑥𝑛−1) ∈

(C×)𝑛−1/𝑆𝑛−1.
Recall that 𝐺 ′ = 𝐺 (𝑛−1)𝑚, 𝐾 ′ = 𝐺 (𝑛−1)𝑚 (𝔬) and that 𝑃′ = 𝐿 ′𝑈 ′ is the standard parabolic subgroup

of 𝐺 ′ with 𝐿 ′ � 𝐺𝑛−1 × · · · × 𝐺𝑛−1 (m-times). Let 𝑥 = (𝑥𝑖, 𝑗 ) ∈ 𝑀𝑚,𝑛−1 (C) with 𝑥𝑖, 𝑗 ∈ C
×. We can

define a function

𝑊0
Ze(𝑥) : 𝐺 ′ → C

by

𝑊0
Ze(𝑢𝑙𝑘; 𝑥) = Ψ−1(𝑢)𝛿

1
2
𝑃′ (𝑙)

𝑚∏
𝑖=1

𝑊0 (𝑙𝑖; 𝑥𝑖,1, . . . , 𝑥𝑖,𝑛−1)

for 𝑢 ∈ 𝑈 ′, 𝑙 = diag(𝑙1, . . . , 𝑙𝑚) ∈ 𝐿 ′ and 𝑘 ∈ 𝐾 ′. (Here, we note that Ψ(𝑢) = 1 for 𝑢 ∈ 𝑈 ′.) As in [20,
Lemma 3.8], 𝑊0

Ze(𝑥) is compactly supported on (𝑉 ′ ∩ 𝑁 ′)\𝑉 ′. We set

𝑊0
Sh (𝑔; 𝑥) =

∫
(𝑉 ′∩𝑁 ′)\𝑉 ′

𝑊0
Ze(𝑢𝑔; 𝑥)Ψ(𝑢)𝑑𝑢.

If 𝑥 = 𝑡 (𝑞−
𝑚−1

2 𝑥 𝑗 , 𝑞
−𝑚−3

2 𝑥 𝑗 , . . . , 𝑞
𝑚−1

2 𝑥 𝑗 )1≤ 𝑗≤𝑛−1 with |𝑥 𝑗 | = 1 for any 1 ≤ 𝑗 ≤ 𝑛 − 1, then 𝑊0
Ze(𝑥) ∈

W𝜓−1

Ze (Sp(𝜋′, 𝑚)), where 𝜋′ is the irreducible unramified representation of 𝐺𝑛−1 with Satake parameter
(𝑥1, . . . , 𝑥𝑛−1). In general, 𝑊0

Ze(𝑔; 𝑥) = 𝑙 (𝑔 · 𝑓 0) for some 𝑙 ∈ Hom𝑁 ′ (𝐼 (𝑠1, . . . , 𝑠 (𝑛−1)𝑚),Ψ), where
𝑠1, . . . , 𝑠 (𝑛−1)𝑚 are complex numbers such that

{𝑞−𝑠1 , . . . , 𝑞−𝑠(𝑛−1)𝑚 } = {𝑥𝑖, 𝑗 | 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 1}

as multisets, and 𝑓 0 ∈ 𝐼 (𝑠1, . . . , 𝑠 (𝑛−1)𝑚)
𝐾 ′ . Note that 𝑊0

Ze(𝑥) is a Hecke eigenfunction whose Hecke
eigenvalues are uniquely determined by (𝑠1, . . . , 𝑠 (𝑛−1)𝑚) ∈ C

(𝑛−1)𝑚/𝑆 (𝑛−1)𝑚.

Lemma 8.10. The Hecke eigenspace in Ind𝐺
′

𝑁 ′ (Ψ)𝐾
′ with Hecke eigenvalues determined by

(𝑠1, . . . , 𝑠 (𝑛−1)𝑚) is spanned by 𝑊0
Ze(𝑥) for 𝑥 = (𝑥𝑖, 𝑗 ) ∈ 𝑀𝑚,𝑛−1 (C) such that {𝑞−𝑠1 , . . . , 𝑞−𝑠(𝑛−1)𝑚 } =

{𝑥𝑖, 𝑗 | 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 1} as multisets.

Proof. Since Ψ is trivial on 𝑈 ′ ⊂ 𝑁 ′, we have a canonical isomorphism

Hom𝑁 ′ (𝐼 (𝑠1, . . . , 𝑠 (𝑛−1)𝑚),Ψ) � Hom𝑁 ′∩𝐿′ (Jac𝑃′ (𝐼 (𝑠1, . . . , 𝑠 (𝑛−1)𝑚)),Ψ),

where Jac𝑃′ is the unnormalised Jacquet functor along 𝑃′ = 𝐿 ′𝑈 ′. Note that Ψ|𝑁 ′∩𝐿′ is a generic
character. Moreover, by the Geometric Lemma of Bernstein–Zelevinsky [4, 2.12], the semisimplification
of Jac𝑃′ (𝐼 (𝑠1, . . . , 𝑠 (𝑛−1)𝑚)) is equal to

𝛿
1
2
𝑃′ ⊗

�	

⊕
𝑥

𝐼 (𝑠1,1, . . . , 𝑠1,𝑛−1) � · · · � 𝐼 (𝑠𝑚,1, . . . , 𝑠𝑚,𝑛−1)
��
 ,

where 𝑥 = (𝑥𝑖, 𝑗 ) runs over 𝑀𝑚,𝑛−1 (C)/(𝑆𝑛−1)
𝑚 such that {𝑞−𝑠1 , . . . , 𝑞−𝑠(𝑛−1)𝑚 } = {𝑥𝑖, 𝑗 | 1 ≤

𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 1}, and 𝑠𝑖, 𝑗 is a complex number such that 𝑞−𝑠𝑖, 𝑗 = 𝑥𝑖, 𝑗 . Hence
dim Hom𝑁 ′ (𝐼 (𝑠1, . . . , 𝑠 (𝑛−1)𝑚),Ψ) is less than or equal to the number of choices of such 𝑥. This proves
the claim. �

Let 𝜋 be an irreducible tempered representation of 𝐺𝑛, and set 𝜎 = Sp(𝜋, 𝑚). For 𝑊Ze ∈ W𝜓
Ze (𝜎)

and 𝑊Sh ∈ W𝜓
Sh (𝜎), one can consider the integrals 𝐼𝑚(𝑠,𝑊Ze,𝑊

0
Ze(𝑥)) and 𝑍𝑚 (𝑠,𝑊Sh,𝑊

0
Sh (𝑥)) defined
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by the same integrals in the previous two subsections. By the same arguments as in these subsections,
we can prove the following theorem. We omit the proof of it.

Theorem 8.11. The integrals 𝐼𝑚 (𝑠,𝑊Ze,𝑊
0
Ze (𝑥)) and 𝑍𝑚 (𝑠,𝑊Sh,𝑊

0
Sh (𝑥)) have the following properties:

(1) The integral 𝐼𝑚(𝑠,𝑊Ze,𝑊
0
Ze(𝑥)) is absolutely convergent for Re(𝑠) � 0.

(2) The function

�	

𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝐿

(
𝑠 + 𝑠𝑖, 𝑗 −

𝑚 − 1
2

, 𝜋

)��

−1

𝐼𝑚(𝑠,𝑊Ze,𝑊
0
Ze(𝑥))

is in C[𝑞−𝑠 , 𝑞𝑠], where 𝑠𝑖, 𝑗 is a complex number such that 𝑞−𝑠𝑖, 𝑗 = 𝑥𝑖, 𝑗 . In particular, it is entire.
(3) The functional equation

𝐼𝑚(𝑚 − 𝑠,𝑊Ze,𝑊
0
Ze(𝑥

−1))

=
�	

𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝛾

(
𝑠 + 𝑠𝑖, 𝑗 −

𝑚 − 1
2

, 𝜋, 𝜓

)��
 𝐼𝑚(𝑠,𝑊Ze,𝑊
0
Ze(𝑥))

holds, where 𝑊Ze(𝑔) = 𝑊Ze (𝑤𝑛𝑚
𝑡𝑔−1𝑤′

𝑛) and 𝑥−1 = (𝑥−1
𝑖, 𝑗 ).

(4) If 𝑊Sh = T 𝜓𝑊Ze, then

𝐼𝑚(𝑠,𝑊Ze,𝑊
0
Ze(𝑥)) = 𝑍𝑚 (𝑠,𝑊Sh,𝑊

0
Sh (𝑥)).

Proof. Omitted. �

9. Essential vectors for Speh representations

We continue to use the notations in the previous section. Recall that 𝜓 is unramified: that is, 𝜓 is trivial
on 𝔬 but nontrivial on𝔭−1. Let 𝜋 be an irreducible tempered representation of 𝐺𝑛, and set 𝜎 = Sp(𝜋, 𝑚).
In this section, we define a notion of essential vectors and prove Theorem 2.1 for Speh representations.

9.1. Essential vectors

The following theorem is a generalisation of [14, (4.1) Théorème].

Theorem 9.1. Let the notation be as above. There exists a unique function 𝑊ess
Sh ∈ W𝜓

Sh (𝜎) such that

(1) 𝑊ess
Sh (𝑔 · 𝜄(𝑘)) = 𝑊ess

Sh (𝑔) for any 𝑔 ∈ 𝐺 and 𝑘 ∈ 𝐾 ′;
(2) for all 𝑠 ∈ C and 𝑥 = (𝑥𝑖, 𝑗 ) ∈ 𝑀𝑚,𝑛−1 (C) with 𝑥𝑖, 𝑗 ∈ C

×,

𝑍𝑚 (𝑠,𝑊
ess
Sh ,𝑊0

Sh (𝑥)) =
𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝐿

(
𝑠 + 𝑠𝑖, 𝑗 −

𝑚 − 1
2

, 𝜋

)
,

where 𝑠𝑖, 𝑗 is a complex number such that 𝑞−𝑠𝑖, 𝑗 = 𝑥𝑖, 𝑗 .

Definition 9.2. We call the unique function 𝑊ess
Sh the essential vector of W𝜓

Sh (𝜎).

First we consider existence. Here, we show it only when 𝐿(𝑠, 𝜋) = 1. The general case will be proven
in Section 9.3 below.

Proof of the existence statement in Theorem 9.1 when 𝐿(𝑠, 𝜋) = 1. Note that 𝑄 ′ = 𝑆′𝑉 ′ is conjugate to
a standard parabolic subgroup of 𝐺 ′ by an element of 𝐾 ′. Hence we have the Iwasawa decomposition
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𝐺 ′ = 𝑄 ′𝐾 ′. Define a smooth function 𝜑 of 𝐷 = 𝑉𝜄(𝐺 ′) by Supp(𝜑) = 𝑉𝜄(𝐾 ′) and 𝜑(𝑢 · 𝜄(𝑘)) = Ψ(𝑢)
for 𝑢 ∈ 𝑉 and 𝑘 ∈ 𝐾 ′. Then 𝜑 ∈ ind𝐷𝑉 (Ψ) and∫

𝑉 ′\𝐺′

𝜑(𝑔)𝑊0
Sh (𝑔; 𝑥) | det 𝑔 |𝑠−

𝑚
2 𝑑𝑔 = 1

for all 𝑠 ∈ C and 𝑥 = (𝑥𝑖, 𝑗 ) ∈ 𝑀𝑚,𝑛−1 (C) with 𝑥𝑖, 𝑗 ∈ C×. By [20, Corollary 3.15], one can take
𝑊Sh ∈ W𝜓

Sh (𝜎) such that 𝑊Sh |𝐷 = 𝜑. Then 𝑍𝑚 (𝑠,𝑊Sh,𝑊
0
Sh (𝑥)) = 1 holds for all 𝑠 ∈ C and 𝑥 = (𝑥𝑖, 𝑗 ) ∈

𝑀𝑚,𝑛−1 (C) with 𝑥𝑖, 𝑗 ∈ C
×. By replacing 𝑊Sh with∫

𝐾 ′

𝑊Sh (𝑔 · 𝜄(𝑘))𝑑𝑘,

we may assume that 𝑊Sh is right 𝜄(𝐾 ′)-invariant. Then 𝑊Sh satisfies the conditions in Theorem 9.1. This
completes the proof of the existence statement in Theorem 9.1 when 𝐿(𝑠, 𝜋) = 1. �

We now prove the uniqueness statement (in general).

Proof of the uniqueness statement in Theorem 9.1. Let 𝐿2 (𝑉 ′\𝐺 ′;Ψ) denote the space of functions 𝜑
on 𝐺 ′ such that 𝜑(𝑣𝑔) = Ψ(𝑣)𝜑(𝑔) for 𝑣 ∈ 𝑉 ′ and 𝑔 ∈ 𝐺 ′, and 𝜑 is square-integrable on 𝑉 ′\𝐺 ′. Define
Π to be the closure of the subspace of 𝐿2 (𝑉 ′\𝐺 ′;Ψ) consisting of smooth functions 𝜑Sh of 𝐺 ′ such that

𝜑Sh (𝑔) =
∫
(𝑉 ′∩𝑁 ′)\𝑉 ′

𝜑Ze(𝑣𝑔)Ψ(𝑣)−1𝑑𝑣

for some smooth function 𝜑Ze that satisfies 𝜑Ze(𝑢𝑔) = Ψ(𝑢)𝜑Ze(𝑔) for 𝑢 ∈ 𝑁 ′ and 𝑔 ∈ 𝐺 ′.

Lemma 9.3. Let 𝜑 be a smooth function on 𝐺 ′ such that

(1) 𝜑 ∈ Π;
(2) 𝜑(𝑔𝑘) = 𝜑(𝑔) for 𝑔 ∈ 𝐺 ′ and 𝑘 ∈ 𝐾 ′;
(3) for any 𝑥 = (𝑥𝑖, 𝑗 ) ∈ 𝑀𝑚,𝑛−1 (C) with 𝑥𝑖, 𝑗 ∈ C

×,∫
𝑉 ′\𝐺′

𝜑(𝑔)𝑊0
Sh(𝑔; 𝑥)𝑑𝑔 = 0.

Then 𝜑 = 0.

Proof. This is an analogue of [14, (3.5) Lemme]. Consider the direct integral expression of the unitary
representation Π of 𝐺 ′:

Π �
∫ ⊕

𝜋′ ∈Irrunit (𝐺′)

𝜋′𝑑𝜇(𝜋′),

where Irrunit (𝐺
′) is the set of equivalence classes of irreducible unitary representations of 𝐺 ′ and 𝜇

is a certain Borel measure on it. For almost all 𝜋′, there exists a 𝐺 ′-equivariant intertwining operator
𝐴𝜋′ : Π → 𝜋′ such that

(𝜑1, 𝜑2)𝐿2 (𝑉 ′\𝐺′;Ψ) =
∫
𝜋′
(𝐴𝜋′𝜑1, 𝐴𝜋′𝜑2)𝜋′𝑑𝜇(𝜋

′)

for 𝜑1, 𝜑2 ∈ Π ⊂ 𝐿2 (𝑉 ′\𝐺 ′;Ψ), where (·, ·)𝜋′ is a 𝐺 ′-invariant inner product on 𝜋′.
Now we assume that 𝜑 ≠ 0. Then there exists 𝜋′ ∈ Irr(𝐺 ′) such that 𝐴𝜋′𝜑 ≠ 0. Since 𝜑 is right 𝐾 ′-

invariant, 𝐴𝜋′𝜑 belongs to the subspace of 𝜋′ consisting of 𝐾 ′-fixed vectors. Then using Lemma 8.10,
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we see that (𝐴𝜋′𝜑, 𝐴𝜋′𝜑)𝜋′ is a linear combination of integrals of the form∫
𝑉 ′\𝐺′

𝜑(𝑔)𝑊0
Sh(𝑔; 𝑥)𝑑𝑔

for some 𝑥 = (𝑥𝑖, 𝑗 ) ∈ 𝑀𝑚,𝑛−1 (C) with 𝑥𝑖, 𝑗 ∈ C
×. This contradicts Condition (3). �

We continue the proof of the uniqueness statement in Theorem 9.1. Now suppose that two functions
𝑊1,𝑊2 ∈ W𝜓

Sh (𝜎) satisfy the conditions of Theorem 9.1. Set 𝑊 = 𝑊1 −𝑊2, which is square-integrable
on 𝑉 ′\𝐺 ′ by Theorem 8.2. Note that 𝑊 = T 𝜓𝑊Ze for some 𝑊Ze ∈ W𝜓

Ze(𝜎). We define 𝑉 ′′ to be the
subgroup of V consisting of 𝑣 = (𝑣𝑖, 𝑗 ) with 𝑣𝑖, 𝑗 ∈ 𝑀𝑛 (𝐹) such that 𝑣𝑖, 𝑗 is of the form

𝑣𝑖, 𝑗 =

(
𝛿𝑖, 𝑗1𝑛−1 𝑢𝑖, 𝑗

0 𝛿𝑖, 𝑗

)
for 𝑢𝑖, 𝑗 ∈ 𝐹𝑛−1. Then 𝑉 ′ normalises 𝑉 ′′ and 𝑉 = 𝑉 ′𝑉 ′′. Hence

𝑊 (𝜄(𝑔)) =
∫
(𝑉∩𝑁 )\𝑉

𝑊Ze(𝑢 · 𝜄(𝑔))Ψ(𝑢)−1𝑑𝑢

=
∫
(𝑉 ′∩𝑁 )\𝑉 ′

(∫
(𝑉 ′′∩𝑁 )\𝑉 ′′

𝑊Ze(𝑢 · 𝜄(𝑣𝑔))Ψ(𝑢)−1𝑑𝑢

)
Ψ(𝑣)−1𝑑𝑣.

Since 𝜄(𝐺 ′) normalises 𝑉 ′′, and since the action of 𝜄(𝑁 ′) on 𝑉 ′′ does not change the invariant measure
on (𝑉 ′′ ∩ 𝑁)\𝑉 ′′, if we set

𝜑Ze(𝑔
′) =

∫
(𝑉 ′′∩𝑁 )\𝑉 ′′

𝑊Ze(𝑢 · 𝜄(𝑔′))Ψ(𝑢)−1𝑑𝑢

for 𝑔′ ∈ 𝐺 ′, then 𝜑Ze(𝑢
′𝑔′) = Ψ(𝑢′)𝜑Ze(𝑔

′) for 𝑢′ ∈ 𝑁 ′ and 𝑔′ ∈ 𝐺 ′. Therefore, we have 𝑊 ◦ 𝜄 ∈ Π.
Hence we can apply Lemma 9.3 to 𝑊 ◦ 𝜄, and we obtain that 𝑊 ◦ 𝜄 = 0. Since 𝐷 = 𝑉 ′𝜄(𝐺 ′), it follows
that 𝑊 |𝐷 = 0. By Theorem 8.2, we conclude that 𝑊 = 0, as desired. This completes the proof of the
uniqueness statement in Theorem 9.1. �

Corollary 9.4. Let 𝑊 ∈ W𝜓
Ze (𝜎). If W is right 𝜄(𝐾 ′)-invariant, and if 𝑊 |𝐿 = 0, then 𝑊 = 0.

Proof. By the assumptions, one has 𝐼𝑚(𝑠,𝑊,𝑊0
Ze(𝑥)) = 0 for all 𝑠 ∈ C and 𝑥 = (𝑥𝑖, 𝑗 ) ∈ 𝑀𝑚,𝑛−1 (C)

with 𝑥𝑖, 𝑗 ∈ C
×. By the same argument as in the proof of the uniqueness statement in Theorem 9.1, we

have T 𝜓𝑊 = 0, and hence 𝑊 = 0. �

As an application, we have a part of Theorem 2.1 for Speh representations. Recall from Example 2.5
(4) that

𝜆𝜎 = (0, . . . , 0︸���︷︷���︸
(𝑛−1)𝑚

, 𝑐𝜋 , . . . , 𝑐𝜋︸�������︷︷�������︸
𝑚

) ∈ Λ𝑛𝑚,

where 𝑐𝜋 is the conductor of 𝜋.

Proposition 9.5. Let 𝜆 ∈ Λ𝑛𝑚. If 𝜆 < 𝜆𝜎 , then 𝜎K𝑛𝑚,𝜆 = 0.

Proof. If 𝜆 < 𝜆𝜎 , then the first (𝑛− 1)𝑚 components of 𝜆 are 0. Hence there exists a compact subgroup
𝐾𝜆 of G conjugate to K𝑛𝑚,𝜆 such that

• 𝐾𝜆 ⊃ 𝜄(𝐾 ′);
• 𝐾𝜆 ∩ 𝐿 ⊃ K𝑛,𝜆1 × · · · ×K𝑛,𝜆𝑚 with 𝜆𝑖 ∈ Λ𝑛 of the form 𝜆𝑖 = (0, . . . , 0, 𝑎𝑖) such that 0 ≤ 𝑎𝑖 < 𝑐𝜋 for

some 1 ≤ 𝑖 ≤ 𝑚.
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Let 𝑊 ∈ W𝜓
Ze(𝜎)

𝐾𝜆 . Since 𝜋K𝑛,𝜆𝑖 = 0 by [14, (5.1) Théorème], we see that 𝑊 |𝐿 = 0. It follows from
Corollary 9.4 that 𝑊 = 0. Hence 𝜎K𝑛𝑚,𝜆 � 𝜎𝐾𝜆 = 0. �

9.2. Properties of essential vectors

Recall that 𝐺 = GL𝑛𝑚 (𝐹) and 𝐾 = GL𝑛𝑚 (𝔬). For a positive integer a, define 𝐾 (𝑎) ⊂ 𝐾 to be the
subgroup consisting of 𝑘 = (𝑘𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑚 ∈ 𝐾 with 𝑘𝑖, 𝑗 ∈ 𝑀𝑛 (𝔬) such that the last row of 𝑘𝑖, 𝑗 is
congruent to (0, . . . , 0, 𝛿𝑖, 𝑗 ) mod 𝔭𝑎 for 1 ≤ 𝑖, 𝑗 ≤ 𝑚. Put another way, if we denote by 𝐷 (𝔬/𝔭𝑎) the
image of 𝐷 ∩ 𝐾 under 𝐾 → GL𝑛𝑚(𝔬/𝔭𝑎), then 𝐾 (𝑎) is the inverse image of 𝐷 (𝔬/𝔭𝑎). Note that 𝐾 (𝑎)
is conjugate to K𝑛𝑚,𝜆 with

𝜆 = (0, . . . , 0︸���︷︷���︸
(𝑛−1)𝑚

, 𝑎, . . . , 𝑎︸���︷︷���︸
𝑚

) ∈ Λ𝑛𝑚

by an element of K.
Let 𝜋 be an irreducible tempered representation of 𝐺𝑛, and set 𝜎 = Sp(𝜋, 𝑚). We prove the

following proposition in this subsection. It together with Proposition 9.5 contains Theorem 2.1 for 𝜎
when 𝐿(𝑠, 𝜎) = 1.

Proposition 9.6. Suppose that 𝐿(𝑠, 𝜋) = 1. Then W𝜓
Sh (𝜎)

𝐾 (𝑐𝜋 ) is the one-dimensional vector space
spanned by the essential vector 𝑊ess

Sh .

The proof of Proposition 9.6 is analogous to that of [14, (5.1) Théorème]. Suppose that 𝐿(𝑠, 𝜋) = 1.
For 𝑑 ∈ Z and 𝑊Sh ∈ W𝜓

Sh (𝜎), we consider

𝑍𝑚,𝑑 (𝑊Sh; 𝑥) =
∫
𝑉 ′\{𝑔∈𝐺′ | | det 𝑔 |=𝑞−𝑑 }

𝑊Sh (𝜄(𝑔))𝑊
0
Sh(𝑔; 𝑥) | det 𝑔 |−

𝑚
2 𝑑𝑔.

Note that

𝑍𝑚,𝑑 (𝑊Sh; 𝑥𝑥) = 𝑥𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥),

where 𝑥𝑥 = (𝑥𝑥𝑖, 𝑗 ) if 𝑥 = (𝑥𝑖, 𝑗 ).

Lemma 9.7. There is an integer 𝑑 (𝑊Sh) such that 𝑍𝑚,𝑑 (𝑊Sh; 𝑥) = 0 for any 𝑑 < 𝑑 (𝑊Sh) and 𝑥 =
(𝑥𝑖, 𝑗 ) ∈ 𝑀𝑚,𝑛−1 (C) with 𝑥𝑖, 𝑗 ∈ C

×.

Proof. By (the proof of) Proposition 8.9, it is enough to show an analogous assertion for
𝐼𝑚(𝑠,𝑊Ze,𝑊

0
Ze (𝑥)) with𝑊Ze ∈ W𝜓

Ze(𝜎). Let 𝑔 ∈ 𝐺 ′ with | det 𝑔 | = 𝑞−𝑑 such that𝑊Ze(𝜄(𝑔))𝑊
0
Ze(𝑔; 𝑥) ≠

0. We take 𝑘 ′ ∈ 𝐾 ′, 𝑢′ ∈ 𝑁 ′ and 𝑎1, . . . , 𝑎 (𝑛−1)𝑚 ∈ Z such that

𝑔 = 𝑢′
�		

𝜛𝑎1

. . .

𝜛𝑎(𝑛−1)𝑚

���
 𝑘 ′.
Since

𝑊0
Ze(𝑔; 𝑥) = 𝐶

𝑚∏
𝑗=1

𝑊0 �		

�		

𝜛𝑎(𝑛−1) ( 𝑗−1)+1

. . .

𝜛𝑎(𝑛−1) 𝑗

���
 ; 𝑥𝑖,1, . . . , 𝑥𝑖,𝑛−1
���


for some 𝐶 ≠ 0 (depending on 𝑎1, . . . , 𝑎 (𝑛−1)𝑚), we must have 𝑎 (𝑛−1) ( 𝑗−1)+1 ≥ · · · ≥ 𝑎 (𝑛−1) 𝑗 for any
1 ≤ 𝑗 ≤ 𝑚. In particular, 𝑑 =

∑(𝑛−1)𝑚
𝑖=1 𝑎𝑖 ≥

∑𝑚
𝑗=1 (𝑛 − 1)𝑎 (𝑛−1) 𝑗 .
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For 𝑙 ≥ 0, let 𝑉 ′′(𝔭𝑙) be the subgroup of K consisting of (𝑘𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑚 with 𝑘𝑖, 𝑗 ∈ 𝑀𝑛 (𝔬) such that
𝑘𝑖, 𝑗 is of the form

𝑘𝑖, 𝑗 =

(
𝛿𝑖, 𝑗1𝑛−1 𝑢𝑖, 𝑗

0 𝛿𝑖, 𝑗

)
for 𝑢𝑖, 𝑗 ∈ (𝔭𝑙)𝑛−1. Since 𝑊Ze is smooth, one can take sufficiently large l such that 𝑊Ze is right 𝑉 ′′(𝔭𝑙)-
invariant. Note that 𝜄(𝐾 ′) acts on 𝑉 ′′(𝔭𝑙). In particular, for any 𝑧1, . . . , 𝑧𝑚 ∈ 𝔭𝑙 , we can take 𝑢 ∈ 𝑉 ′′(𝔭𝑙)
such that (𝜄(𝑘 ′) · 𝑢 · 𝜄(𝑘 ′)−1)𝑛 𝑗−1,𝑛 𝑗 = 𝑧 𝑗 for 1 ≤ 𝑗 ≤ 𝑚. Then we have

𝑊Ze(𝜄(𝑔)) = 𝑊Ze
�		
𝜄(𝑢′)𝜄

�		

𝜛𝑎1

. . .

𝜛𝑎𝑛−1

���
 𝜄(𝑘 ′)𝑢
���


=
�	

𝑚∏
𝑗=1

𝜓(𝜛𝑎(𝑛−1) 𝑗 𝑧 𝑗 )
��
𝑊Ze(𝜄(𝑔)).

Since 𝑧1, . . . , 𝑧𝑚 ∈ 𝔭𝑙 are arbitrary, if 𝑊Ze(𝜄(𝑔)) ≠ 0, then we must have 𝑎 (𝑛−1) 𝑗 ≥ −𝑙 for 1 ≤ 𝑗 ≤ 𝑚. In
conclusion, we have 𝑑 ≥

∑𝑚
𝑗=1 (𝑛−1)𝑎 (𝑛−1) 𝑗 ≥ −(𝑛−1)𝑚𝑙. This completes the proof of the lemma. �

By the proof of this lemma, one can take 𝑑 (𝑊Sh) = −(𝑛 − 1)𝑚𝑙 if 𝑊Sh is right 𝑉 ′′(𝔭𝑙)-invariant. In
particular, if 𝑊Sh ∈ W𝜓

Sh (𝜎)
𝐾 (𝑎) , then we can take 𝑑 (𝑊Sh) = 0 and 𝑑 (𝑊Sh) = −(𝑛 − 1)𝑚𝑎.

Now, if we set 𝑥 = 𝑞−𝑠 , we have

𝑍𝑚 (𝑠,𝑊Sh,𝑊
0
Sh (𝑥)) =

∑
𝑑∈Z

𝑥𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥) =
∑

𝑑≥𝑑 (𝑊Sh)

𝑥𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥).

If we replace 𝜋, 𝑊Sh and 𝜓 with �̃�, 𝑊Sh and 𝜓−1, respectively, since 𝑊0
Sh (𝑥) = 𝑊0

Sh (𝑥
−1) (with respect

to 𝜓), we have

𝑍𝑚 (𝑠,𝑊Sh,𝑊
0
Sh (𝑥)) =

∑
𝑑≥𝑑 (𝑊Sh)

𝑥𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥−1),

and hence

𝑍𝑚(𝑚 − 𝑠,𝑊Sh,𝑊
0
𝑚(𝑥)) =

∑
𝑑≥𝑑 (𝑊Sh)

𝑞−𝑚𝑥−𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥−1).

By the functional equation (Theorem 8.11 (3)), using the assumption that 𝐿(𝑠, 𝜋) = 1, we have∑
𝑑≥𝑑 (𝑊Sh)

𝑞−𝑚𝑥−𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥−1)

=
�	

𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝜀

(
𝑠 + 𝑠𝑖, 𝑗 −

𝑚 − 1
2

, 𝜋, 𝜓

)��

∑

𝑑≥𝑑 (𝑊Sh)

𝑥𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥)

as a formal power series of x, where 𝑠𝑖, 𝑗 is a complex number such that 𝑥𝑖, 𝑗 = 𝑞−𝑠𝑖, 𝑗 . If we write
𝜀(𝑠, 𝜋, 𝜓) = 𝜀0𝑞

−𝑐𝜋 𝑠 = 𝜀0𝑥
𝑐𝜋 , we have

𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝜀

(
𝑠 + 𝑠𝑖, 𝑗 −

𝑚 − 1
2

, 𝜋, 𝜓

)
= 𝜀𝑚(𝑛−1)

0 𝑞
𝑐𝜋𝑚(𝑚−1) (𝑛−1)

2 𝑥𝑐𝜋𝑚(𝑛−1)
𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝑥𝑐𝜋𝑖, 𝑗 .
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In particular, if 𝑑 > 𝑑 ′(𝑊Sh) � −𝑐𝜋𝑚(𝑛 − 1) − 𝑑 (𝑊Sh), we must have 𝑍𝑚,𝑑 (𝑊Sh; 𝑥) = 0. Hence we
obtain the following.
Proposition 9.8. Assume that 𝐿(𝑠, 𝜋) = 1. Write 𝜀(𝑠, 𝜋, 𝜓) = 𝜀0𝑞

−𝑐𝜋 𝑠 . For 𝑊Sh ∈ W𝜓
Sh (𝜎), let 𝑑 (𝑊Sh)

and 𝑑 (𝑊Sh) be the constants in Lemma 9.7, and set 𝑑 ′(𝑊Sh) = −𝑐𝜋𝑚(𝑛 − 1) − 𝑑 (𝑊Sh). Then

𝑍𝑚(𝑠,𝑊Sh,𝑊
0
Sh (𝑥)) =

∑
𝑑 (𝑊Sh) ≤𝑑≤𝑑′ (𝑊Sh)

𝑥𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥)

is a finite sum. Moreover, we have a functional equation∑
𝑑 (𝑊Sh) ≤𝑑≤𝑑′ (𝑊Sh)

𝑞−𝑚𝑥−𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥−1)

= 𝜀𝑚(𝑛−1)
0 𝑞

𝑐𝜋𝑚(𝑚−1) (𝑛−1)
2 𝑥𝑐𝜋𝑚(𝑛−1) �	


𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝑥𝑐𝜋𝑖, 𝑗
��


∑
𝑑 (𝑊Sh) ≤𝑑≤𝑑′ (𝑊Sh)

𝑥𝑑𝑍𝑚,𝑑 (𝑊Sh; 𝑥).

Now we prove Proposition 9.6.

Proof of Proposition 9.6. First, we show that the essential vector 𝑊ess
Sh is 𝐾 (𝑐𝜋)-invariant. By Proposi-

tion 9.8, we have

𝑍𝑚 (𝑚 − 𝑠,𝑊ess
Sh ,𝑊0

Sh (𝑥)) = 𝜀𝑚(𝑛−1)
0 𝑞

𝑐𝜋𝑚(𝑚−1) (𝑛−1)
2 𝑥𝑐𝜋𝑚(𝑛−1) �	


𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝑥𝑐𝜋𝑖, 𝑗
��
 ,

where 𝑥 = 𝑞−𝑠 . Set 𝑎 = 𝜛𝑐𝜋 1(𝑛−1)𝑚, which is in the centre of 𝐺 ′. We notice that | det 𝑎−1 |
𝑚
2 −𝑠 =

𝑞
𝑐𝜋𝑚2 (𝑛−1)

2 𝑥𝑐𝜋𝑚(𝑛−1) and

𝑊0
Sh (𝑔𝑎

−1; 𝑥) = �	

𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝑥𝑐𝜋𝑖, 𝑗
��
𝑊0

Sh (𝑔; 𝑥).

If we define 𝑊 ′
Sh ∈ W𝜓−1

Sh (�̃�) by

𝑊 ′
Sh (𝑔) = 𝑊ess

Sh (𝑔 · 𝜄(𝑎)),

then it is right 𝜄(𝐾 ′)-invariant and

𝑍𝑚 (𝑚 − 𝑠,𝑊 ′
Sh,𝑊

0
Sh (𝑥)) = 𝑞

𝑐𝜋𝑚2 (𝑛−1)
2 𝑥𝑐𝜋𝑚(𝑛−1) �	


𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝑥𝑐𝜋𝑖, 𝑗
��
 .

By Lemma 9.3 and Theorem 8.2, we see that 𝑊ess
Sh = 𝐶𝑊 ′

Sh for some constant C. Hence

𝑊ess
Sh (𝑔) = 𝐶𝑊 ′

Sh (𝑔) = 𝐶𝑊ess
Sh (𝑤𝑛𝑚

𝑡𝑔−1𝑤′
𝑛 · 𝜄(𝜛

𝑐𝜋 1(𝑛−1)𝑚)).

Since 𝑊ess
Sh is right 𝑉 ′′(𝔬)-invariant, it follows that 𝑊ess

Sh is right 𝑡𝑉 ′′(𝔭𝑐𝜋 )-invariant. Therefore, we
conclude that 𝑊ess

Sh is right 𝐾 (𝑐𝜋)-invariant.
Next, we show that dim(𝜎𝐾 (𝑐𝜋 ) ) = 1. If WZe ∈ W𝜓

Ze(𝜎)
𝐾 (𝑐𝜋 ) , we have

𝑊Ze |𝐿 ∈

(
𝑚⊗
𝑖=1

W𝜓 (𝜋 | · |
(𝑚+1−2𝑖) (𝑛−1)

2 )

)𝐾 (𝑐𝜋 )∩𝐿

,
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where the right-hand side is one-dimensional and is spanned by the tensor product of essential vectors.
Hence 𝑍𝑚 (𝑠, T 𝜓𝑊Ze,𝑊

0
Sh (𝑥)) = 𝐼𝑚(𝑠,𝑊Ze,𝑊

0
Ze(𝑥)) does not depend on 𝑠 ∈ C and 𝑥 = (𝑥𝑖, 𝑗 ) ∈

𝑀𝑚,𝑛−1 (C) with 𝑥𝑖, 𝑗 ∈ C
×. Using the uniqueness statement in Theorem 9.1, we conclude that T 𝜓𝑊Ze

is a constant multiple of 𝑊ess
Sh . �

Since K𝑛𝑚,𝜆𝜎 is conjugate to 𝐾 (𝑐𝜋), by Propositions 9.5 and 9.6, we complete the proof of
Theorem 2.1 for 𝜎 = Sp(𝜋, 𝑚) such that 𝐿(𝑠, 𝜋) = 1. As explained in Section 5.2, this together with
results in Sections 6.1, 6.4 and Lemma 7.2 completes Theorem 2.1 in all cases.

To prove Theorem 9.1 in Section 9.3, we use the following special case of Theorem 2.1.

Corollary 9.9. Let 𝜋 be an irreducible tempered representation of 𝐺𝑛, and set 𝜎 = Sp(𝜋, 𝑚). Then we
have

dim(𝜎K𝑛𝑚,𝜆 ) =

{
1 if 𝜆 = 𝜆𝜎 ,

0 if 𝜆 < 𝜆𝜎 .

9.3. Proof of Theorem 9.1: the case where 𝑳(𝒔, 𝝅) ≠ 1

Finally, we prove the existence statement in Theorem 9.1 in general. Before doing it, we state the
following consequence of Corollary 9.9.

Corollary 9.10. Let 𝜋 be an irreducible tempered representation of 𝐺𝑛, and set 𝜎 = Sp(𝜋, 𝑚). Then
the restriction map 𝑊Ze ↦→ 𝑊Ze |𝐿 gives an isomorphism of one-dimensional vector spaces

W𝜓
Ze (𝜎)

𝐾 (𝑐𝜋 ) �−→ W𝜓 (𝜋 | · |
(𝑚−1) (𝑛−1)

2 )𝐾 (𝑐𝜋 ) ⊗ · · · ⊗ W𝜓 (𝜋 | · |−
(𝑚−1) (𝑛−1)

2 )𝐾 (𝑐𝜋 ) .

Proof. Since the compact open subgroup 𝐾 (𝑐𝜋) is conjugate to K𝑛𝑚,𝜆𝜎 , we conclude that 𝜎𝐾 (𝑐𝜋 ) is
one-dimensional. By Lemma 9.4, the restriction map 𝑊Ze ↦→ 𝑊Ze |𝐿 is injective on W𝜓

Ze(𝜎)
𝐾 (𝑐𝜋 ) . Since

the image is in (
𝑚⊗
𝑖=1

W𝜓 (𝜋 | · |
(𝑚+1−2𝑖) (𝑛−1)

2 )

)𝐾 (𝑐𝜋 )∩𝐿

,

which is one-dimensional, we obtain the desired isomorphism. �

Proof of the existence statement in Theorem 9.1. By Lemma 8.4 and Corollary 9.10 together with [14,
(4.1) Théorème], we can find 𝑊ess

Ze ∈ W𝜓
Ze(𝜎)

𝐾 (𝑐𝜋 ) such that

𝐼𝑚(𝑠,𝑊
ess
Ze ,𝑊

0
Ze(𝑥)) =

𝑚∏
𝑖=1

𝑛−1∏
𝑗=1

𝐿

(
𝑠 + 𝑠𝑖, 𝑗 −

𝑚 − 1
2

, 𝜋

)
.

Then 𝑊ess
Sh = T 𝜓Wess

Ze satisfies the conditions in Theorem 9.1. �
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