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Abstract

Wind turbine towers are subjected to highly varying internal loads, characterized by large uncertainty. The
uncertainty stems frommany factors, includingwhat the actual wind fields experienced over timewill be, modeling
uncertainties given the various operational states of the turbine with and without controller interaction, the
influence of aerodynamic damping, and so forth. To monitor the true experienced loading and assess the fatigue,
strain sensors can be installed at fatigue-critical locations on the turbine structure. A more cost-effective and
practical solution is to predict the strain response of the structure based only on a number of acceleration
measurements. In this contribution, an approach is followed where the dynamic strains in an existing onshore
wind turbine tower are predicted using a Gaussian process latent force model. By employing this model, both the
applied dynamic loading and strain response are estimated based on the acceleration data. The predicted dynamic
strains are validated using strain gauges installed near the bottom of the tower. Fatigue is subsequently assessed by
comparing the damage equivalent loads calculated with the predicted as opposed to the measured strains. The
results confirm the usefulness of the method for continuous tracking of fatigue life consumption in onshore wind
turbine towers.

Impact Statement

As the first large-scale wind farms reach their end-of-lifetime, attention is drawn to the importance of having
accurate knowledge on structural reserves that can enable wind farm operators to make reliable decisions about
lifetime extension in the future. In this contribution, a methodology for fatigue load monitoring on the basis of a
sensor network is proposed and validated. The loads exciting the tower are estimated in conjunction with its
dynamic response using a Gaussian process latent force model. Estimates of the full-field strain response can be
derived, and therewith fatigue consumption at critical locations in the structure. The results confirm the potential
of the proposed methodology for continuous tracking of fatigue life consumption in the structures supporting
wind turbine rotors.

1. Introduction

Towers of onshore wind turbines are highly susceptible to fatigue damage given the cyclic wind loading,
where the cyclic nature of the experienced wind loading is a consequence of rotational sampling of the
wind field by the rotor. In recent years, a lot of effort has been spent on indirect measurement of the true
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fatigue life consumption by means of so-called virtual sensing techniques. Virtual sensing refers to the
prediction of response quantities at unmeasured, but critical locations on a structure, based on limited data
from sensors installed at easily accessible locations. In the case of wind turbines, also data from the
Supervisory Control and Data Acquisition (SCADA) system, present in all modern wind turbines, can be
utilized for the purpose of virtual sensing.

Several different techniques for virtual sensing have been proposed. A distinction can be made
between data-driven models, physics-based models, and hybrid techniques. Data-driven techniques
use artificial intelligence to train black-box models from measured or simulated data. For example,
Cosack (2010), Smolka and Cheng (2013), Vera-Tudela andKühn (2017), and Schröder et al. (2018) used
artificial neural networks with SCADA as input to estimate damage equivalent loads at different locations
of the structure. Ziegler et al. (2017, 2019) applied a k-nearest neighbor regression algorithm to
extrapolate strain measurements along a monopile substructure. Recently, d N Santos et al. (2021)
estimate thrust loads from 1s SCADA data through artificial neural networks, which are then combined
with high-resolution accelerationmeasurements to estimate tower loads. Gulgec et al. (2020) apply neural
networks to estimate time-history of strain responses directly from acceleration measurements. Other
types of machine learning have also been applied in the context of virtual sensing, such as a Gaussian
process regression by Avendaño-Valencia et al. (2021).

In the physics-based approach, a complete numerical model of the asset is used for virtual sensing.
This requires an update of the model with a limited set of measurement data. Augustyn et al. (2020)
recently used in situ acceleration measurements from a jacket substructure of an offshore wind turbine
to update its numerical counterpart. The updated model can then be used for aero-hydro-elastic
simulations to obtain loads on unmeasured locations. Currently, there is a trend toward framing these
concepts as “digital twins.” A digital twin refers to a digital replicate of the physical asset continuously
updated with real-time measurements (Wagg et al., 2020). Recent works promoting the concept of
digital twins for wind turbines have been published by Branlard et al. (2020), Schröder (2020), and
Augustyn (2021).

In hybrid schemes, measurements are combined with simplified numerical models of the asset for
virtual sensing. This includes model-based extrapolation of responses and techniques where the forces
driving the response are also estimated. In the former category, one finds the modal decomposition and
expansion approach (MD&E), first applied in the field of (offshore) wind turbine foundation moni-
toring by Iliopoulos et al. (2014, 2016) and Noppe et al. (2016). Using MD&E, a classical inverse
problem is solved where modal coordinates of the measured response are estimated through a pseudo-
inverse of the model-based eigenvector matrix. To improve accuracy, a system identification experi-
ment followed by a model update can be performed to obtain the eigenvectors. Also, the inverse
problems can be solved separately for different frequency bands using multi-band MD&E (Iliopoulos
et al., 2017), where the set of eigenvectors used in the inversion can be more carefully tailored to the
expected response from each mode within the frequency band.

The second category of virtual sensing techniques encompasses the Kalman filter based methods
(Kalman, 1960), in numerous variants. In this case, the response extrapolation is performed by
simultaneously estimating the driving forces and the states of the system, where the latter is often
defined to be the modal coordinates. This is done in a stochastic setting, accounting for both modeling
and measurement errors, and applying principles of minimum-variance unbiased estimation. In this
category falls, in no particular order, the augmented Kalman filter (Lourens, Reynders, et al., 2012), the
dual Kalman filter (Eftekhar Azam et al., 2015; Tatsis and Lourens, 2016), and the joint input-response
estimator (Gillijns and De Moor, 2007; Lourens, Papadimitriou, et al., 2012; Maes et al., 2016).
Although strongly related in terms of their basic principles, these variants differ in their modeling of
the input force. In the dual and augmented filter, the force is modeled as a randomwalk, and its variance
is tuned based on the measurement data. In the joint input-response estimator, however, no assumptions
on the evolution of the force in time are made, and its time history is found solely through minimum-
variance unbiased estimation in the context of a set of uncertain model equations. Although excellent
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results have been obtained with the Kalman filter based methods in various applications, both in the
laboratory and full-scale, a major drawback remains their instability. Especially in the case of
acceleration-only measurements, the more classical filters require modifications to improve their
stability (Eftekhar Azam et al., 2015; Naets et al., 2015). Often these modifications come at a cost,
for example, the need to include additional parameters that require a cumbersome and fragile tuning
process.

In this contribution, the virtual sensing problem is solved using a Gaussian process latent force
model (GPLFM). The GPLFM relieves instability problems and/or fragile tuning processes that afflict
the Kalman filter based methods, while at the same time preserving the benefits of a simultaneous
estimation of both the driving forces and the system states. The GPLFM was first applied to the joint
input-state estimation problem byNayek et al. (2019) and extended for the solution of joint input-state-
parameter identification by Rogers et al. (2020), both drawing on work by Hartikainen and Särkkä
(2010), Särkkä (2013), and Särkkä and Solin (2019). Unlike the Kalman filter based methods, it
models the driving forces as Gaussian processes, driven by specified covariance functions. The
parameters defining the covariance functions can be optimized for using the measured data, resulting
in a flexible, yet robust framework for incorporating prior information on the time-varying behavior of
the force.

In the following sections, an application of the GPLFM for virtual sensing on a full-scale wind turbine
tower is presented. Section 2 provides the theoretical framework, followed by the full-scale case study in
Section 3, including the validation through strain gauges installed near the bottom of the tower. For
finding the parameters that define the covariance functions of the unknown forcing, a new procedure
exploiting the physics underlying the GPLFM is suggested in Section 2.6 and applied in Section 3.3. It is
noted here that the estimation of these unknown parameters is commonly realized by finding the
parameters such that the posterior distribution is maximized. More theoretical background can be found
in Särkkä (2013), where several strategies for parameter estimation are discussed, such as maximum a
posteriori (applied in Nayek et al., 2019) andMarkov ChainMonte Carlo (applied in Rogers et al., 2020).
The downside of these approaches is the need for a robust and expensive optimization process, and
furthermore, the loss of physical relevance of this process. It is shown that the suggested simpler, more
intuitive procedure can be effective for finding the hyperparameters needed to characterize the covariance
of the unknown forces.

2. Theoretical Framework

The GPLFM is built by combining a mechanical model of the wind turbine structure and a stochastic
model of the unknown load. Both models are expressed in state-space form and are subsequently
combined into an augmented state-space model. This augmented model is a stochastic representation
of the system, including the response and the load. The following subsections describe each model and
show how the resulting augmented model is handled. In particular, the computation of the prior and the
posterior as well as the estimation of the hyperparameters of the model are presented.

2.1 Mechanical model

Consider the governing equation of motion of a linear system discretized in space,

M€u tð ÞþC _u tð ÞþKu tð Þ¼ Spp tð Þ,
where themass, damping, and stiffnessmatrices are represented byM,C,K∈ℝnu�nu , respectively, and the
load locations are defined through Sp ∈ℝnu�np . The response of the system is defined as u tð Þ∈ℝnu , and
the loads as p tð Þ∈ℝnp . Themechanical model employed in this work considers only a single load: np ¼ 1.

The classical modal representation of this equation of motion reads

I€um tð ÞþΓ _um tð ÞþΩ2um tð Þ¼ΦTSpp tð Þ,
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withum ∈ℝnu themodal coordinates,Φ∈ℝnu�nu themass-normalized eigenvectormatrix (i.e.,ΦTMΦ¼ I),
and Γ∈ℝnu�nu andΩ∈ℝnu�nu diagonal matrices formed by the natural frequencies ωn and damping ratios
ζ n so that Ω¼ diag ωnð Þ and Γ¼ diag 2ζ nωnð Þ, respectively.

A subset of modes nm ≤ nu is assumed to be sufficient to accurately approximate the response. In other
words, modal reduction is employed as

u tð Þ ≈Φrumr tð Þ,
with the reduced mode shape matrixΦr ∈ℝnu�nm and modal coordinates umr ∈ℝnm . The reduced system
matrices are written as Ωr ∈ℝnm�nm and Γr ∈ℝnm�nm .

Finally, the reduced-order modal model is written in state-space form

_umr

€umr

� �
|fflfflffl{zfflfflffl}
_xm tð Þ

¼ 0 I

�Ω2
r �Γr

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Acm

umr

_umr

� �
|fflfflffl{zfflfflffl}
xm tð Þ

þ 0

ΦT
r Sp

� �
|fflfflffl{zfflfflffl}

Bcm

p tð Þ,
(1)

with xm ∈ℝ2nm ,Acm ∈ℝ2nm�2nm , Bcm ∈ℝ2nm�np .

2.2. Stochastic load model

The stochastic load model is defined as a stationary Gaussian process with zero mean and a Matérn
covariance function with ν¼ 3=2 (see Rasmussen and Williams, 2006), hereafter referred to as the
Matérn32 covariance function:

p tð Þ�GP 0, κM32 τ;σ, lscð Þð Þ,

κM32 τ;σ, lscð Þ¼ σ2 1þ
ffiffiffi
3

p jτj
lsc

� �
e �

ffiffi
3

p jτj
lsc

� 	
,

where τ corresponds to the time lag τ¼ jt� t0j. The covariance function requires the definition of two
hyperparameters: σ and lsc, where σ controls the amplitude of the covariance function, and lsc the extent of
the correlation in time. It is highlighted that σ has force units (N), as it is related to the amplitude of the
load, and lsc has time units (s), since it is directly related to the expected frequency content of the load: a
lower lsc result in the presence of higher frequencies and vice versa. For further details, see Rasmussen and
Williams (2006) and Hartikainen and Särkkä (2010).

A Gaussian process with a Matérn32 covariance function can be expressed as the output of the
following linear time invariant stochastic differential equation (Hartikainen and Särkkä, 2010):

€p tð Þþ 2

ffiffiffi
3

p

lsc


 �
_p tð Þþ 3

l2sc

 !
p tð Þ¼w tð Þ: (2)

Note that it is a stochastic differential equation as it is driven by a white Gaussian noisew tð Þwith a known
spectral density

w tð Þ�N 0, σ2w
� 	

;σ2w ¼
12

ffiffiffi
3

p
σ2

l3sc
:

Equation (2) can again be written in continuous-time state-space form as

_p tð Þ
€p tð Þ

� �
|fflffl{zfflffl}
_z tð Þ

¼
0 1

�
3

l2sc
�2

ffiffiffi
3

p

lsc

24 35
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Fc

p tð Þ
_p tð Þ

� �
|fflffl{zfflffl}
z tð Þ

þ 0

1

� �
|{z}
Lc

w tð Þ,
(3)

with z tð Þ∈ℝ2, Fc ∈ℝ2x2 and Lc ∈ℝ2. The load p tð Þ is directly related to the state vector z tð Þ by
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p tð Þ¼Hcz tð Þ,
with Hc¼ 1 0½ �:

Note that the performance of the GPLFM in virtual sensing depends on an appropriate choice of the GP
kernel and its hyperparameters. A large number of convenient kernels are available, where a selection is
made based on prior knowledge of the time-varying behavior of the modeled process, for example,
periodicity, smoothness, or differentiability. The Matérn kernel chosen here is used to characterize
processes that are finitely differentiable (Hartikainen and Särkkä, 2010), and is often employed in
engineering applications because of its flexibility in accommodating a broad range of process traits.

2.3. Augmented model

Both state space models (equations 1 and 3) can be combined into an augmented system of equations as

_xm tð Þ
_z tð Þ

� �
|fflfflffl{zfflfflffl}

_za tð Þ

¼ Acm BcmHc

0 Fc

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Fa
c

xm tð Þ
z tð Þ

� �
|fflfflffl{zfflfflffl}

za tð Þ

þ 0

Lcw tð Þ

� �
|fflfflfflffl{zfflfflfflffl}

wa tð Þ

(4)

with

wa tð Þ�N 0, Qa
c

� 	
;Qa

c ¼ 0 0
0 Lcσ2wL

T
c

h i
,

Where Qa
c ∈ℝ2�2 is the augmented noise covariance matrix, za tð Þ∈ℝ2nmþ2, and Fa

c ∈ℝ 2nmþ2ð Þ� 2nmþ2ð Þ.
Note that the augmented state-space model is a stochastic differential equation. The augmented state

has mean ẑa tð Þ¼E za tð Þ½ � and covariance Pa tð Þ¼E za tð Þza tð ÞT� 
. Expressions that define the derivatives

of these statistics can be found through equation (4). The details can be found from Särkkä and Solin
(2019):

_̂z
a
tð Þ¼Fa

c ẑ
a tð Þ, (5)

_P
a
tð Þ¼Fa

cP
a tð ÞþPa tð ÞFa

c
T þQa

c , (6)

with ẑa tð Þ∈ℝ2nmþ2, Pa tð Þ∈ℝ 2nmþ2ð Þ� 2nmþ2ð Þ.
It is highlighted that when combining the (deterministic) mechanical model (equation 1) with the

stochastic model for the load (equation 3) into the augmented model (equation 4), a stochastic definition
for the state of the system is obtained (augmented state za). In particular, za is now a Gaussian process: the
response of the structure is recognised to be stochastic since it is driven by a stochastic load.

2.4. The prior distribution

The prior distribution of the augmented state= za tð Þð Þ can be obtained from the stationary solutions of the
expressions for the statistics (equations 5 and 6, first derivatives equal to zero):

Fa
c ẑ

a
∞ ¼ 0, (7)

Fa
cP

a
∞þPa

∞F
a
c
T þQa

c ¼ 0, (8)

Thus, as a result of equation (7), the stationary expected value is zero ẑa∞ ¼ 0. The stationary covariance
Pa
∞ can be found numerically by solving the continuous-time Lyapunov equation, equation (8). The prior

distribution is then defined as

= za tð Þð Þ¼N 0, Pa
∞

� 	
:

This is a prior for the augmented state which contains information regarding the response of the system as
well as the load. Therefore, when defining a prior for the load, a prior for the response is also defined.
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2.5. The posterior distribution

The posterior distribution of the augmented state refers to the conditional distribution upon some
observations y 1:N½ � of the response

= zak½ �jy 1:N½ �
� �

¼N ẑak½ �, P
a
k½ �

� �
,

where discrete time notation is used. Kalman filtering and smoothing can be applied to efficiently
compute the posterior distribution, as suggested by Hartikainen and Särkkä (2010). This requires the
definition of the discrete version of the augmented model and the observation equation.

2.5.1. Discrete augmented model
The expressions found for the statistics (equations 5 and 6) can be solved, as these are ordinary differential
equations. The solution can be expressed using discrete notation, evaluating between time steps, as

ẑakþ1½ � ¼ eF
a
cΔt|ffl{zffl}
Fa

ẑak½ �,

Pa
kþ1½ � ¼FaPa

k½ �F
aT þ

Z kþ1ð ÞΔt

kΔt
eF

a
c kþ1ð ÞΔt�τð ÞQa

ce
Fa
c kþ1ð ÞΔt�τð ÞTdτ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qa
d

:

The expressions obtained for the statistics define an equivalent discrete version of the system

zakþ1½ � ¼Fazak½ � þwa
k½ �,

with wa
k½ � �N 0, Qa

d

� 	
. Defining the discrete version of the noise covariance Qa

d through the integral
is difficult and impractical. An alternative method of computing it is by realizing that the stationary
solution is also valid for the discrete formulation.

Pa
∞ ¼FaPa

∞F
aT þQa

d

Since the stationary covariance can be computed by solving the continuous-time Lyapunov equation
(equation 8), the noise covariance can then be obtained as

Qa
d ¼FaPa

∞F
aT �Pa

∞:

2.5.2. Observation equation
Let y tð Þ ∈ℝny be a subset of the system response,

y tð Þ¼ Sa€u tð ÞþSv _u tð ÞþSdu tð Þ:
Thematrices Sa,Sv,Sd ∈ℝny�nu are the selection matrices for accelerations, velocities, and displacements,
respectively. These relate the observed (measured) response y tð Þ of the structure to the mechanical model.

Considering the modal formulation, and the equations of motion, the observations y tð Þ can be defined
in terms of the state and load applied to the system, see for example (Lourens, Papadimitriou, et al., 2012),

y tð Þ¼ �SaΦrΩ2
rþSdΦr½ � �SaΦrΓrþSvΦr½ �

� |fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gcm

xm tð ÞþSaΦrΦ
T
r Sp|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Jcm

p tð Þ,

with dimensions:Gcm ∈ℝny�2nm ;Jcm ∈ℝny�np . Using the state space representation of the load, this can be
written in terms of the augmented state

y tð Þ¼ Gcm JcmHc½ �|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Ha

c

za tð Þ:
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Rewriting to discrete-time, and accounting for measurement noise, the following form of the observation
equation is employed:

y k½ � ¼Ha
cz

a
k½ � þ r k½ �, (9)

with r k½ � a stochastic variable representing the measurement error r k½ � �N 0, Rð Þ, where the noise matrix
R∈ℝny�ny is assumed a diagonal matrix populated with the noise levels for each sensor σ2R,s where “s”
refers to sensor “s”.

2.5.3. Kalman filtering and smoothing
With the discrete version of the augmented model and the observation equation well defined, Kalman
filtering and smoothing can be applied to recursively compute the posterior. The relevant expressions are
summarized in Table 1.

2.6. Hyperparameter estimation

So far, it has been assumed that the hyperparameters σ, lsc of the Matérn32 covariance function that
represents the load are well defined. However, given that the load is unknown, so is the covariance
function that defines it stochastically. Furthermore, the noise levels σ2R,s in R are also unknown.

As presented in Särkkä (2013), the Bayesian manner to obtain these unknown parameters is either
through maximum a posteriori or maximum likelihood estimation (a method used by Nayek et al.,
2019), or by employing Markov Chain Monte Carlo methods (a method used by Rogers et al., 2020).
An important disadvantage of these methods lies, however, in their computational cost. In what
follows, an alternative, more practical method to compute the optimal values of the hyperparameters is
suggested, where empirical qualities of the data are used to directly link the prior model to the
measurements.

The suggested procedure for the hyperparameter estimation is divided into two parts: estimating the
hyperparameters of the load (σ, lsc), and estimating the noise levels of the sensors σ2R,s.

2.6.1. Estimating the load hyperparameters (σ, lsc)
In Section 2.4, it was shown that when a prior for the load is defined—through the hyperparameters
σ, lscð Þ—then a prior for the response of the whole system is also defined. This includes the acceleration at
the measured locations. The proposed method involves defining σ, lscð Þ so as to have a good match
between the prior of the accelerations and the measurements.

Table 1. Kalman filter and smoother equations for the augmented model.

Time update Measurement update Smoothing

= zak½ �jy 1:k�1½ �
� �

¼N ẑa�k½ � , P
a�
k½ �

� �
= zak½ �jy 1:k½ �
� �

¼N ẑaþk½ � , P
aþ
k½ �

� �
= y 1:k½ �jy 1:k�1½ �
� �

¼N Ha
c ẑ

a�
k½ � , S k½ �

� � = zak½ �jy 1:N½ �
� �

¼N ẑak½ �, P
a
k½ �

� �

ẑa�k½ � ¼Faẑaþk�1½ �

Pa�
k½ � ¼FaPaþ

k�1½ �F
aT þQa

d

r k½ � ¼ y k½ � �Ha
c ẑ

a�
k½ �

S k½ � ¼Ha
cP

a�
k½ � H

a
c
T þR

K k½ � ¼Pa�
k½ � H

a
c S k½ �
� 	�1

ẑaþk½ � ¼ ẑa�k½ � þK k½ �r k½ �

Paþ
k½ � ¼Pa�

k½ � �K k½ �S k½ �KT
k½ �

C k½ � ¼Paþ
k½ � F

aT Pa�
kþ1½ �

� ��1

ẑak½ � ¼ ẑaþk½ � þC k½ � ẑakþ1½ � � ẑa�kþ1½ �
� �

Pa
k½ � ¼Paþ

k½ � þC k½ � Pa
kþ1½ � �Pa�

kþ1½ �
� �

CT
k½ �
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The prior distribution of the accelerations can be easily computed from the prior distribution of the
augmented state through the observation equation, disregarding the noise, so that

y noisefreeð Þ tð Þ¼Ha
cz

a tð Þ,
and

= y noise‐freeð Þ tð Þ
� �

¼N ŷ∞, Py,∞
� 	

,

ŷ∞ ¼Ha
c ẑ

a
∞ ¼ 0,

Py,∞ ¼E y noise‐freeð Þ tð Þy noise‐freeð Þ tð ÞT
h i

¼Ha
cP

a
∞H

a
c
T ,

where ŷ∞ ¼ 0 is the expected value and Py,∞ the associated covariance of the accelerations. In particular,
the variance for the acceleration at each measured location “s”, σ2y,s, will be defined by the diagonal
elements of this covariance matrix Py,∞. The correlation between the observed points is defined through
the off-diagonal elements.

It is highlighted that, when calculating y noise‐freeð Þ tð Þ�N ŷ∞, Py,∞
� 	

through the augmented model, no
information about the measurements has been used other than their location within the mechanical model.
This is done throughHa

c , which is constructed using the selection matrices for the measurement locations
as well as the dynamic characteristics of the system (cf., Section 2.5.2.).

Since the load is modeled as a Gaussian process, the response obtained from the model is also a
Gaussian process as shown above. Therefore, it is possible to compare the variance obtained from the
model σ2y,s with the variance estimated from the signal σ∗y,s

2. The best hyperparameters for the load σ, lscð Þ
are such that σ2y ≈ σ∗y

2. An exact match may, however, not be possible. This may for instance be due to
(a) the model not being a perfect representation of the real structure, (b) an inaccurate estimation of the
variance from the records, or (c) due to a high amount of noise in the signals.

To match the variances, an individual objective function is defined for each sensor “s”: >s ¼> σ2y,s

� �
.

The individual objective function is defined as a lognormal distribution function. The peak will

correspond to the computed variance of the measured records σ∗y,s
2, where >∗

s ¼> σ∗y,s
2

� �
, and the spread

of the distribution is defined so as to have the 95% interval of confidence between half and twice the
measured variance. The full definition and illustration can be found in Figure 1.

When the hyperparameters σ, lscð Þ are defined, the variance of the accelerations at each sensor location
σ2y,s are defined as a consequence, from which each individual objective function can be evaluated:

>s ¼> σ2y,s

� �
. The optimum hyperparameters σ, lscð Þ will be such that the individual objective function

for each sensor ismaximized:>s ¼>∗
s . Instead of evaluating each individual objective function, a combined

objective function is defined by their multiplication: >s1, s2, …, sn ¼>s1 �>s2 �… �>sn. Note that this com-
bined objective function is the same as defining it as the joint (independent) lognormal distribution.

The best hyperparameters will therefore maximize this objective function >s1, s2, …, sn. The benefit of
using this function is that it has some properties that are convenient for the analysis: it will take high values
for variances relatively close to the estimated variance from the signal, and low values for variances that
are far from either half or twice the estimated variance. Furthermore, each estimation can be assessed
individually through each individual objective function. Alternative ways of defining the objective
function or error measure between σ2y,s and σ∗y,s

2 may be adopted and or explored in future research.

2.6.2. Estimating the noise levels σ2R,s
The noise levels for each signal, σ2R,s, contained in R, also needs to be defined. This will be realized by
studying the posterior distributions of the measured accelerations. The acceleration measurements are
related to the model through the observation equation which includes noise (equation 9). An estimation
for the noise process can therefore be obtained by using the expected value for the augmented state,
obtained from the posterior
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r̂ k½ � ¼ y k½ � �Ha
c ẑ

a
k½ �:

The measurements y k½ � are deterministic, as the values are directly obtained from the accelerometers.
An estimation of the variance of the noise can now be obtained as

R∗ ¼ var r̂ k½ �
� 	

:

Assuming that the mechanical model (equation 1) and load definition (equation 3) are representative of
the true structure and loading, and furthermore assuming that the sensor disturbances can be modeled as
white Gaussian noise (equation 9), then the noise levels σ2R,s defined for the system inR shouldmatchwith
the noise levels observed from the posterior σ∗R,s

2 inR∗:Note that in order to estimate the noise levelsR∗ a
noise level must first be defined in R.

The methodology employed to match the noise levels is iterative, as illustrated in Figure 2, and
described as follows:

1. An arbitrary amount of noise is defined for the signals. A starting point is taken equal to the variance

of the signal R¼ var y k½ �
� �

.

2. The posterior distribution is computed, from which an estimation for the noise is obtained: R∗.
3. The noise is defined as the estimated noise R¼R∗.
4. Steps 2 and 3 are repeated until themaximum relative difference between the variances is less than a

user-defined tolerance: max diag jR∗�Rj
R

n o� �
< tol. If the relative difference between the variances

starts to increase, the process is stopped and the achieved tolerance is reported.

3. Case Study: Onshore Wind Turbine

In what follows, the GPLFM is used for virtual sensing in an onshore wind turbine tower, with
hyperparameter optimization performed as described in the previous section. First, specifics of the
measurement campaign are introduced, followed by a presentation of the mechanical model employed,
and its validation through system identification. Results are presented in Section 3.3.4 and onward.

3.1. Measurement campaign

Measurement data from one of EnBW’smodern onshore wind turbines were analyzed in this case study. It
is a variable-speed, pitch-controlled, and three-bladed horizontal axis wind turbine located in Germany.
The wind turbine is equipped with a dedicated structural health monitoring system. The sensor locations
and local axes are illustrated in Figure 3. All sensors are mounted on the inner surface of the tower. The

=
,
2

,
2 =

1

,
2 2

exp −
ln ,

2 2

2 2

= ln 2

= ln

= exp 2

,
∗

2

2

= ,
∗ 2∗ = ,

∗ 2

95[%]

Figure 1. Definition of the objective function as a log-normal distribution.
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acceleration sensors are bidirectional, as shown in Figure 3. Four unidirectional strain gauges aremounted
at the bottom of the tower; these are combined to obtain bending strains. All sensorsmeasure at a sampling
frequency of 20 Hz. The records considered are from December 9, 2020 to January 30, 2021. Both
acceleration and strain measurements are divided into 10 min records for analysis. All records are filtered
using a fourth-order Butterworth high-pass filter with a cut-off frequency of 0.1 Hz as the quasi-static
information cannot be extracted from the acceleration measurements (quasi-static amplitudes are lower
than the noise threshold).

Ten-minute statistics from the SCADA system are not used in the methodology itself, but for the
interpretation of results obtained in different operational conditions in the following subsections.

= var

| 1: = , [ ]

=

∗ = var

max diag
∗

< tol? = ∗

Start End

Figure 2. Iterative process employed to match the noise levels σ2R,s defined for the system in R with the
noise levels σ2R,s observed in the system through R∗.

N

Figure 3. Sensor locations and local axes.
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Records are selected so as to cover the design situations for fatigue as defined in standard design codes
(International Electrotechnical Commission, 2019). The design situations depend upon the cut-in and cut-
out wind speed. For thewind turbine under consideration, the cut-inwind speed isV in ¼ 3m=s and the cut-
out wind speed Vout ¼ 25m=s. Table 2 summarizes the specific records considered in the upcoming
analyses.

3.2. Mechanical model and system identification

The mechanical model is based on a two-dimensional finite element model of the turbine, consisting of a
set of beam elements for the tower and a point mass for the Rotor Nacelle Assembly. The foundation is
assumed to clamp the tower at the bottom. The geometry of the tower varies in height. To capture this
geometry, n¼ 300 uniform beam elements are used. Each element differs in average diameter and
thickness. Figure 4 summarizes the properties of the mechanical model. The exact same model is
considered for both the FA and SS directions, implying that model accuracy will deteriorate for
higher-order modes that are not dominated by tower deformation. The loading applied to the tower is
modeled as a concentrated point load acting at the top of the tower. Note that the point load is defined
stochastically as per equation (3), with its hyperparameters yet to be defined. The damping matrix is
defined by assuming a damping ratio of 0.75% for all modes. This damping value is chosen on the basis of
the system identification results discussed below.

To obtain an estimate of the accuracy of the mechanical model, system identification is employed.
Covariance-driven stochastic subspace identification (SSI-Cov, Peeters and De Roeck, 1999) is
applied, in combination with the OPTICS clustering algorithm (OPTICS, Ankerst et al., 1999). The
approach employed is the one presented in Boroschek and Bilbao (2019). The system identification is
applied to distinguish between the tower Fore–Aft (FA) and tower Side–Side (SS) direction of the wind
turbine, which are obtained by transforming the local coordinates using the yaw angle provided by the
SCADA data. The identified modal properties and their comparison to the mechanical model are shown
in Table 3. The three tower modes are well observed by the data. Given the good correspondence with
the mechanical model, changes in the mechanical model to better fit the identification results were
deemed unnecessary.

Table 2. Selected records.

ID Design situation Record ID Design situation Record

OP1 Power production
(v ¼ 4 m/s)

2020-12-12 07:10:00 SU2 Start-up 2021-01-19 05:30:00

OP2 Power production
(v ¼ 6 m/s)

2021-01-15 21:40:00 SU3 Start-up 2021-01-14 16:20:00

OP3 Power production
(v ¼ 8 m/s)

2021-01-20 10:20:00 SD1 Normal shut-down 2021-01-16 08:50:00

OP4 Power production
(v ¼ 10 m/s)

2020-12-22 06:50:00 SD2 Normal shut-down 2021-01-16 19:00:00

OP5 Power production
(v ¼ 12 m/s)

2021-01-21 10:40:00 SD3 Normal shut-down 2021-01-17 00:10:00

OP6 Power production
(v ¼ 14 m/s)

2021-01-24 13:00:00 PK1 Idling 2020-12-27 19:10:00

OP7 Power production
(v ¼ 16 m/s)

2020-12-29 07:30:00 PK2 Idling 2020-12-20 11:30:00

SU1 Start-up 2021-01-19 10:30:00 PK3 Idling 2021-01-01 18:50:00
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3.3. Strain and fatigue estimation on the onshore turbine tower

The GPLFM is now applied on the mechanical model, informed by each set of acceleration records. The
estimated states and forces are used to obtain the strain at the location where the strain gauges are located,
to compare the estimations with the measurements.

In what follows, the selected records are first illustrated and described, and subsequently, the
hyperparameter estimation procedure is shown for both the prior distribution (to obtain the hyperpara-
meters σ and lsc) and the posterior distribution (to obtain the noise levels σ2R,s in R).

3.3.1. Description of selected records
The power production records (OP1 to OP7) are characterized by relatively stationary behavior of the
response, illustrated in Figure 5a,b. As a general trend, operational records associated with lower wind
speeds will have lower amplitudes of vibrations, and vice versa.

Idling records (PK1–PK3) are also stationary but are characterized by very low amplitudes of
vibrations given the low wind speeds that the structure is subject to. These records were observed to
have quantization issues, illustrated in Figure 5c.

Figure 4. Details of the mechanical model.

Table 3. Frequency (f ), damping ratio (ζ ), and Modal Assurance Criterion (MAC) values between
mechanical model and identification results based on record PK1.

Identification Finite Element model

Mode f IDi (Hz) ζ IDi %ð Þ f FEi (Hz) Error (%) MAC(%) ζ FEi Error (%)

Tower FA 1 0.17 0.36 0.17 0.00 99.97 0.75 108.33
Tower FA 2 1.23 1.04 1.21 �1.63 99.74 0.75 �27.88
Tower FA 3 3.21 0.88 3.50 9.03 99.59 0.75 �14.77
Tower SS 1 0.17 1.19 0.17 0.00 99.92 0.75 �36.97
Tower SS 2 1.17 0.60 1.21 3.42 99.91 0.75 25.00
Tower SS 3 3.65 0.61 3.50 �4.11 97.82 0.75 22.95
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Start-up and shut-down records (SU1–SU3 and SD1–SD3, respectively) are characterized by transient
behavior due to the operational change—compare Figure 5d and 5e.

3.3.2. Estimation of the load hyperparameters σ, lscð Þ
The hyperparameters σ and lsc are defined for each analyzed record. This is done through the objective
function described in Section 2.6.1. The objective function for record PK1-x is shown in Figure 6, where a
clear maximum is observed, which corresponds to the values used for the hyperparameters. Figure 7
compares the prior defined through the chosen hyperparameters σ, lscð Þ with the distribution observed
from the acceleration measurements. Because of the good fit observed, the assumption for the load
location is validated.

(a)

(b)

(c)

(d)

(e)

Figure 5. Acceleration records, sensor s1. (a) OP1-x (mean wind speed 4 m/s). (b) OP7-x (mean wind
speed 16 m/s). (c) PK2-x (quantization issues due to lack of resolution in the time signal). (d) SU-3 start-

up condition. (e) SD2-x (shut-down condition).
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The comparison of the prior with the distribution observed from the acceleration measurements for
record OP6-x is shown in Figure 8. Note that in this case, the fit is not as good as in the idling case. This is
justified given the change in the operational condition of the turbine, which implies that the mechanical
model—compared only in idling conditions—might not be as representative.

For transient conditions (shut-down and start-up records) the acceleration signal is not stationary.
Therefore, the prior distribution will over- and/or underestimate the acceleration response, as illustrated in
Figure 9 for record SU3-x.

Figure 6. Record PK1-x. σ and lsc estimation. Objective function plot: >s1,s2,s3. Optimum found for
maximum value: lsc ¼ 0:318s, σ¼ 2556N.

(a)

(b)

(c)

Figure 7. Record PK1-x. Prior distribution visual check using optimum hyperparameters: lsc ¼ 0:318s,
σ¼ 2556N. (a) Sensor s1. (b) Sensor s2. (c) Sensor s3.

e35-14 Joaquin Bilbao et al.

https://doi.org/10.1017/dce.2022.38 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2022.38


(a)

(b)

(c)

Figure 8. Record OP6-x. Prior distribution visual check using optimum hyperparameters: lsc ¼ 0:05s,
σ¼ 20845N. (a) Sensor s1. (b) Sensor s2. (c) Sensor s3.

(a)

(b)

(c)

Figure 9. Record SU3-x. Prior distribution visual check using optimum hyperparameters: lsc ¼ 0:034s,
σ¼ 866N. (a) Sensor s1. (b) Sensor s2. (c) Sensor s3.
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Tables 4 and 5 summarizes the objective function values obtained for each record in local x and y
directions, respectively. They include, besides the values defined for σ and lsc, the likelihood measured as
a fraction of themaximum likelihood defined for each lognormal distribution and for the joint distribution.
Therefore, a value close to 100% indicates a very good fit for the prior distribution.

It is observed that for parking conditions (PK1–PK3), the relative likelihood is high, indicating that the
mechanical model provides a good representation of the structure in idling conditions. For all power

Table 4. Estimation of load hyperparameters σ, lscð Þ.
ID σ Nð Þ lsc sð Þ >s1

>∗
s1

%ð Þ >s2
>∗
s2

%ð Þ >s3
>∗
s3

%ð Þ >s1,s2,s3

>∗
s1,s2,s3

%ð Þ
OP1-x 3,961 0.046 20.07 94.00 10.04 1.89
OP2-x 2,049 0.045 35.42 94.43 20.53 6.87
OP3-x 10,319 0.048 49.09 99.10 41.41 20.14
OP4-x 13,179 0.048 22.72 97.78 15.42 3.42
OP5-x 14,404 0.045 28.19 96.59 16.27 4.43
OP6-x 20,845 0.050 13.24 85.08 6.18 0.70
OP7-x 15,928 0.050 25.76 93.60 17.20 4.15
SU1-x 5,952 0.052 37.59 99.99 36.87 13.86
SU2-x 7,008 0.048 10.53 95.19 5.38 0.54
SU3-x 866 0.034 98.10 88.18 78.40 67.82
SD1-x 2,092 0.268 98.78 92.77 97.37 89.23
SD2-x 3,849 0.053 51.72 99.99 52.73 27.27
SD3-x 1,742 0.056 95.84 99.96 96.57 92.52
PK1-x 2,556 0.318 99.53 96.03 98.25 93.91
PK2-x 462 0.300 100.00 99.99 100.00 99.99
PK3-x 368 0.050 86.25 99.93 84.48 72.82

Note. Prior distribution match measured through objective function >. Local direction x.

Table 5. Estimation of load hyperparameters σ, lscð Þ.
ID σ Nð Þ lsc sð Þ >s1

>∗
s1
%ð Þ >s2

>∗
s2

%ð Þ >s3
>∗
s3

%ð Þ >s1,s2,s3

>∗
s1,s2,s3

%ð Þ
OP1-y 4,993 0.046 37.99 95.88 24.34 8.87
OP2-y 2,592 0.045 22.75 91.36 10.00 2.08
OP3-y 10,859 0.046 3.90 78.84 0.62 0.02
OP4-y 9,557 0.050 22.11 99.15 18.01 3.95
OP5-y 11,911 0.051 17.08 96.63 12.16 2.01
OP6-y 11,983 0.061 99.84 100.00 99.89 99.73
OP7-y 14,404 0.050 7.01 95.28 3.95 0.26
SU1-y 5,532 0.052 15.58 99.99 15.92 2.48
SU2-y 6,004 0.051 15.35 99.92 14.18 2.18
SU3-y 498 0.194 94.35 83.41 96.64 76.06
SD1-y 2,848 0.021 98.49 98.38 93.88 90.96
SD2-y 3,538 0.056 67.32 99.69 72.00 48.32
SD3-y 1,530 0.069 92.80 99.43 96.15 88.72
PK1-y 1,895 0.285 99.72 98.10 99.26 97.11
PK2-y 354 0.220 97.98 92.05 97.92 88.31
PK3-y 296 0.077 78.63 96.48 91.34 69.29

Note. Prior distribution match measured through objective function >. Local direction y.
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production conditions (OP1–OP7) the relative likelihood is lower, which indicates that the issue
previously discussed for record OP3-x is valid for all other power production records: the mechanical
model considered is less representative under operating conditions (possibly due to aerodynamic
damping, increased relevance of higher modes, etc.). Finally, for start-up and shut-down records
(SU1–SU3 and SD1–SD3, respectively) the relative likelihood varies. For these cases, and as previously
mentioned for record SU3-x, the response is not stationary. In the future, one could investigate redefining
the load assumption for these particular cases.

3.3.3. Estimating the noise levels σ2
R,s

The assumed noise levels for each signal are defined iteratively, as described in Section 2.6.2, with a
relative tolerance of 1%. This iterative process was observed to diverge in approximately 30% of the
records. The process is illustrated using records PK1-x, OP3-x, and SU3-x.

Figure 10a shows the noise levels obtained in each iteration of record PK1-x. Note that the starting
value is the variance of the signal, and it quickly decays into a constant value that corresponds to the
estimated variance of the noise. This is further illustrated by the relative error obtained in each iteration as
shown in Figure 10b. Figure 11 shows a visual check of the resulting noise variance compared with the
estimated noise r̂.

Figure 13a shows the noise levels defined for each iteration of record OP3-x. Similar to record PK1-x,
the noise levels are observed to decrease to a stable value. Figure 13b shows the relative error found for
each iteration. Note that in this case, the relative error for accelerometer s3 increases in the third iteration.
The iteration is not stopped, however, as the maximum error at each iteration is still decreasing. It should
be noted that in some cases the part of the signal considered as noise may in fact contain a part of the
response, complicating the search for an optimal value.

Figure 14a shows the noise levels per iteration of record SU3-x. Note that this record was diverging
given the increase in the relative error, as illustrated in Figure 14b. Given the transient nature of the
response, the predicted error is not Gaussian, and as discussed in Section 3.3.2, the model employed is not
representative for the particular record. The resulting high error variance and lack of convergence attest to
inaccurate modeling of the measurements in this case.

A summary is presented in Tables 6 and 7. The noise level obtained for each signal is presented in terms
of the noise-to-signal ratio (NSR), defined as follows:

NSR sð Þ¼ σ2R,s
σ2y,s�σ2R,s

,

(a)

(b)

Figure 10. Record PK1-x. Noise variance estimation σ2R,s. (a) Noise variance estimation per iteration.

(b) Error measure: diag R̂�R
R

� �
.
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with σ2y,s referring to the measured acceleration variance, and the difference σ2y,s�σ2R,s

� �
corresponding to

the noiseless signal variance. TheNSR thus indicates the estimated relative amount of noise with respect to
the noiseless response. If the NSR is larger than 100%, then the variance of the noise is higher than the
variance of the noiseless signal, and vice versa. For idling conditions (PK1 to PK3), the process never failed
to converge. This can be understood given a representative mechanical model for the structure. The found
noise levels are quite high for these records, however, which can be justified by the considerable amount of
quantization issues. For power production records (OP1–OP7), it is observed that for most cases the process
converges. It is debatable, however, if the defined noise levels are representative of the true measurement

Figure 11. Record PK1-x. Noise variance visual check using optimized noise variances.

(a)

(b)

Figure 12. Record OP3-x. Noise variance estimation σ2R,s. (a) Noise variance estimation per iteration.

(b) Error measure: diag R̂�R
R

� �
.
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error as themechanicalmodel is less accurate. The nonconvergence of some of these records can be justified
by the inaccuracy of themechanicalmodel employed, as previously discussed. Finally, for start-up and shut-
down records (SU1–SU3 and SD1–SD3, respectively) the response is transient, and therefore the estimation
of the error is questionable, as themodel employedwas shown to be less representative.Nevertheless, aswill
be shown in the following sections, the procedure provides a computationally inexpensive way to obtain
hyperparameter values that allow for accurate estimation results.

3.3.4. Response estimation
Having analyzed and defined the hyperparameters for each record, the estimated response in terms of the
dynamic strains is now compared with the measured dynamics strains.

(a)

(b)

Figure 13. Record SU3-x. Noise variance estimation σ2R,s. (a) Noise variance estimation per iteration.

(b) Error measure: diag R̂�R
R

� �
.

Table 6. Noise variance estimation.

ID NSR s1ð Þ %ð Þ NSR s2ð Þ %ð Þ NSR s3ð Þ %ð Þ tol %ð Þ
OP1-x 11.51 6.66 74.09 0.67
OP2-x 36.14 22.71 35.01 1.00
OP3-x 12.81 12.48 36.80 0.88
OP4-x 18.35 22.95 22.62 0.86
OP5-x 15.78 20.35 30.94 5.48
OP6-x 39.83 47.56 11.07 19.30
OP7-x 9.39 12.69 57.27 0.90
SU1-x 7.65 9.55 44.51 0.79
SU2-x 8.42 12.47 70.04 0.93
SU3-x 231.26 143.10 7.03 46.64
SD1-x 21.60 21.63 4.67 0.91
SD2-x 9.63 9.32 25.27 0.97
SD3-x 37.17 34.36 3.52 30.01
PK1-x 5.09 8.46 0.94 1.00
PK2-x 92.31 36.46 10.22 0.72
PK3-x 296.96 208.58 57.43 0.92

Note. Noise to signal ratios. Local direction x.
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Figure 16a shows the dynamic strain estimation for record PK1-x, along with the measured and
filtered strain for comparison. The mean refers to the expected value obtained for each point in time
through the posterior distribution for the strain, and 3σ is the associated 99.7% interval of confidence.
Figure 16b shows the associated frequency contents of the measurement and estimation. The
unfiltered measurements are also included in the spectra, to show the influence band of the filtering.
The dynamic strain estimation is observed to match the measured strain, with the mean prediction
closely following the measured strain. The differences in the frequency domain are mainly observed
in the low amplitude and high-frequency regions; the estimation for the dominant frequencies is
observed to be accurate.

Table 7. Noise variance estimation.

ID NSR s1ð Þ %ð Þ NSR s2ð Þ %ð Þ NSR s3ð Þ %ð Þ tol %ð Þ
OP1-y 25.31 23.86 21.10 0.97
OP2-y 30.78 41.80 6.18 0.93
OP3-y 5.84 6.12 247.18 0.66
OP4-y 11.74 14.99 19.03 3.36
OP5-y 12.98 17.49 21.58 3.96
OP6-y 7.76 6.10 12.81 0.73
OP7-y 14.86 22.03 11.38 6.57
SU1-y 6.98 9.82 33.41 0.93
SU2-y 8.72 12.89 12.43 0.24
SU3-y 72.68 71.98 31.06 0.80
SD1-y 28.50 16.66 0.23 87.99
SD2-y 7.80 5.98 15.41 0.76
SD3-y 35.65 41.50 1.00 2.21
PK1-y 11.11 11.67 0.77 0.77
PK2-y 171.95 79.95 23.98 0.46
PK3-y 394.12 280.21 96.73 0.88

Note. Noise-to-signal ratios. Local direction y.

(a)

(b)

Figure 14 Record PK1-x. Dynamic strain estimation.
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Figure 11a,b presents the estimation of record OP3-x in the time and frequency domain, respectively.
The estimation is again observed to be a close match, though to a lesser degree when compared with the
estimation obtained for record PK1-x. This is justified by the analysis exposed in Sections 3.3.2 and 3.3.3:
the model employed is less accurate for this operational condition.

Figure 12a,b shows the estimation of record SU3-x in the time and frequency domain, respectively. As
expected, larger errors are observed given the transient nature of the response, but the estimations are still
reasonably accurate outside these transient parts. It is noted that even though the transient nature is not part
of the load assumptions, it is still well estimated in the load, as shown in Figure 17.

To quantify the estimation errors, two error metrics are considered: The Time Response Assurance
Criterion (TRAC) and the Mean Absolute Error (MAE). These are defined as follows:

TRAC ε, ε̂ð Þ¼ ε̂εTð Þ2
ε̂ε̂T
� 	

εεTð Þ ,

(a)

(b)

(a)

(b)

Figure 15. Record OP3-x. Dynamic strain estimation.

(a)

(b)

Figure 16. Record SU3-x. Dynamic strain estimation.
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MAE ε, ε̂ð Þ¼ 1
N

X
k
ĵε k½ � � ε k½ �j,

with ε∈ℝN the measured and filtered strain in vector form representing the values in time, and ε̂∈ℝN the
estimation. The TRAC represents a measure of correlation between the estimation and the measurement. In
simple words, a value close to 100% indicates a very strong similarity of the shapes, and a value close to 0%
indicates the estimations and measurements are very different. The MAE indicates the average error of the
estimation, in units of the measurement. The results for each analyzed record are summarized in Table 8.

3.3.5. Fatigue load estimation
The underlying aim of this work is to be able to predict the damage that the tower has suffered in terms of
fatigue. In this section, it is shown how the accuracy obtained for the strain estimates translates to accuracy
in fatigue damage predictions. Damage equivalent loads are used to compare design fatigue load levels
with fatigue loads the asset experienced on site. The damage equivalent load, in terms of stresses, is
defined by, see for example (Cosack, 2010):

Δσeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iΔσ
m
i Ni

Nref

m

s
,

Figure 17. Record SU3-x. Load estimation.

Table 8. Error metrics.

x y

ID TRAC ε, bεð Þ MAE ε, bεð Þ�10�6 m=mð Þ TRAC ε, bεð Þ MAE ε, bεð Þ�10�6 m=mð Þ
OP1 91.22 0.45 83.88 1.05
OP2 81.28 0.55 73.60 0.93
OP3 95.69 1.34 93.34 1.33
OP4 94.38 2.14 94.55 1.60
OP5 95.80 2.40 94.58 2.09
OP6 86.08 4.72 99.69 2.87
OP7 96.12 2.14 90.93 2.52
SU1 99.14 0.87 98.72 0.79
SU2 96.01 0.78 96.83 0.84
SU3 67.44 0.19 93.67 0.26
SD1 99.67 1.10 99.18 0.61
SD2 94.91 0.66 97.77 0.78
SD3 98.97 0.31 97.45 0.48
PK1 99.80 1.27 99.60 1.11
PK2 99.11 0.27 95.51 0.23
PK3 85.42 0.09 76.02 0.13
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with Δσi stress ranges andNi the corresponding number of cycles.m is a material constant referring to the
idealized straight slope observed on a double-logarithmic scaled SN-curve.Δσeq is the damage equivalent
load, and Nref the number of cycles of the equivalent load.

The stress ranges and the corresponding number of cycles are determined using the rainflow-counting
method. The rainflow-counting method is applied to each record, and subsequently combined to generate
the stress ranges and the corresponding number of cycles for all the records analyzed. This was done by
counting the number of cycles for each record, and then adding them together. The result is shown in
Figure 18. This figure also includes the rainflow-counting results for the unfiltered strain signals
showcasing the general lack of the dynamic strains to capture the quasi-static high-amplitude stress
ranges. The damage equivalent load and relative errors are presented in Table 9. A more detailed analysis
of the damage equivalent load derived for each record is provided in Table 10. Note that stresses are
computed by multiplying the strains with the assumed modulus of elasticity E¼ 200,000MPa, the
material constant is set as m¼ 4 and the reference number of cycles is set as Nref ¼ 107. The Wöhler
slope m ¼ 4 is commonly used for welded steel as simplification of its SN-curve with two slopes of
respectively 3 (applies to high stress / low number of cycles) and 5 (applies to low stress/high number of
cycle).

From Table 10 and 11, it is clear that the estimation error in terms of damage equivalent loads varies
greatly across the different records, from less than 1% to almost 30%.Averaging over the records, errors of
less than 10% are found—compare Table 9.

Figure 18. Stress ranges and number of cycles. Rainflow-counting method.

Table 9. Damage equivalent load.

Measured unfiltered Measured filtered GPLFM

Direction Δσeq MPað Þ Δσeq MPað Þ Δσ̂eq MPað Þ eΔσ̂eq %ð Þ
x 1.419 0.860 0.820 �4.71
y 1.036 0.733 0.801 þ9.36ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þ y2
p

1.757 1.130 1.146 þ1.45

Note. All records summary.
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Table 10. Damage equivalent load.

Measured unfiltered Measured filtered GPLFM

ID Δσunfilt:eq,x MPað Þ Δσeq,x MPað Þ Δσ̂eq,x MPað Þ eΔσ̂eq,x %ð �Þ
OP1-x 0.096 0.090 0.084 �6.35
OP2-x 0.080 0.064 0.061 �4.87
OP3-x 0.400 0.326 0.328 þ0.52
OP4-x 0.738 0.478 0.460 �3.74
OP5-x 0.765 0.548 0.551 þ0.63
OP6-x 1.129 0.739 0.666 �9.86
OP7-x 0.650 0.530 0.532 þ0.50
SU1-x 0.440 0.208 0.230 þ10.81
SU2-x 1.104 0.253 0.247 �2.53
SU3-x 0.056 0.031 0.019 �40.22
SD1-x 0.431 0.231 0.266 þ14.86
SD2-x 0.365 0.168 0.160 �4.73
SD3-x 0.089 0.086 0.097 þ12.22
PK1-x 0.315 0.299 0.343 þ14.77
PK2-x 0.047 0.046 0.054 þ16.97
PK3-x 0.008 0.008 0.010 þ14.81

Note. All records.

Table 11. Damage equivalent load.

Measured unfiltered Measured filtered GPLFM

ID Δσunfilt:eq,y MPað Þ Δσeq,y MPað Þ Δσ̂eq,y MPað Þ eΔσ̂eq,y %ð Þ
OP1-y 0.195 0.154 0.109 �29.26
OP2-y 0.116 0.088 0.083 �6.02
OP3-y 0.393 0.323 0.290 �9.92
OP4-y 0.499 0.344 0.349 þ1.35
OP5-y 0.625 0.436 0.438 þ0.51
OP6-y 0.664 0.644 0.746 þ15.90
OP7-y 0.662 0.467 0.425 �9.09
SU1-y 0.475 0.178 0.195 þ9.65
SU2-y 0.824 0.218 0.231 þ5.98
SU3-y 0.051 0.037 0.042 þ16.22
SD1-y 0.235 0.134 0.151 þ12.08
SD2-y 0.309 0.189 0.206 þ9.00
SD3-y 0.075 0.073 0.086 þ17.89
PK1-y 0.208 0.203 0.239 þ17.66
PK2-y 0.029 0.028 0.034 þ20.45
PK3-y 0.010 0.010 0.012 þ18.64

Note. All records. y-direction.
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4. Conclusions

The GPLFMwas used to estimate the dynamic strains and subsequently predict damage equivalent loads
in an onshore wind turbine tower, based only on a set of acceleration measurements. Comparisons were
made with measured and filtered strains, and the damage equivalent loads were computed from them. To
find the hyperparameters for the GPLFM, a new, intuitive procedure was suggested. It is highlighted that
quasi-static loads and strains are not estimated, since quasi-static information cannot be extracted from the
acceleration measurements. Since these loads should, however, be considered when assessing the life of a
turbine, it is suggested to include quasi-static information through inclinometer measurements in the
future.

The results show that the GPLFM in combination with the suggested hyperparameter optimization
procedure provides a robust Bayesian framework for response estimation. The dynamic strains were
estimated with, on average, high accuracy, with slight differences in accuracy depending on the operating
condition. The highest accuracy is achieved for the parked plant due to a good agreement between model
assumptions and the operating condition. The shut-down and start-up operating states, on the other hand,
are captured with the lowest precision owing to the transient nature of these operating states. The average
TRAC value per operational condition was found to be 90.8, 92.0, 98.0, and 92.3 for the power
production, start-up, shut-down, and idling conditions, respectively.

The dynamic strains estimated through GPLFMwere further utilized to assess the damage suffered by
the tower in terms of damage equivalent loads. Contrary to the results of the dynamic strain analysis, the
closest match between measured and GPLFM-based damage equivalent loads is observed for the turbine
during standard operation.

Factors that were shown to influence the accuracy of the estimation include the accuracy of the
mechanical model employed, and the validity of the assumptions made when formulating the stochastic
model representing the load. Future research should aim to improve these factors.

List of Abbreviations

GPLFM Gaussian process latent force model
MAC Modal Assurance Criterion
MAE Mean Absolute Error
MD&E modal decomposition and expansion
NSR noise-to-signal ratio
OP operational conditions
PSD power spectral density
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SCADA Supervisory Control and Data Acquisition
SD shut-down conditions
SU start-up conditions
TRAC Time Response Assurance Criterion
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