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Approximation by a composition of Chlodowsky operators and
Százs–Durrmeyer operators on weighted spaces

Aydın İzgi

Abstract

In this paper we deal with the operators

Zn(f ; x) =
n

bn

∑n

k=0
pn,k

(
x

bn

) ∫∞
0

sn,k

(
t

bn

)
f(t) dt, 0 6 x 6 bn

and study some basic properties of these operators where pn,k(u) =
(n
k

)
uk (1− u)n−k,

(0 6 k 6 n), u ∈ [0, 1] and sn,k(u) = e−nu (nu)k/k!, u ∈ [0,∞). Also, we establish the order of
approximation by using weighted modulus of continuity.

1. Introduction

Let ρ be a polynomial or exponential function such that continuous, monotonically increasing
growths to infinity on [0,∞) satisfy the condition ρ(x) > 1. Classes of functions which satisfy
the condition |f(x)|6Mf × ρ(x) with the norm ‖f‖ρ = supx∈[0,∞) |f(x)|/ρ(x) are said to be
weighted spaces. There are many studies on approximation on weighted spaces. For instance
Ditzian [6] used polynomial weight for Baskakov operators and exponential weight for Szász–
Mirakjan operators. May [22], proved local equivalence theorems on shrinking intervals, using
the more general ‘operator of exponential type’ of which the Baskakov and the Szász–Mirakjan
operators are special examples. Lešniewicz and Rempulska [21] introduced some linear positive
operators of the Szász–Mirakjan type in the space of continuous functions of one and two
variables, having exponential growth at infinity. Gadjiev [10, 11] defined the weight spaces
Cρ and Bρ of real functions defined on the real axis and showed that Korovkin’s theorem in
general does not hold on these spaces. Here

Bρ := {f : |f |6Mfρ, ρ> 1 and ρ is unbounded}

and

Cρ := {f ∈Bρ | f continuous}

are spaces of functions which are defined on unbounded sets. However, in [10] and [11] it has
been shown that this theorem holds on a common subspaces of Cρ and Bρ. Coşkun [4] proved
that a theorem of Korovkin type does not hold on the spaces Cρ1 and Bρ2 with different weights
ρ1 and ρ2, respectively. Later, in [5], Coşkun showed that by some appropriate conditions on
the weight functions it holds. Ispir [19] studied modified Baskakov operators on weighted spaces
by means of Korovkin’s theorems, proved by Gadjiev. We can refer the interested readers to
other studies which investigated weight approximation problems for well-known linear positive
operators (see, e.g., [3, 7, 12, 13, 16, 20, 24]) and for general positive linear operators (see,
e.g., [4, 8, 10, 11]) on infinite intervals.
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2. Preliminaries

İbikli and Karslı[17] defined integral modifications of Bernstein–Chlodowsky operators by
means of Durrmeyer so as to approximate functions of bounded variation on the interval [0, bn]
which grows to positive semi-axis where n→∞. İbikli and others [18] studied these operators
for Lebesgue Lp-integrable functions on the interval [0, bn]. Mazhar and Totik [23] introduced
the integral modification of the Szász–Mirakjan operators to approximate functions defined on
[0,∞). These operators and their modifications have been studied by many authors (see, e.g.,
[14, 15]).

This study combines Chlodowsky operators and Szász–Durrmeyer operators.
Bernstein–Durrmeyer operators [9] are given by

Mn(f ; x) = (n+ 1)
n∑
k=0

pn,k(x)
∫1

0

pn,k(t)f(t) dt (1)

where

pn,k(u) =


(
n
k

)
uk(1− u)n−k , 0 6 k 6 n,

0, k > n.

Szász–Durrmeyer operators [23] are given by

S(f ; x) = n

∞∑
k=0

sn,k(x)
∫∞
0

sn,k(t)f(t) dt (2)

where sn,k(x) = e−nx(nx)k/k!, x ∈ [0,∞).
Chlodowsky [3] operators are given by

Cn(f ; x) =
n∑
k=0

pn,k

(
x

bn

)
f

(
k

n
bn

)
, 0 6 x6 bn (3)

where (bn) is a positive and increasing sequence with properties limn→∞ bn =∞ and
limn→∞ bn/n= 0.

In this study we define the following operators which are combinations of (3) and (2):

Zn(f ; x) =
n

bn

n∑
k=0

pn,k

(
x

bn

) ∫∞
0

sn,k

(
t

bn

)
f(t) dt, 0 6 x6 bn (4)

where (bn) is given in (3) with the difference (see [16])

lim
n→∞

b2n
n

= 0.

We use the weighted Korovkin’s type theorems, proved by Gadjiev [10, 11], and we use the
same notation as in [10].

Let ρ(x) = 1 + x2, x ∈ (−∞,∞) and Bρ be the set of all functions f defined on the real axis
satisfying the condition

|f(x)|6Mfρ(x) (5)

where Mf is a constant depending only on f . Here Bρ is the normed space with the norm

‖f‖ρ = sup
x∈(−∞,∞)

|f(x)|
ρ(x)

, f ∈Bρ.

Here Cρ denotes the subspace of all continuous functions in Bρ and Ckρ denotes the subspace
of all functions f ∈ Cρ with

lim
|x|→∞

|f(x)|
ρ(x)

=Kf <∞

where Kf is a constant depending only on f .
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Theorem A [10, 11]. Let {Tn} be a sequence of linear positive operators taking Cρ into
Bρ and satisfying the conditions

lim
n→∞

‖Tn(tv; x)− xv‖ρ = 0, v = 0, 1, 2.

Then for any f ∈ Ckρ ,
lim
n→∞

‖Tnf − f‖ρ = 0

and there exist a function g ∈ Cρ \ Ckρ such that

lim
n→∞

‖Tng − g‖ρ > 1.

Applying Theorem A to the operators

Tn(f ; x) =
{
Vn(f ; x) if x ∈ [0, an]
f(x) if x > an

then gives the following theorem.

Theorem B [12]. Let (an) be a sequence with limn→∞ an =∞ and {Vn} be a sequence of
linear positive operators mapping Cρ[0, an] into Bρ[0, an].

If for v = 0, 1, 2
lim
n→∞

‖Vn(tv; x)− xv‖ρ,[0,an] = 0,

then for any f ∈ Ckρ [0, an] we have

lim
n→∞

‖Vnf − f‖ρ,[0,an] = 0,

where Bρ[0, an], Cρ[0, an] and Ckρ [0, an] denote the same as Bρ, Cρ and Ckρ , respectively, but
the functions are taken on [0, an] instead of R and the norm is taken as

‖f‖ρ,[0,an] = sup
x∈[0,an]

|f(x)|
ρ(x)

.

3. Auxiliary results

In this section we give some properties of Zn(f ; x) which we use for the main theorems and an
approximation theorem by means of Korovkin’s theorem.

If we use properties of the derivative and Leibniz formula, it will be easy to see the following
equality for Zn(f ; x):

Zn(tp; x) =
(
bn
n

)p p∑
i=0

(
p
i

)
p!
i!

n!
(n− i)!

(
x

bn

)i
. (6)

Now we will give some special cases of (6) for some p:

Zn(1; x) = 1 (7)

Zn(t; x) = x+
bn
n

(8)

Zn(t2; x) = x2 +
x(4bn − x)

n
+

2b2n
n2

(9)

Zn(t3; x) = x3 +
x[18b2n + 9(n− 1)bnx− (3n− 2)x2]

n2
+

6b3n
n3

(10)

Zn(t4; x) = x4 +
x

n3
[96b3n + 72(n− 1)b2nx

+ 16(n− 1)(n− 2)bnx2 − (6n2 − 11n+ 6)x3] +
24b4n
n4

. (11)
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Lemma 1. We have

Zn,m(x) := Zn((t− x)m; x) =
(
bn
n

)m m∑
j=0

(
m
j

)
(−1)jnj

×
m−j∑
i=0

(
m− j
i

)
(m− j)!

i!
n!

(n− i)!
(
nx

bn
)i+j . (12)

Proof. It is easy to see the proof by the using the equality

(t− x)m =
m∑
j=0

(
m
j

)
(−1)jxjtm−j

and linearity of the operator Zn.
By simple calculations, we get

Zn,1((t− x); x) =
bn
n

(13)

Zn,2(x) = Zn((t− x)2; x) =
x[2bn − x]

n
+

2b2n
n2

(14)

Zn,2(x) 6
2(nx+ bn)bn

n2

Zn,4(x) = Zn((t− x)4; x) =
x

n3
[3(n− 2)x3 − 4(n− 8)bnx2

− 12(6n− 1)b2nx+ 72b3n] +
24b4n
n4

(15)

sup
x∈[0,bn]

Zn,2(x) 6
3b2n
n

(16)

sup
x∈[0,bn]

Zn,4(x) 6
3(n+ 47)b4n

n3
6 144

(
b2n
n

)2

. (17)

2

4. Approximation of Zn(f ; x) in weighted spaces

Let (bn) is be a sequence has positive terms, increasing and having the following conditions,

lim
n→∞

bn =∞ and lim
n→∞

b2n
n

= 0. (18)

Lemma 2. The sequence {Zn} defined by (4) is a sequence of linear positive operators taking
Cρ[0, bn] into Bρ[0, bn].

Proof. In order to prove this lemma, it is enough to prove limn→∞ Zn(ρ(t); x) = ρ(x)
uniformly on [0, bn] since ρ(x) ∈ Cρ[0, bn]. By using (7) and (9), we have

Zn(ρ(t); x) = ρ(x) +
x(4bn − x)

n
+

2b2n
n2

.

Therefore, ‖Zn(f ; x)‖ρ,[0,bn] is uniformly bounded on [0, bn] because of

lim
n→∞

sup
x∈[0,bn]

4b2n
n

+
2b2n
n2

= 0

under condition (18). The proof is complete. 2
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Theorem 1. Let f ∈ Ckρ [0,∞). Then

lim
n→∞

‖Znf − f‖ρ,[0,bn] = 0.

Proof. Using (7)–(9), we have

lim
n→∞

‖Zn(1; x)− 1‖ρ,(0,bn] = 0,

lim
n→∞

‖Zn(t; x)− x‖ρ,[0,bn] = lim
n→∞

sup
x∈[0,bn]

∣∣∣∣bnn 1
1 + x2

∣∣∣∣
= lim

n→∞

bn
n

= 0,

lim
n→∞

‖Zn(t2; x)− x2‖ρ,[0,bn] = lim
n→∞

sup
x∈[0,bn]

∣∣∣∣(x(4bn − x)
n

+
2b2n
n2

)
1

1 + x2

∣∣∣∣
= lim

n→∞

2(n+ bn)bn
n2

= 0.

According to Theorem B, the proof is complete. 2

5. Rate of approximation of Zn(f ; x) in weighted spaces

Now we want to find rate of approximation of the sequence of linear positive operators {Zn}
for f ∈ Ckρ [0, bn]. It is well known that the first modulus of continuity

ω(f ; δ) = sup{|f(t)− f(x)| : t, x ∈ [a, b], |t− x|6 δ}

does not tend to zero, as δ→ 0, on any infinite interval.
Ispir [19] defined a weighted modulus of continuity Ωn(f ; δ) which tends to zero, as δ→ 0,

on an infinite interval. A similar definition can be found in [1].
For each f ∈ Ckρ [0, bn] given by

∆n(f ; δ) = sup
|h|6δ
x∈[0,bn]

|f(x+ h)− f(x)|
(1 + x2)(1 + h2)

. (19)

In [19] Ispir showed the following properties of ∆n(f ; δ):
(i) limδ→0 ∆n(f ; δ) = 0 for every f ∈ Ckρ [0, bn];

(ii) for every f ∈ Ckρ [0, bn] and t, x ∈ [0, bn],

|f(t)− f(x)|6 2(1 + δ2n)(1 + x2)∆n(f ; δn).Sn(t, x),

where

Sn(t, x) =
(

1 +
|t− x|
δn

)
(1 + (t− x)2).

It is easy to see that

Sn(t, x) 6


2(1 + δ2n) if |t− x|6 δn

2(1 + δ2n)
(t− x)4

δ4n
if |t− x|> δn.

(20)

Theorem 2. Let f ∈ Ckρ [0, bn]. Then for all n sufficiently large,

‖Znf − f‖ρ,[0,bn] 6K.∆n

(
f ;

√
b2n
n

)
.

where K is a positive constant.
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Proof. If we use (7) and the properties of linear positive operators Zn

|Zn(f ; x)− f(x)| 6 Zn(|f(t)− f(x)|; x)
6 2(1 + δ2n)(1 + x2)∆n(f ; δn)Zn(Sn(t, x); x).

By (20) we get

Sn(t, x) 6 2(1 + δ2n)
[
1 +

(t− x)4

δ4n

]
for all x ∈ [0, bn], t ∈ [0,∞). Thus, for x ∈ [0, bn] and using (17),

|Zn(f ; x)− f(x)| 6 4(1 + δ2n)2(1 + x2)
[
1 +

1
δ4n
Zn,4(x)

]
∆n(f ; δn)

6 4(1 + δ2n)2(1 + x2)
[
1 +

144
δ4n

(
b2n
n

)2]
∆n(f ; δn).

Set δn =
√
b2n/n and consider δn 6 0.1 for sufficiently large n. Since limn→∞ b2n/n= 0, the

proof will be complete. 2

Remark 1. This kind of theorem is studied for different operators (for instance, Szász–
Mirakjan and Baskakov operators: see [19, 20]) in the norm ‖ · ‖ρ3 , but our theorem is studied
in the norm ‖ · ‖ρ. For instance in [19] it has been given in the form of a theorem: if f ∈ Ckρ [0, bn].
Then the inequality

sup
x∈[0,bn]

|Ln(f ; x)− f(x)|
(1 + x2)3

6K∆n(f ; b−1/4
n )

holds where the sequence (bn) is as in (3) and (Ln) is the Baskakov operators sequence
Ln(f ; x) =

∑∞
k=0 f(k/n)ϕkn(x)(−x)k/k!, x ∈ [0,∞).

Thus, Theorem 2 has better order approximation that the analog theorems which were given
in [19, 20].

6. A Voronovskaya-type theorem

In this section, we prove a Voronovskaya-type theorem for the operators Zn.

Theorem 3. For every f ∈ Ckρ [0, bn] such that f ′, f ′′ ∈ Ckρ [0, bn], we have

lim
n→∞

n

bn
{Zn(f ; x)− f(x)}= f ′(x) + xf ′′(x)

uniformly with respect to x ∈ [0, bn].

Proof. Let f, f ′, f ′′ ∈ Ckρ [0, bn]. In order to prove the theorem, by Taylor’s theorem we write

f(t) =
{
f(x) + (t− x)f ′(x) + 1

2 (t− x)2f
′′
(x) + (t− x)2η(t− x) if t 6= x

0 if t= x

where η(h) tends to zero for all h converging to zero.
Now from (7), (13) and (14)

n

bn
{Zn(f ; x)− f(x)}=

n

bn

bn
n
f ′(x)+

1
2
n

bn

[
2bnx
n
− x

2

n
+

2b2n
n2

]
f ′′(x) +

n

bn
Zn((t− x)2η(t− x); x).

If we apply the Cauchy–Schwarz–Bunyakovsky inequality for Zn((t− x)2η(t− x); x), we
conclude that

n

bn
|Zn((t− x)2η(t− x); x)|6

√
n

b2n
Zn((t− x)4; x)

√
nZn((η(t− x))2; x).
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x
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Figure 1. Approximation of f by Zn(f ; x), n = 10.

If we consider (17) and condition (18) we obtain√
n

b2n
Zn((t− x)4; x) 6

√
n

b2n

[
144
(
b2n
n

)2]
.

Here limn→∞
√

(n/b2n)Zn((t− x)4; x) = 0 is bounded with respect to x ∈ [0, bn]. On the
other hand, by assumption limt→x η(t− x) = 0. So, it follows that

lim
n→∞

n

bn
|Zn((t− x)2η(t− x); x)|= 0.

Then we have

n

bn
{Zn(f ; x)− f(x)}= f ′(x) + xf ′′(x)− 1

2
x2

bn
f ′′(x) +

bn
n
f ′′(x).

If we take lim on both sides with respect to x ∈ [0, bn], we will obtain the desired result. 2

6.1. An example for Theorem 3

Choose f(x) = x3. Then f ′(x) = 3x2, f
′′
(x) = 6x and f ′(x) + xf ′′(x) = 3x2 + 6x2 = 9x2. Now

use (10)

n

bn
{Zn(t3; x)− x3}=

18bn
n

x+
9(n− 1)

n
x2 − (3n− 2)

nbn
x3 +

6b2n
n2

lim
n→∞

n

bn
{Zn(t3; x)− x3}= 9x2 = f ′(x) + xf ′′(x).

6.2. Some plots

Figures 1–4 show plots for the function f(x) = sin(πx) · exp(−x/2) on the interval [0, 3] for
some n, generated using Maple14.
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f (x)

Zn( f ; x)
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1 2 3

Figure 2. Approximation of f by Zn(f ; x), n = 92.
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f (x)

Zn( f ; x)

Figure 3. Approximation of f by Zn(f ; x), n = 340.
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Figure 4. Approximation of f by Zn(f ; x), n = 752.
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3. I. Chlodowsky, ‘Sur le développment des fonctions défines dans un interval infinien séries de polynómes
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4. T. Coşkun, ‘Some properties of linear positive operators on the spaces of weight functions’, Commun. Fac.
Sci. Univ. Ank. Sér. A1 47 (1998) 175–181.
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14. V. Gupta, ‘Simultaneous approximation by Szăsz–Durrmeyer operators’, Math. Student 64 (1995) 27–36.
15. V. Gupta and P. N. Agarval, ‘An estimation of the rate of convergence for modified Szăsz–Mirakjan
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