COMPATIBLE TIGHT RIESZ ORDERS ON THE GROUP OF AUTOMORPHISMS OF AN 0-2-HOMOGENEOUS SET: ADDENDUM

GARY DAVIS AND COLIN D. FOX

The purpose of this note is to show that Theorem 8 of Davis and Fox [1] is sharp. That is, we show that the following result is valid.

THEOREM. Let Ω be an 0-2-homogeneous ordered set. Then T_{ρ} (respectively, T_{λ}) is a maximal compatible tight Riesz order if and only if Ω has a countable cofinal (respectively, coinitial) subset.

We firstly describe the candidate for a compatible tight Riesz order. For $g \in A(\Omega)$, a zero interval of g is a maximal convex subset Δ of $\Omega \setminus g$ with $|\Delta| > 1$. Let S be the set of all $1 \leq g \notin T_{\rho}$ whose support is unbounded above and which satisfy the following:

There exists $x \in \Omega$ such that for all sequences $\Delta_1 < \Delta_2 < \ldots$ of zero intervals of g with $x \leq \Delta_1$, there is a $\overline{z} \in \overline{\Omega}$ —the Dedekind completion of Ω —such that $\overline{z} > \overline{y} = \sup \{\Delta_i : i = 1, 2, \ldots\} \in \overline{\Omega}$, and $\operatorname{supp}(g) \cap (\overline{y}, \overline{z})$ is dense in $(\overline{y}, \overline{z}) \subseteq \overline{\Omega}$.

When Ω has no countable cofinal subset it is clear that

 $T(S) = \{g \in A^+(\Omega) : \text{supp } (g) \supseteq \text{supp } (h_1 \land \ldots \land h_n)\}$

for some $h_1, \ldots, h_n \in S$

is strictly larger than T_{ρ} .

Proof of Theorem. Assume that Ω has no countable cofinal subset. Take any $x \in \Omega$ and let Γ be a cofinal subset of Ω that is well-ordered by the induced order from Ω and for which $x < \Gamma$. For each $a \in \Gamma$ choose $b \in \Omega$ such that a < b < a + 1 (where a + 1 is the successor of a in Γ). As in [1] we can construct $h \in A^+(\Omega)$ for which $([x, \infty] \setminus \bigcup_{a \in \Gamma} [b, a + 1]) \cap$ supp (h) is dense in $[x, \infty) \setminus \bigcup_{a \in \Gamma} [b, a + 1]$ whilst $(-\infty, x] \subseteq \Omega$ supp (h) and, for each $a \in \Gamma$, $[b, a + 1] \subseteq \Omega$ supp (h). It is not difficult to see that $h \in S$, so that inf S = 1. Clearly S is a normal subset of $A^+(\Omega)$. Now suppose that $h_1, \ldots, h_n \in S$, and let $\Delta_{i,j}$ $(i = 1, \ldots, n \text{ and } j = 1, 2, \ldots)$ be zero intervals of h_i satisfying $\Delta_{i,j} < \Delta_{i+1,j} < \Delta_{i,j+1}$ for all $i = 1, \ldots, n - 1$ and $j = 1, 2, \ldots$. Then there is a $\overline{z} \in \overline{\Omega}$ such that $\overline{z} > \overline{y} = \sup \{\Delta_{i,j} : j = 1, 2, \ldots\}$ and $(\overline{y}, \overline{z}) \cap \text{supp}(h)$ is dense in $(\overline{y}, \overline{z})$ for each $i = 1, \ldots, n$ and therefore $h_1 \land \ldots \land h_n \neq 1$. A

Received August 16, 1976 and in revised form, November 17, 1976.

straightforward calculation now shows that

$$T(S) = \{g \in A^+(\Omega) : \text{supp } (g) \supseteq \text{supp } (h_1 \land \ldots \land h_n)$$

for some $h_1, \ldots, h_n \in S$

is a compatible tight Riesz order.

We would like to express our gratitude to Andrew Glass for putting us on the right track to this result.

References

1. G. E. Davis and C. D. Fox, Compatible tight Riesz orders on the automorphism group of an 0-2-homogeneous set, Can. J. Math. 28 (1976), 1076-1081.

La Trobe University, Melbourne, Australia