NOTES ON A PAPER BY J. B. MILLER

J. L. LAVOIE ${ }^{1}$

(Received 2 June 1986)

Abstract

Two sums given by J. B. Miller are evaluated in terms of classical hypergeometric results.

1. Introduction

In a recent paper [2] on the foliage density equation, J. B. Miller reproduces a proof due to G. A. Watterson, of the relation

$$
\begin{equation*}
\sum_{l=0}^{j}\binom{2 k}{2 l}\binom{k-l}{k-j}=\frac{\dot{k}}{j}\binom{k+j-1}{k-j} 2^{2 j-1}, \quad 0 \leqslant j \leqslant k \tag{1}
\end{equation*}
$$

He also considers the sum

$$
S_{r}(j)={ }_{3} F_{2}\left(\left.\begin{array}{cc}
-r, r+2 j, & j \tag{2}\\
j-\frac{1}{2}, & 2 j+2
\end{array} \right\rvert\,\right)
$$

and says that by using a Burroughs B6700 computer B. J. Milne has obtained the following formulae, valid at least for $r=0,1, \ldots, 12$ and all $j \geqslant 1$. There are separate forms for $r=2 s+1$ and $r=2 s$, with integral $s \geqslant 1$;

$$
\begin{align*}
& S_{2 s+1}(j)= \\
& -\frac{1^{2} \cdot 3^{2} \cdot 5^{2} \cdots(2 s-1)^{2}(2 s+1)}{2^{2 s+1}\left(j^{2}-\frac{1}{4}\right)(j+1)\left(j+\frac{3}{2}\right)^{2}\left(j+\frac{5}{2}\right)^{2} \cdots\left(j+\frac{2 s-1}{2}\right)^{2}\left(j+\frac{2 s+1}{2}\right)} \tag{3}
\end{align*}
$$

[^0]\[

$$
\begin{equation*}
S_{2 s}(j)=S_{2 s+1} \cdot \frac{2 j^{2}+(4 s+1) j+4 s^{2}-1}{(2 s-1)(2 s+1)}, \quad s=1,2,3, \ldots \tag{4}
\end{equation*}
$$

\]

2. Some hypergeometric results

a) Note that (1) is a special case of Gauss's classical result

$$
{ }_{2} F_{1}(a, \quad b \mid 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}, \quad R(c-a-b)>0 .
$$

More explicitly, for $0 \leqslant j \leqslant k$, we have

$$
\left.\sum_{l=0}^{j}\binom{2 k}{2 l}\binom{k-l}{k-j}=\binom{k}{j}_{2} F_{1}\left(\begin{array}{cc}
-j, & \frac{1}{2}-k \\
& \frac{1}{2}
\end{array}\right) 1\right)=\frac{(k+j-1)!k}{j!(k-j)!\left(\frac{1}{2}\right)_{j}}
$$

where

$$
(\lambda)_{n}=\frac{\Gamma(\lambda+n)}{\Gamma(\lambda)}=\left\{\begin{array}{l}
1, \quad \text { if } n=0, \\
\lambda(\lambda+1) \cdots(\lambda+n-1), \quad \forall n \in\{1,2, \ldots\} .
\end{array}\right.
$$

b) Instead of (2), consider the more general sum

$$
S(a, b, c)={ }_{3} F_{2}\left(\left.\begin{array}{lc}
a, & b, \tag{5}\\
\frac{1}{2}(a+b-1), & c \\
2 c+2
\end{array} \right\rvert\, 1\right) .
$$

Rainville [3], pp. 81-85, has given many relations involving contiguous functions, one of the simplest of which is

$$
(\alpha-\beta+1) F=\alpha F(\alpha+1)-(\beta-1) F(\beta-1)
$$

Letting

$$
F={ }_{3} F_{2}\left(\left.\begin{array}{lc}
a, & b, \\
\frac{1}{2}(a+b+1), & c \\
2 c+2
\end{array} \right\rvert\, 1\right),
$$

then for $\alpha=c$ and $\beta=\frac{1}{2} a+\frac{1}{2} b+\frac{1}{2}$, we obtain

$$
\left.\left.\begin{array}{rl}
{ }_{3} F_{2}\left(\left.\begin{array}{lc}
a, & b, \\
\frac{1}{2}(a+b+1), & 2 c+2
\end{array} \right\rvert\, 1\right) \\
= & \frac{2 c}{1+2 c-a-b^{3}} F_{2}\left(\begin{array}{cc}
a, & b,
\end{array} c+1\right. \\
\frac{1}{2}(a+b+1), & 2 c+2
\end{array} \right\rvert\, 1\right) .
$$

Also, when $\alpha=c$ and $\beta=2 c+2$, we find that

$$
\begin{aligned}
&{ }_{3} F_{2}\left(\begin{array}{cc}
a, & b, \\
\frac{1}{2}(a+b+1), & c \\
2 c+2
\end{array}\right) \\
&= \frac{2 c+1}{c+1}{ }_{3} F_{2}\left(\left.\begin{array}{cc}
a, & b, \\
\frac{1}{2}(a+b+1), & 2 c+1
\end{array} \right\rvert\, 1\right) \\
&-\frac{c}{c+1}{ }_{3} F_{2}\left(\begin{array}{cc}
a, & b, \\
\frac{1}{2}(a+b+1), & 2 c+2
\end{array}\right) 1
\end{aligned}
$$

Equating the right-hand sides of these last two relations yields

$$
\begin{align*}
& \frac{a+b-1}{1+2 c-a-b} S(a, b, c) \\
& =\frac{c(3+4 c-a-b)}{(c+1)(1+2 c-a-b)}{ }_{3} F_{2}\left(\left.\begin{array}{cc}
a, & b, \\
\frac{1}{2}(a+b+1), & c+1 \\
2 c+2
\end{array} \right\rvert\,\right) \\
& \tag{6}\\
& \quad-\frac{2 c+1}{c+1}{ }_{3} F_{2}\left(\begin{array}{cc}
a, & b, \\
\frac{1}{2}(a+b+1), & 2 c+1
\end{array}\right) .
\end{align*}
$$

Finally, the left hand side can be easily transformed into the right hand side in the following relation:

$$
\left.\begin{array}{r}
{ }_{3} F_{2}\left(\left.\begin{array}{lc}
a, & b, \\
\frac{1}{2}(a+b+1), & c \\
2 c+1
\end{array} \right\rvert\, 1\right)-{ }_{3} F_{2}\left(\left.\begin{array}{cc}
a, & b, \\
\frac{1}{2}(a+b+1), & c \\
2
\end{array} \right\rvert\, 1\right.
\end{array}\right) .
$$

Using this in the right side of (6) yields

$$
\left.\begin{array}{rl}
S(a, b, c) & =\frac{c(3+4 c-a-b)}{(c+1)(a+b-1)}{ }_{3} F_{2}\left(\left.\begin{array}{ccc}
a, & b, & c+1 \\
\frac{1}{2}(a+b+1), & 2 c+2
\end{array} \right\rvert\, 1\right.
\end{array}\right) .
$$

The three ${ }_{3} F_{2}$, on the right of the last relation, can be evaluated by Watson's classical summation formula [1], p. 16, 3.3.1:

$$
\left.\begin{array}{rl}
{ }_{3} F_{2}\left(\left.\begin{array}{cc}
a, & b, \\
\frac{1}{2}(a+b+1), & 2 c
\end{array} \right\rvert\, 1\right.
\end{array}\right) .
$$

Thus

$$
\begin{align*}
& S(a, b, c)= \frac{\Gamma\left(\frac{3}{2}\right) \Gamma\left(\frac{1}{2} a+\frac{1}{2} b-\frac{1}{2}\right) \Gamma\left(c+\frac{3}{2}\right) \Gamma\left(c-\frac{1}{2} a-\frac{1}{2} b+\frac{3}{2}\right)}{(c+1) \Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)} \\
& \times\left\{\frac{a b \Gamma\left(\frac{1}{2} a+\frac{1}{2}\right) \Gamma\left(\frac{1}{2} b+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2} a+1\right) \Gamma\left(\frac{1}{2} b+1\right) \Gamma\left(c-\frac{1}{2} a+1\right) \Gamma\left(c-\frac{1}{2} b+1\right)}\right. \\
&\left.-\frac{(1-a)(1-b)+(1-a-b) c}{\Gamma\left(c-\frac{1}{2} a+\frac{3}{2}\right) \Gamma\left(c-\frac{1}{2} b+\frac{3}{2}\right)}\right\} \tag{7}\\
& R(2 c-a-b)>-3
\end{align*}
$$

In particular, from (2), (5) and (7):

$$
\begin{aligned}
S_{2 s+1}(j) & =S(-1-2 s, 2 s+2 j+1, j) \\
& =-\frac{\left(s+\frac{1}{2}\right)\left(s+j+\frac{1}{2}\right)\left(\frac{1}{2}\right)_{s}\left(\frac{1}{2}\right)_{s}}{(j+1)\left(j^{2}-\frac{1}{4}\right)\left(j+\frac{3}{2}\right)_{s}\left(j+\frac{3}{2}\right)_{s}}
\end{aligned}
$$

which is (3), and (4) is similarly obtained.

3. Some other sums

The expressions

$$
u_{1}={ }_{4} F_{3}\left(\begin{array}{ccc}
3 / 2, & 1, & t, \\
1 / 2, & 3 / 2+t, & -t \\
1 / 2-t
\end{array}\right)
$$

and

$$
u_{2}={ }_{4} F_{3}\left(\begin{array}{cccc}
3 / 2, & 1, & t+1, & -t \\
& 1 / 2, & 5 / 2+t, & 3 / 2-t
\end{array}\right)
$$

are found in (45) and (46) of Miller's paper and they can be evaluated. These are terminating Saalschützian ${ }_{4} F_{3}$ and they can be transformed by the following formula, [1], p. 56, 7.2.1:

$$
\begin{aligned}
& { }_{4} F_{3}\left(\left.\begin{array}{c}
x, y, z,-n \\
u, v, w
\end{array} \right\rvert\, 1\right) \\
& \quad=\frac{(v-z)_{n}(w-z)_{n}}{(v)_{n}(w)_{n}}{ }_{4} F_{3}\left(\left.\begin{array}{c}
u-x, \quad u-y, \quad z, \quad-n \\
1-v+z-n, 1-w+z-n, u
\end{array} \right\rvert\, 1\right) .
\end{aligned}
$$

With

$$
x=3 / 2, \quad y=1, \quad z=t, \quad n=t, \quad u=1 / 2, \quad v=3 / 2+t, \quad w=3 / 2-t,
$$

the ${ }_{4} F_{3}$ on the right will contain only two non zero terms and we find that

$$
u_{1}=\frac{\left(1-4 t^{2}\right)\left(1-8 t^{2}\right)}{1-16 t^{2}}
$$

We find also, in exactly the same way, that

$$
u_{2}=-\frac{(2 t-1)(2 t+3)}{(4 t+1)(4 t+3)}\left(8 t^{2}+8 t+1\right)
$$

References

[1] W. N. Bailey, Generalized hypergeometric series (Stechert-Hafner Service Agency, New York and London, 1964).
[2] J. B. Miller, "The foliage density equation revisited," J. Austral. Math. Soc. Ser. B 27 (1986) 387-401.
[3] E. D. Rainville, Special functions (The Macmillan Company, New York, 1960).

[^0]: ${ }^{1}$ Département de mathématiques, statistique et actuariat, Université Laval, Québec, Canada, G1K $7 P 4$.
 © Copyright Australian Mathematical Society 1987, Serial-fee code 0334-2700/87

