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The complex dynamics of turbulent flow in the vicinity of a solid surface underlie
numerous scientifically important processes, and pose persistently daunting challenges
in many engineering applications. Since their discovery decades ago, coherent motions
have presented a tantalizing prospective opportunity for constructing descriptions of
wall-flow dynamics using only a relatively small number of elements. The veracity
and reliability of such representations are, however, ultimately tied to their basis in
the Navier–Stokes equations. In this regard, the study by Sharma & McKeon (J. Fluid
Mech., vol. 728, 2013, pp. 196–238) constitutes an important contribution, as it not
only provides insights regarding the mechanisms underlying wall-flow coherent motion
formation and evolution, but does so within a Navier–Stokes framework.
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1. Introduction

While focusing on the flow through a pipe, the study by Sharma & McKeon (2013)
broadly pertains to the flow over a no-slip material surface at Reynolds numbers in
the fully turbulent regime. Describing the dynamics of these flows has proven to be
notoriously difficult. Because of their scientific and technological importance, however,
they remain the subject of intensive study, with special interest in their behaviour at
high Reynolds number (Klewicki 2010; Marusic et al. 2010).

Within a wall-bounded turbulent flow, the largest eddies have a size characteristic of
the overall width of the flow. Conversely, the smallest scales of motion are determined
by the dynamics in the immediate vicinity of the surface, where the turbulence
interacts directly with the surface to transfer momentum. Accordingly, the size of
the smallest eddy is estimated by forming a length using the mean wall shear stress
and the fluid’s kinematic viscosity. By recognizing that the Reynolds number of the
flow is approximately proportional to the ratio of these largest and smallest lengths,
one comes to appreciate the vast range of scales of motion involved.
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The average properties of turbulent wall flows derive from the dynamical
interactions across the range of motions, as dictated by the Navier–Stokes equations.
The nonlinearity of these equations and the range of dynamically active motions
renders the construction of tractable yet well-founded representations a discouraging
proposition. Starting in the mid 1960s, however, researchers came to recognize that
some of these motions, the coherent motions, display quasi-repeatable attributes, and
carry with them the bulk of the dynamics (Cantwell 1981; Robinson 1991). Early
coherent motion research focused on identification and classification. More recent
studies, however, have sought to exploit their dynamical significance to construct
low-dimensional models. Here is where Sharma & McKeon (2013) make a substantive
contribution.

Early attempts at low-dimensional models empirically reconstructed spatial mode
shapes using the proper orthogonal decomposition, e.g. Aubry et al. (1988). Over
time, however, studies have increasingly sought to more formally connect to the
Navier–Stokes equations. Notable among such attempts at low Reynolds number are
those pertaining to exact coherent structures, e.g. Waleffe (2003), and those examining
transitional and weakly turbulent flows by using state-space characterizations to
identify, for example, fixed point and travelling wave solutions, e.g. Kerswell (2005),
Gibson, Halcrow & Cvitanovic (2009). At the other extreme are studies that use
global dynamical or geometric constraints to construct reduced-order models for
flows approaching their asymptotic regimes, e.g. Julien & Knobloch (2007). The
study by Sharma and McKeon is, however, perhaps the first to credibly employ
a Navier–Stokes-based analysis (albeit under some assumptions and an intriguing
hypothesis) to represent coherent motion dynamics on a mode-by-mode basis in the
fully turbulent regime.

2. Overview

The approach of Sharma & McKeon (2013) borrows from wall-flow stability theory,
as it develops a spectral formulation for the coherent motion mode shapes that stem
from a critical layer mechanism associated with an assumed (e.g. measured) mean
velocity profile. A spectral representation of the Navier–Stokes equations is cast into a
form that segregates the nonlinear (forcing) and linear (response) terms. Determining
the response behaviours is a primary aim of the analysis. These behaviours are
determined by a resolvent operator that operates on the forcing function. Like in
stability theory, the resolvent becomes large when the wave speed of a given mode
is equal to the mean velocity. The most amplified modes are shown to be highly
localized about regions of elevated vorticity where the wave speed of the given
mode is equal to the local mean velocity. An intriguing and exciting element of
this formulation is the implicit hypothesis that these nonlinear forcing and linear
response mode combinations underlie the formation and evolution of the coherent
motions observed in physical space.

A discrete modal decomposition is used to demonstrate how the highest gain linear
response modes are associated with the forcing modes. Given a mean velocity profile,
the user selects the operative mode shapes and their amplitudes. Here the authors
primarily focus on those that reflect the properties of hairpin vortex packets, and
large-scale or ‘superstructure’ motions that are known to be prevalent. Hairpin-shaped
vortices have long been postulated to be a basic building block of wall turbulence,
and experimental studies over the past two decades provide evidence that collections
of these motions (packets) form and evolve to generate larger-scale coherent features
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FIGURE 1. Visualization of the flow structure arising from an ideal packet, KB, mode
combination. This representation captures the spatial phase relationships between large-scale
regions characteristic of elevated turbulent kinetic energy, and the smaller-scale vortical motions
around their periphery. Adapted from figure 10 of Sharma & McKeon (2013).

e.g. Theodorsen (1952), Adrian, Meinhart & Tomkins (2000). Clear evidence has
also recently emerged indicating the existence and importance of large-scale energetic
motions, e.g. see Hutchins & Marusic (2007) and Bailey et al. (2008). Sharma and
McKeon select mode shapes representative of the above motions, and use only one
leading singular value. In general, however, the framework naturally embraces more
complex coherent motion representations.

The study also shows the levels of complex organization that arise as an increasing
yet small number of mode shapes are added to the menu of motions. Using just a
single response mode at one streamwise wavelength and one spanwise wavelength
results in a replicated array of hairpin-like vortices (see their figure 5). If an additional
intrinsic wavelength that pertains to the streamwise spacing of the hairpin vortices
is added, then figure 1 results. By adding this organizational feature, the response
modes inherently generate larger-scale energetic regions of low vorticity. There is now
considerable evidence supporting the existence of instantaneous flow field behaviours
similar to that depicted, e.g. del Alamo et al. (2006). Remarkably, the depiction
of figure 1 includes the spatial phase relationships between the energetic regions
and the vortical motions at their periphery. Real turbulent wall flows have finite
correlation lengths in the spanwise (azimuthal) direction. Their figure 17 nominally
includes this scrambling effect by including a small number of modes that have a
non-simple spanwise periodicity. With regard to the characteristic scales and their
spatial arrangement, there is a striking correspondence between the structure they show,
and that observed by visualizing vortices in experiments.

3. Future

The framework established by McKeon & Sharma (2010) and exemplified in
Sharma & McKeon (2013) has a number of attractive features pertaining to future
research. Notable among these is that it inherently allows one to postulate and
explore mode combinations inspired by physical observations. Through this one not
only learns about the coherent motions that result, but also about the veracity of
the formulation itself. The former of these allows one to estimate, for example, the
appropriate modal amplitudes. The latter is potentially much farther reaching. Namely,
the formulation relies upon the expectation (hypothesis) that for sufficiently high
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Reynolds number the regions of high gain are associated with the most amplified
modes resulting from the singular-like values associated with the resolvent. This
notion, physically underpins the expectation that the linear response modes will be
highly selective with regard to the nonlinear forcing. This hypothesis speaks to the
role of nonlinearity in the dynamics of wall turbulence, and thus deeper inquiry into
its implications, and potential limitations, would seem to be fertile area for further
research.

As more is learned about the framework’s capabilities, one can envision its
exploitation in numerous applications. These include the exploration of specific
mode–mode interactions for the purposes of clarifying scale separation effects at
high Reynolds numbers, and the use of the low-dimensional representation to devise
efficient computational schemes. Perhaps the most exciting, however, is the potential
of their framework for devising and characterizing turbulence control schemes. In this
regard, the framework affords the apparent capacity to isolate the specific modes that
are primarily responsible for specific mean flow features, and vice versa.
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