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Dispersion with a pinch of salt
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Ding (J. Fluid Mech., vol. 970, 2023, A27) analysed the dispersion of a multicomponent
electrolyte solution flowing through a channel. An inequality in ionic diffusion coefficients
induces a spontaneous electric field that leads to nonlinear coupling of species
fluxes. Ding presented an effective equation for the long-time evolution of the ionic
concentration distributions, which revealed novel features compared with the classic
case of an uncharged solute. This work highlights the rich physics of ion diffusion and
electro-migration in non-uniform flows.
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1. Introduction

Dispersion is the enhancement in flux of a diffusing substance in a non-uniform
velocity field. This transport phenomenon is relevant in microfluidics, physiological
flows, contaminant fate in the environment and analytical chemistry, for instance. The
foundational work on dispersion is due to Taylor, who analysed the transport of a
molecular solute in a steady Poiseuille flow (Taylor 1953). Diffusion acts to make the
solute concentration uniform over the cross section of the tube at times long compared
with a2/κ , where a is the tube radius and κ is the diffusivity of the solute. In addition,
as solute diffuses it samples different flow streamlines, which enhances its longitudinal
transport along the axis of the tube. Taylor showed that longitudinal variations in the
cross-sectionally averaged solute concentration obey a diffusion equation in a frame of
reference translating with the mean speed of the flow. The diffusion coefficient in this
equation is not the solute diffusivity; rather, it is an effective diffusion coefficient, or
dispersivity (κeff , say), equal to a2u2

0/(192κ), where 1
2 u0 is the mean flow speed. This

can be understood as follows: in a time τ = a2/κ a solute molecule will experience
a convective longitudinal displacement of order u0τ = (u2

0τ)1/2τ 1/2, where (u2
0τ)1/2 =

a2u2
0/κ is the scaling for κeff . The factor of 1/192 is particular to a tube of circular

cross section. Consider a fixed amount of solute released into the flow at time t = 0 at
some location. At times t � τ , Taylor’s theory predicts that the centroid of the solute
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distribution moves with the mean speed of flow and that the solute spreads as a Gaussian
about this centroid with variance proportional to κeff t. These predictions compare
favourably against Taylor’s own experiments on dispersion of potassium permanganate
(KMnO4) solutions. Taylor’s κeff = a2u2

0/(192κ) is valid if the Péclet number Pe =
u0a/κ , i.e. the ratio of diffusion a2/κ to advection a/u0 times, is large. If this condition
is not met, then longitudinal molecular diffusion cannot be neglected and the dispersivity
is modified to κeff = κ(1 + 1

192 Pe2). A plethora of variations on Taylor’s theme have been
considered; see Chu et al. (2019) for a review.

2. Overview

Ding (2023) (hereafter D23) offers a fresh twist on dispersion. Specifically, Taylor
considered dispersion of a solute that is electrically neutral. D23 analysed the dispersion
of an electrolyte solution; that is, when a pinch of salt is added to a non-uniform flow
field. The salt dissociates into ions that diffuse and are advected by the flow, just as
in Taylor’s analysis. In addition, the ions would drift in an electric field since they are
charged. However, how can an electric field arise if no voltage is externally applied?
Well, electroneutrality of the solution must be obeyed at ionic separation distances beyond
the Debye length. Consequently, the ionic charge density must sum to zero on such
length scales, which constrains the ion concentrations to

∑n
i=1 zici = 0, where ci and

zi are the concentration and valence of the ith species in an n-component electrolyte.
The absence of an external voltage implies that the electrical current vanishes, which
requires the additional constraint

∑n
i=1 zi ji = 0, where ji = −κi∇ci − (κizie/kBT)ci∇φ

is the drift-diffusion flux of species i, in which κi is the diffusion coefficient, e is the
charge on a proton, kB is Boltzmann’s constant, T is temperature and φ is the electric
potential. Combining these two constraints shows that a spontaneous field E is induced,
which equals

E = −∇φ = kBT
e

n∑
i=1

ziκi∇ci

n∑
i=1

z2
i κici

. (2.1)

Chiang & Velegol (2014) claimed that (2.1) was first derived by Henderson (1907).
Equation (2.1) holds in the presence of a hydrodynamic velocity field u, since the
current owing to the flux of ions in this flow,

∑n
i=1 uzici, is zero by electroneutrality.

The spontaneous field exists only if the ions have unequal diffusion coefficients,
which is practically always the case. For a binary electrolyte (n = 2) we have E =
[(κ1 − κ2)/(z1κ1 − z2κ2)]∇c1, where z2c2 + z1c1 = 0 in an electroneutral solution.
Physically, the field acts to speed up (slow down) the larger (smaller) ion of the pair in
response to the diffusive flux arising from a concentration gradient. That is, the fluxes
of the two ions are coupled by the requirement of electroneutrality. Mathematically, the
coupled fluxes are ji = −κamb∇ci, where κamb = [κ1κ2(z1 − z2)/(z1κ1 − z2κ2)] is the
ambipolar diffusion coefficient. Crucially, for a binary electrolyte the flux of species i is
proportional to the concentration gradient of that species only. Thus, in this case, Taylor’s
dispersion analysis holds; the only alteration needed is to replace the molecular diffusivity
with the ambipolar diffusivity. Incidentally, this explains why Taylor’s experiments on
KMnO4, a binary electrolyte, can be properly compared to his theory that assumes a
molecular, as opposed to ionic, solute.
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The situation is essentially different for a multicomponent (n > 2) electrolyte, an
example of which would be two salts that share a common cation, such as in the
pore-diffusion experiments of Gupta et al. (2019) using sodium fluorescein and sodium
chloride salts. The spontaneous field for a n-component electrolyte generates a coupled
flux ji = −∑n

k=1 Cik∇ck, in which

Cik = κiδik − zizkκiκkci
n∑

k=1

z2
kκkck

(2.2)

is the coupling coefficient relating the flux of species i to a concentration gradient of
species k (Liu, Shang & Zachara 2019). Evidently, the flux of species i is nonlinearly
coupled to the concentrations of all ionic species for a multicomponent electrolyte. This
leads to interesting diffusive dynamics even in the absence of a velocity field. D23 analysed
the even richer dynamics resulting from dispersive transport.

D23 considered a multicomponent electrolyte in a channel with a longitudinally constant
cross-section. The length of the channel is assumed to be much larger than its characteristic
width. A unidirectional flow with velocity field u, which could be steady or time-periodic,
occurs in the channel. The concentration of the ith species satisfies the conservation
equation

∂ci

∂t
+ u · ∇ci + ∇ · ji = 0, (2.3)

along with no flux conditions at the walls of the channel and prescribed initial distributions
that are independent of the cross-sectional coordinates of the channel. D23 utilised the
electroneutrality and zero current constraints to recast (2.3) as

∂ci

∂t
+ u · ∇ci = ∇ ·

n∑
k=1

Cik∇ck. (2.4)

Equation (2.4) is equivalent to (2.3) in D23; the nonlinear coupling of ionic fluxes is
encapsulated in the off-diagonal terms of Cik. D23 derived an equation for the longitudinal
variation of the cross-sectionally averaged concentration of each ionic species, using a
homogenisation procedure, which involved exploiting the small width-to-length ratio (ε)
of the channel, whereby ‘slow’ and ‘fast’ time scales on which ion diffusion occurs
along the channel length and over the cross section, respectively, are introduced. Temporal
variations in the flow are assumed to be on the slow time. Ion concentrations and electric
potential are expanded as perturbation series in ε, which are used with (2.4) to yield a
hierarchy of problems. The main result in D23 is the ‘effective equation’ (3.18), which
describes the evolution of the concentration of ionic species at the slow time scale under a
steady flow, in a reference frame moving with the mean flow speed. We rewrite (3.18) as

∂c
∂t

+ ∂

∂x

[
(D + Pe2FD−1)

∂c
∂x

]
= 0. (2.5)

All variables in (2.5) are dimensionless: time t is normalised on the diffusion time over
the cross section; coordinate x is normalised on a characteristic longitudinal distance; c
is a vector containing concentrations of n − 1 ionic species normalised by a reference
concentration (the concentration of the nth ionic species can be found by electroneutrality);
F is a number that depends only on the form of the velocity field u (e.g. F = 1/192 for
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steady flow in a tube); Pe is a Péclet number as defined in § 1; and, finally, D is a ‘diffusion
tensor’ whose elements are normalised by a reference diffusion coefficient and are closely
related to the coupling coefficients Cik. The elements of D and its inverse, D−1, are defined
in (3.9) and (3.12) of D23.

The diffusion tensor D degenerates to unity for a single species and reduces to a
normalised ambipolar diffusion coefficient for a binary electrolyte. Taylor’s analysis is
thereby recovered in both cases. At n = 3, however, D is a two-by-two matrix that
depends nonlinearly on the concentrations of the ionic species. D23 considered a three-ion
system with κ1 = 1, κ2 = 0.1, κ3 = 1, z1 = 1, z2 = 1 and z3 = −2 in a planar shear
flow u = cos(2πy)ex (with zero mean) over the domain −π ≤ x ≤ 8π and 0 ≤ y ≤ 1,
where ex is a unit vector in the flow direction. For this flow F = (8π2)−1. Figure 8 of
D23 plots ion concentration distributions at t = 0.2 for Pe = 2 obtained from numerical
solution of (2.3) in D23. Surprisingly, the concentration of the first ion species, c1,
bends opposite to the shear flow, which is due to the spontaneous field. At later times
(t = 2) the cross-sectionally averaged concentration profiles from the numerical solution
compare well against the solution of the effective (3.18), which demonstrates the validity
of the homogenisation scheme (figure 3 of D23). Actually, the agreement is somewhat
unexpected as ε = 4 in this case. The same system at Pe = 8 was examined in figure 4
of D23. Here, all ion distributions bend in the flow direction at early times (t = 0.2) due
to the stronger flow. Figure 6 computes the dispersivity vs Pe for this three-ion system,
where it is seen that: (i) the dispersivity can be a non-monotonic function of Pe (unlike
in Taylor’s analysis); (ii) the ion with the largest dispersivity can change with Pe; and
(iii) the dispersivity scales with Pe2 at large Pe (like in Taylor’s analysis). A final point
is that coupled fluxes can lead to non-Gaussian (even bimodal) ion distributions in the
absence of flow (figure 7), although this effect diminishes in flow, e.g. at Pe = 2 (figure 8).

3. Outlook

D23 has shown that coupled ionic fluxes fundamentally affect dispersion of
multicomponent electrolytes. The dispersive transport is richer than for an uncharged
solute, due to the inherent nonlinearity introduced by this coupling. Extensions to D23
can readily be envisioned. For instance, the generalisation of (3.18) in D23 to curved
channels or straight channels with longitudinal variations in cross-sectional area or
longitudinal slip-stick patterning. Electrolytes with n > 3 components, some of which may
not completely dissociate, would also be interesting to consider, in steady and unsteady
flows. One should also analyse the evolution of ionic concentrations in unbounded flows,
such as simple shear, or flows with closed streamlines. Practical applications to the
measurement of relative amounts of species in a multicomponent ionic solution were
suggested by D23. The interesting work of D23 provides a foundation for these future
studies.
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