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PROJECTIONS ON BERGMAN SPACES 
OVER PLANE DOMAINS 

JACOB BURBEA 

1. Introduction. Let D b e a bounded plane domain and let LP(D) stand for 
the usual Lebesgue spaces of functions with domain D, relative to the area 
Lebesque measure da(z) = dxdy. The class of all holomorphic functions in D 
will be denoted by H(D) and we write BP{D) = LP(D) C\ H(D). BP(D) is 
called the Bergman p-space and its norm is given by 

II/II, = {fB\m\'Mz)y*. o<p<™, 
| | / I L = Sup,€ f l | / (s) | . 

Let KD(z, f) be the Bergman kernel of D and consider the Bergman projection 

(1.1) 0P/)(f) = (f,KD( , f ) ) = f f(z)KD(ï,z)M*)-
JD 

It is well known that P is not bounded on LP(D), p = 1, oo, and moreover, it 
can be shown that there are no bounded projections of Lœ(A) onto Bœ(A). 
Here and throughout this paper A stands for the unit disk {z: \z\ < 1}. Bers 
[3], by replacing the Lebesgue measure with the Poincaré measure 
^D~2(z)d<r(z), where \D(z) is the Poincaré metric for D} was able to show that 
Li(D) is continuously projected onto B1(D). It is impossible, however, to 
deduce from Bers result or its modification the existence of bounded projec
tion from LP(D) onto BP{D) for 1 < p < oo. 

Zaharjuta and Judovic [14], using the Calderôn-Zygmund theory of singular 
integrals, showed that P is bounded on LP(A) for 1 < p < oo and Stein [11] 
extended this result to the unit ball in Cn. 

Our main contribution in this paper is in showing that for a multiply 
connected domain D, with some smoothness requirements to be specified later, 
the Bergman projection P is bounded on LP(D) for 1 < p < oo. As in [14] we 
also exploit the Calderôn-Zygmund theory of singular integrals. However, our 
method proceeds in a different direction by first showing that an operator 
involving the "adjoint" of the Bergman kernel [2] is bounded on LP(D), 
1 < p < oo. This operator behaves like the Hilbert transform and thus has 
the required singularity of the Calderôn-Zygmund theory. This property is not 
shared by the operator P. 

Quite recently Bekollé and Bonami [1] have characterized the weighted 
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measures co on the unit disk A for which the Bergman projection P is bounded 
on Lp(A:œ), 1 < p < oo . Our method can be also applied to this situation and 
even extend their result to the multiply connected case. This and other related 
results, however, will be elaborated elsewhere. 

In § 2 we review some results from the theory of singular integrals which are 
needed in our work, and § 3 is devoted to a brief discussion on the various 
kernels of a domain. In § 4 we introduce some concepts relevant to the degree 
of smoothness of the domain. We prove two propositions associated with these 
concepts (Propositions 3 and 4) and we define the crucial class Wp. The main 
theorem (Theorem 1) is proved in § 5. There we also prove Theorem 2. In § 6 
we discuss weak convergence in BP(D). 

Finally, we wish to thank the referee and J. E. Brennan for their valuable 
comments. 

2. Singular integrals. Let D be a bounded domain and set 

CP(D) = {A e R+: A = kxp + k2(p - l ) - 1 } , 1 < p < oo} 

where k\ and k2 are positive constants depending only on the shape of D. We 
consider the following familiar transforms; the Hilbert transform 

ir JD {z — ç) 

and the Riesz transform 

W)(r) = T~ f -^-LmMz), 
Zir JD \z — Ç\ 

where the integrals are taken in the principal value sense. These transforms 
are singular integrals of the Calderon-Zygmund type. Therefore, they are 
bounded on LP(D) and in fact (cf. [10, p. 22]) 

117̂ 11 S Ap, \\RD\\P g AP;AP 6 CP(D). 

The usefulness of the Riesz transform follows from the following well known 
proposition [10, p. 59]: 

PROPOSITION 1. If fc £ LP(D) then fz = —RD
2fz and therefore 

\\ft\\p£Ap\\M\,Ape CP(D). 

Herefz = df/dz andfj = df/dz. 

Let co be a positive locally integrable function in D. œ is said to belong to 
MP(D) (1 < p < oo ) if it satisfies the Muckenhoupt condition: 

Sup V\~l I a>(z)da(z) i F p 1 I « ( z r^^de rO*) 
%) y J L J y 

p - 1 

where the supremum is taken over all sectors V (Z D and \V\ = <r(V). For 
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ready reference we record the following proposition which is due to Coifman 
and Fefferman [5]: 

PROPOSITION 2. Let a) be a positive locally integrable function in D. Then TD 

is a bounded operator on Lp(D:œ) if and only if co Ç MP(D). 

3. The Bergman kernel. Let G = GD(z} f) be the customary Green's 
function of the domain D. We write 

GD(zA) =H{zA) - log |z - f|, 

where H = H(z, f) is symmetric and harmonic in (z, f) G D X Z>. It is well 
known (see [2]) that 

(3.1) KD(z ,f) = 
2 a2G 
TT asaf 

and that its "adj oint" is given by 

(3.2) LD(z, ,f) = 
2 d2G 
7T dzdÇ ' 

Here 

LD(z, ,f) = 
1 1 
TT (Z - f ) 2 4>(z, ?) 

where 

ID(Z, f) = 
2 d2g 

is symmetric and holomorphic in (z, Ç) £ D X D. We note that the "correction 
term" lD(z, f ) is identically zero when Z> is a disk. Also, if dD is analytic then 
lD(z, f) is holomorphic in (z, Ç) £ D X D (cf. [2, p. 211]). If </> is a conformai 
mapping of D onto 12 then 

GD(z,Ç) = Go(*(z),0(r)) 

and therefore 

(3.3) XD(z, f) = Ka(4>(z), *(f))*'(z)*'(f), 

and 

(3.4) LD(z, f) = LB(*(z), *(r))*'(2)*'(r). 

We introduce the "Bergman-Schiffer transforms" 

(3.5) (&/)(f) = ( LB(z,ftf(z)dv (*) 
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and 

(3.6) (SDf)(£) = lD(z,ï)f(z)dv(z) 
J D 

where the first integral is taken in the principal value sense. Therefore 

(3.7) TD = QD + SD. 

4. S m o o t h n e s s c o n d i t i o n s . We now make some assumptions on the 
smoothness of the domain D. We assume tha t D is bounded by n nondegenerate 
boundary components C1} C2, . . . , Cn where, say, C\ is the outer boundary . 
Then D can be conformally mapped onto a domain 12 which is bounded by n 
closed analytic curves. More specifically, let </>:Z}—>12 be such a mapping. 
Then <£ can be wri t ten as <j>n o </>w_i o . . . o $i, where each factor <f>] is a con-
formal mapping of a simply connected domain Dj. For example, coi = </>i(s) is 
conformai on the simply connected domain D\ which is bounded by C\ and 
contains Dlf and 4>\{Di) is the uni t disk, Uj = ^-(co^-i) (2 g j ^ n) is con-
formal on the simply connected domain D j which is bounded by </>;_i o 
<t>j-2 o . . . o (j)i(Cj) and contains </>j_i o 0 J_2 o . . . o </>iCD); <t>j(Dj) is the 
exterior of the uni t disk. For addit ional properties of the factorization of a 
conformai mapping see [6]. We let \p = </>-1 and \pj = <t>rl (1 ^ j S n). We 
also write Fj = 4>j o < -̂_i o . . . o </>i and G^ = F ;

_ 1 (1 ^ j ^ n). As far as 
the smoothness properties of <f>j are concerned, we note t h a t they are exactly 
the same as those of </>i, provided Fj_i(Cj) is of the same degree of smoothness 
as t ha t of Ci. For example, as we shall see later, jDl\(f)i (z)\pda(z) < GO for all 
p < 3 jus t because d bounds the simply connected domain Dx. Therefore, for 
any disk R with a fixed radius 0 < r < co we have 

I | </>,• '(co,_i)1 ̂ o-(co,_i) < oo for all p < 3 
^ « n />; 

and consequently the same is t rue when R P\ Z);- is replaced by 7yVi (£*)• 
We write 

/n(D) = Sup K R U {oo}: | | 0 ' | | r < oo}. 

This definition is clearly independent of the part icular choice of the analyt ic 
doman 12 = <t>{D) and it is also obvious t h a t tn(D) ^ 2. Here , however, we can 
even say more. Indeed, Brennan [4] has shown tha t for any simply connected 
domain D, ti(D) ^ 3 + r, where r is a positive cons tant which does not 
depend on the domain. For close-to-convex domains r is equal to 1 and 
probably so in all cases. I t is interesting t ha t Brennan ' s theorem can be also 
extended to the mult iply connected case. This is shown in Proposit ion 3. T h e 
fact t ha t h(D) ^ 3 is ra ther e lementary as the following a rgument shows. 
Since \p(co) is univalent on A we have (cf. [9, p . 21]) 

i*'(W)i ^ i^(o)i ,}~!WL ^ m - icoi2) 
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with k = l e - ' h ^ O ) ! . Hence, for 2 < r < 3, 

f \<t>'(z)\rda(z) = f \4,'(w)\2-Tda(o>) S k2-T f (1 - |co|2)2-rrf<r(W) 
J D J A J A 

= W 3 - r r V ~ r < o o . 

The theorem of Brennan coupled with a successive application of the 
Holder 's inequality on the factorization of $ yields: 

PROPOSITION 3. Let D be an n-connected domain as before. Then tn(D) ^ 3 + r 
where r > 0 is a constant independent of D. 

Proof. We use induction on the factors of </> = 4>n o 0w_i o . . . o #i. Bren-
nan ' s theorem shows tha t H^i'H? < oo for p < 3 + r. Assume tha t for 
/V_i = 0w_i o . . . o 0i we have || Fw_i' ||p < oo for p < 3 + T. For 4> = <j>n o Fn_i 
we have to show tha t 

J \<j>n(Fn-\ 
D 

I I </>' I 1 / = I 4>n (Fn-1 («) ) T I / < ; - ! ' (2) \'d<r (z) 
J D 

is finite for p < 3 + r. T o do so, one has only to check what happens near the 
boundary curves i w_i — C\ + C2 + . . . + Cn-i and Cn. Near Tw_i we have 

\^n
f{Fn^{z))\ g M 

and near Cw we have 

0 <K~i g iFn- i 'WI ^ X. 

Let Tn be a tube near Cn and let Tw_i be the tubes near Tn_i. Then, by the 
induction assumption, 

J Tn-l J Tn-l 

if p < 3 + r. On the other hand, by Brennan 's theorem, 

f \4>n'{Fn^{z))\"\Fn^{z)Yd<T{z) SKP~' ( |<pn'(/<;_!(z))|p 

T n 

«/ F x | /-;_/(«) |^o-(2) = KT1 10„' (co) \vd<i («) < 00 
•/ Fn- l (TVi) 

if £ < 3 + r. Here, Fn-i(Tn) is a tube around 7v_i(Cw). This concludes the 
proof. 

In view of the above proposition tD = tn(D) ^ 3 + r. We can therefore 
define the interval 

1(D) = 
k'lNz, < °°-

W = °°-

https://doi.org/10.4153/CJM-1979-105-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-105-6


1274 JACOB BURBEA 

We also write 

J(D) = 1(D) - { l , o o } . 

Therefore, if \\<t>'\\œ < oo or if \\<t>'\\r < °° for each 3 + r S r < oo we have 
J(D) = (1, oo ). In the first case 1(D) = [1, oo] and in the second 1(D) = 
( l , o o ) . 

If D is simply connected and 3D is of class C1 then it follows from a theorem 
of Warschawski [13] (see also [4]) t ha t [[</»'[|r < oo for every r < oo. This 
theorem can be extended to our sett ing by using the same arguments as those 
of Proposition 3. Therefore, if 3D G C1 then tD = oo. In this case, however, it 
may happen t ha t H^'IU = °° as the example of [12, p. 377] shows. On the 
other hand, if D is simply connected and 3D is of class C1 with a Dini contin
uous normal then it follows from yet another theorem of Warschawski (see 
[9, p. 298]) t ha t there exist positive constants a and b such t h a t 

(4.1) 0 < a ^ \(j)f(z)\ S b < oo,z G D. 

This is also true in the more general case when D is mul t iply connected by 
appealing to the above factorization of <j>. Hence, 1(D) = [1, oo] for D with 
3D being Dini-smooth. The last inequali ty could be also derived from a 
corresponding inequali ty for the derivatives of the Green's function. Indeed, 
if 3D is of class C1 with a Holder continuous normal one has such an inequali ty 
(see [7]) and the same is true under the weaker assumption t ha t 3D is merely 
Dini-smooth. 

From (3.3) follows tha t , for every f G D, KD( , f) is in Br(D) whenever 
r £ 1(D) and in fact: 

PROPOSITION 4. Let p £ 1(D). Then for eachf 6 LP(D), the Bergman projec
tion (1.1) is in H(D) and Pf = f for every f G BP(D). 

For a fixed p G J(D) we let q = p/(p — 1) (of course q £ J(D)). D is said 
to belong class Wp if </>' satisfies 

Sup (Tr77T|—2- l l ^ l l ^ l k ' H ^ I < ° o , 
U \\\<P \\2:U ' 

where the supremum is taken over all sectors U C D and 

ll/IU= [ £ 1/(2) l*̂ W J1""-
Obviously, the definition of D G Wp is independent of the part icular choice of 
the analyt ic domain 0 = <j>(D). I t is also clear t ha t always D G W% and t ha t 
De Wpiî and only if JO £ WQ. If 3D is Dini-smooth then it follows from (4.1) 
t ha t D G Wp for all p. Note also tha t the above definition is exactly the 
previously mentioned MP(Q) condition for the weight X = l^'l2 -^ and where 
U=t(V). 

We do not know whether D G Wp, p j* 2, when 3D is merely of class C1. 
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5. The Bergman projection. The following lemma is crucial. 

LEMMA 1. Let p Ç J(D). The operator QD is bounded on LP(D) if and only if 

D is in Wv; and in this case ||Qz>||p = Ap, Ap £ CP(D). 

Proof. For z, f Ç D we write œ = 0(z) , r = 0( f ) with w, r £ £2. Also, for 
/ £ £„(£>) we let g = ( / o ^) • <//. Using (3.4), (3.5), (3.6) and (3.7) we have 

( & / ) ( f ) = ^ 0 ) • f r^G^T)g(co)d(r(co) = W ) • (QQg)(r) 

= 7(0 • (r^W - TO • (5ng)(r). 
Since Zn(co, r ) is holomorphic for (co, r ) £ ÎÏ X Œ we have tha t |/Q(CO, r)\ ^ A 
and therefore 

f i<*>'(?)ri(s«g)(T)r*r(r) = f I * W I f /^vôg(«)^(«)r^(r) 

^^|k'||/[/Bl/(s)||*'W|d<r(s)]'g^|l*'ll/ll*'ll/ll/ll/-

Consequently, since p, q £ J(D), we have tha t the LP(D) boundedness of 
QD is equivalent to the inequality 

0'wn(rog)(co)rdcr(s)> ^ ^ I I / I I , . 

The last inequality, however, is equivalent to 

{ / j ( r a g ) ( a ! ) | H ^ ( c o ) | 2 - ^ a ( a ) ) } 1 / P ^ ^ { J j g ( c o ) r ^ ' ( c o ) | 2 - - ! ' û ! ( r ( c o ) } 1 / ' . 

Therefore, QD is bounded on LP(D) if and only if the Hilbert transform TQ is 
a bounded operator on LP(Q:\\I/'\2~P). An appeal now to Proposition 2 con
cludes the proof. 

We are now in a position to s tate our main theorem. I ts special case when D 
is the uni t disk was resolved by a different method by Zaharjuta and Judovic 
[14]. 

T H E O R E M 1. Let p £ J{D). Then P is a bounded linear projection of LP(D) 
onto BP{D) if and only if D £ Wp; and in that case \\P\\P ^ APJ Ap £ CP(D). 

Proof. In view of Proposition 4, we only have to prove the s ta tement on the 
boundedness of P. For a n y / Ç LP(D) we let 

{/. 

ÎT-'f 
J D 

g(D = 27T-1 G,(s, f)/(«)Ar(z). 

F rom classical results of potential theory it is well known t h a t gf and gf exist 
a.e. in Z>, and they are given by 

(5.1) g r(f) = / ( f ) + 27T-1 f H i r (« , f)/(*)A> (*) 
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and 

(5.2) gf(t) = 27T-1 f GV(»,f)/(2)Ar(2). 

According to (3.2) and (3.5), (5.2) can be written as 

gf(r) = -(&/)(r)-

Moreover, HK = GK, while by (1.1), (3.1) and (5.1) 

gr(f) = (/ - ^)/(f)> 

where / is the identity operator on LP(D). According to Proposition 1, 
g$ = —RD

2gf and therefore 

/ - P = RD*QD. 

The theorem now follows from Lemma 1 and the boundedness of the Riesz 
transform RD. 

Remark. According to the previously mentioned result of Bers [3] Li(D) is 
continuously projected onto Bi(D). Therefore we can deduce, using [8], that 
Bi(D), for any domain D whose boundary contains more than two points, is 
topologically isomorphic to h. In the same manner, Theorem 1 shows, for 
p G J(D) and D Ç Wp, that BP(D) is topologically isomorphic to lp. 

Throughout the rest of this section we shall always assume that p £ J(D) 
and D G Wp. F o r / Ç LP(D) and g £ Lq(D) we set 

(f,g) = ff(z)W)d«{z). 
*J D 

COROLLARY 1. The operator P is self-adjoint, and, in fact, 

(Pf,g) = (f,Pg) = (Pf,Pg);f G LP(D), g e Lt(D), 

\\P\\P = ||P||3, | |P| |2 = 1. 

Proof. These follow from Fubini's theorem, Theorem 1 and Holder's 
inequality. 

COROLLARY 2. We have the direct sum decomposition 

LP{D) = BP(D) ®Bg(D)\ 

Proof. For / G LP(D), let h = Pf and V- = (I - P)f. Hence f = h + h1-
and by Theorem 1, h G BP(D). Let g G Bq(D) ; then Pg = g and by Corollary 1 

(h±, g) = ( ( / - P)f, g) = (/, g) - (Pf, g) = (/, g) - (/ , Pg) = 0. 
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If/ e BP(D) r\ Bq{D)\ then ( / , g) = 0 for all g G 5 f f (D) . However, i ^ ( , f) 
is in BQ(D), and so, using Proposition 4, / ( f ) = 0 for all j" Ç D. 

We now generalize a result of [14] proved for the uni t disk A. 

T H E O R E M 2. The projection P satisfies 

Ap™ g | | P | | , g ^ 1 * ; ^ G CP(D)J = 1,2. 

Proof. By Theorem 1 we have only to show tha t | |P | | P ^ ^4P
(2). We may 

assume, wi thout any loss of generality, t ha t o £ D. Let a0 £ Ci and therefore 
a = \a0\ > 0. Consider the function 

Fo(z) = go(z)[log (1 - z/a0) - log (1 - z/d0)], 

where goO) = KD(z,ô). Clearly, F0 G LP(D) and | |F 0 | | ^ Mo||</>'||p, where 
Mo > 0 depends only on D. Let 

*o(z) = go(z) log (1 - z/d0). 

We shall show tha t Pho = 0 or, in other words, t ha t h0 belongs to the anni-
hilator of BP{D). T o this end we may also assume tha t dD £ C1. Using Green's 
formula, we have 

( ^ o ) ( f ) = I ho(z)KD(C,z)da(z) = \i I [-2T-1dG/dt\t=o] 
J D J dD 

X l o g (1 -z/âo)KD(?,z)dz. 

Here, we used the fact t ha t d/dzR0(z) = h0(z), where Ro(z) is given by 

Ro(z) = [-27r-1dG/dt\t=o] log (1 - z/âo). 

(Pho) (f ) = 0, because P 0 (2) vanishes near dD, and therefore we need not make 
any assumption on the smoothness of dD, apar t from p £ /(£>) and D £ Wp. 
Consequently, 

/o(z) = (PFo)(z) = go(z) log (1 - z /a 0 ) , 

and, by Theorem l , / 0 Ç BP(D). Consider the sector 

Z)(e, a ) = {z: \z — a0\ ^ e, | arg (a0 — z) — arg a0| g a / 2 } , 

where 0 ^ a < l , 0 < e < a . Now, KD(z, 0) has only a finite number of zeros 
in D, none of which is near dD. We choose e > 0 to be small enough so t h a t 
D(e,a) CD and tha t there \go(z)\ = \KD(z,o)\ ^ A > 0. We can further 
restrict e > 0 to be within 

e-MV < e < flg^||0'||pi4-lf 
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where M > 0 depends only on D, and is chosen to be large enough. Then , 

II/.II; = f IgoOONiog (i - f ) \Mz) è f \go(z) 

<K*) ^ f |go(s) 
•^ Z>(e ,a ) 

log 1 -

da(z) 

J I I — I I p T € T a / 2 I 

l o g L ^ - \d*(z)=A>\ log^ 
Z)(e,a) I a \ *J 0 •/ - a / 2 I tt 

= ^ p
a (' 

•/ 0 

ao 

rdrdd 

0 ! & 
rdr = Apaa 

AV 2 

4̂ ae > ^ a ^ | | * ' | | ^ 4 - 1 ) ' 

- 2 M* Hp * > 2 WvWvP -

Therefore | | /o | | P > M\\<\>'\vp, where M\ > 0 depends only on D. Now, 

\\p\l ^ P» 
I/o I li. ^ i £u 
I/'o||p M o P ' 

and hence | |P | | P è Af2£. From Corollary 1, 

| | P | | p = | | P | | 5 > M2q >Mt/(p-l) 

and the theorem is proved. 

Remark. The factor go(z) = KD(z, ô) in the definition of 7<o(z) was needed 
to ensure t ha t h0 £ B^D)1-. If D was the uni t disk A then go{z) = KA(z, ô) = 
ir~l (ao will be chosen as 1). This proper ty is characterist ic to all disks. 

For g e Bq(D), we let L0(f ) = ( / , g) for a l l / G BP(D). Using the previous 
assertions and a s tandard a rgument based on the Hahn-Banach theorem 
yields (cf. also [14]): 

COROLLARY 3. The mapping T:Bq(D) —» C#p)* given by T(g) = L(J is an 
anti-linear isomorphism of Bq(D) onto the dual of BP(D), (Bp)*. T is an isometry 
for p = 2, and, for p G J{D) — {2}, the "isometry distortion", which is given by 

^ = S u p { | i g | m | P j : g e B9(D)\, 

satisfies 

Ap^ SIqS AqM;Aq<» e Cq(D),j = 1,2. 

6. W e a k c o n v e r g e n c e . Let fnif G BP(D), 1 ^ £ ^ 00. As usual, / „ - - > / 
weakly in BP(D) if L(fn) — > ! , ( / ) for each L G (Bp)*. T h e uniqueness of the 
weak limit, if it exists, is obvious in this case. 
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Assume now tha t p £ 1(D) and let {tn} be a dense sequence in the domain D. 

Consider the sequence of functions $n(z) = KD(z, ln), n = 1, 2, . . . . In view 

of Proposition 4, for a n y / G BP(D), (f ,$w) = 0, w = 1, 2, . . . , if and only 

if / = 0. We have the obvious: 

LEMMA 2. Let p (E /(£>) « ^ ^ € WP. rftew /fte linear envelope of the 
$n's N = [ $ J is dense w BP(D). 

Proof. Suppose not, and let f0 £ BP(D) — N, f0 ?* 0. The Hahn-Banach 
theorem implies the existence of L Ç C#P)* with L(f0) = 1 andL(TV) = {0}. 
According to Corollary 3, L(f) = (f, gL), gL G Bq(D) and all / £ £„(£>). 
Since L(N) = {0}, L ( S n ) = (S n , gL) = 0, « = 1, 2, . . . . Thus gL = 0, con
tradicting L ( / 0 ) = 1. 

T H E O R E M 3. (i) Suppose /„ —>/ weakly in BP(D), 1 ^ p ^ oo. 77zew 
ÎII /WIIP) is bounded and fn(z) —* f(z) uniformly on compacta of D. 

(ii) Let p £ / ( / } ) awd D £ Wp «wd suppose that {\\ fn\\p} is bounded, and that 
fn(z) —*f(z) for each z Ç D. Then fn —»/ weakly in BP(D). 

Proof, (i) {||/w||p} is bounded because, in any normed space, the norms of a 
weakly convergent sequence are bounded. The subharmonici ty of \f(z)\p in D 
implies now t h a t / n (2) —>/(s) uniformly on compacta of D. 

(ii) Assume \\ fn\\P ^ M. Hence {|/w(s)|} is uniformly bounded on compacta 
of D. T h u s / G H(D) and || / ||p g M. Since / n ( * J ~ > / ( ^ ) a s w - > o o , w e have 
l im w ^ œ ( / w —/ , <ï>m) = 0, m — 1, 2, . . . . Let L £ (Bp)*. According to Corol
lary 3, L ( / w — / ) = (fn — f, gi) for some g^ G Bq(D). Given e > 0, there is, 
in view of Lemma 2, an h £ [^w], such tha t ||gz, — /^||ç < e/4M. Fur ther , 
there is an integer w(e) such tha t \(fn — f, h)\ ^ e/2 for n > n(e) . Hence for 
n > w(e) 

| L ( / „ - / ) | ^ \(fn -f,gL-h)\ + | ( / n - / , * ) | 
^ \\fn-f\\p\\gL-h\\q+e/2< 6, 

a n d / „ —»/ weakly in BP(D). 

The fact t ha t (ii) of Theorem 3 is not true for p = 1 can be seen from the 
following example: Let fn(z) = nzn, n = 1, 2, . . . . Clearly fn £ Bi(A) and 
|| fn ||i < 2T for each w. Nex t , / n ( z ) —> 0 uniformly on compacta of A. Choose a 
function g(2) in Lœ(A) to be defined as follows: Let 

[0, 1) = U Î U f o , r*+i); r* = 1 - 2"*, ê = 0, 1, . . . , 

and set 

g(reiB) = e^k+leîorr £ [rk, rk+1). 

Then , for 

f(z)g{z)da(z) = £ £ . „ I / ( r c" )«" < , i + 1 &(Wr, 
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L G 5i(A)*. However, 

l i m ^ L ^ m ) = 2*(e-1 - e~*) * 0, 

and { fn) does not converge weakly. 

COROLLARY 4. Z,e£ £ £ /(£>) awrf Z) G Wp. Suppose fn,f £ BP(D) with 
fn(z) ->/(*) for each z G D awd | | /w | |P-> | | / ||P. rftew ||/w - / ||p -> 0. 

Proof. This follows from Theorem 3 (ii) and the fact that BV(D) is locally 
uniformly convex. 
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