C¹⁸O AND HNCO IN THE GALACTIC CENTRE

M. LINDQVIST Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, The Netherlands AA. SANDQVIST Stockhom Observatory, S-133 36 Saltsjöbaden, Sweden A. WINNBERG, L.E.B. JOHANSSON Onsala Space Observatory, S-439 92 Onsala, Sweden L.-Å. NYMAN ESO, Casilla 19001, Santiago 19, Chile F. COMBES DEMIRM, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014 Paris, France R. GENZEL MPIfEP, D-8046 Garching bei München, Germany M. GERIN Radioastronomie ENS, 24 Rue Lhomond, F-75231 Paris CDX 05, France AND P.G. MEZGER MPIfR, Auf dem Hügel 69, W-5300 Bonn 1, Germany

Using the SEST, we have observed 554 positions with a spacing of 45" in the $C^{18}O(J = 1 \rightarrow 0)$ and $HNCO(J_{kk'} = 5_{05} \rightarrow 4_{04})$ lines. The data covers most of the Sgr A region including the Arc. Many of the dominant clouds in the GC region (see e.g. Güsten et al. 1981, A&A 103, 197; Bally et al. 1987, ApJS, 65, 13) are readily identified in the total integrated $C^{18}O$ and HNCO maps (Fig. 1). The results will be published in A&AS and will include intensity maps with 5 km s⁻¹ velocity resolutions, as well as galactic longitude-velocity and galactic latitude-velocity maps. $J = 2 \rightarrow 1 C^{18}O$ ob-

281

L. Blitz and P. Teuben (eds.), Unsolved Problems of the Milky Way, 281–282. © 1996 International Astronomical Union. Printed in the Netherlands.

Figure 1. $C^{18}O(J = 1 \rightarrow 0)$ (top) and $HNCO(J_{kk'} = 5_{05} \rightarrow 4_{04})$ (bottom) intensity maps covering the velocity interval $V_{LSR} = -200$ to $+200 \text{ km s}^{-1}$. The lowest contours are 5.0 K km s^{-1} . The increments are 5.0 and 10 K km s⁻¹ for $C^{18}O$ and HNCO, respectively. Units are in T_{mb} (K). The + sign marks the position of Sgr A^{*}.

servations are planned for selected regions. The objectives of the project are twofold: 1. Geometrical, morphological, and dynamical relationships between the molecular regions and the radio continuum sources. 2. Heating mechanisms in GC molecular clouds.

Acknowledgements

ML is supported by an ESA external fellowship. This project is supported by the Swedish Natural Science Research Council (NFR)