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A note on uniform approximation of functions having
a double pole

Ionela Moale and Veronika Pillwein

Abstract

We consider the classical problem of finding the best uniform approximation by polynomials
of 1/(x − a)2, where a > 1 is given, on the interval [−1, 1]. First, using symbolic computation
tools we derive the explicit expressions of the polynomials of best approximation of low degrees
and then give a parametric solution of the problem in terms of elliptic functions. Symbolic
computation is invoked then once more to derive a recurrence relation for the coefficients of
the polynomials of best uniform approximation based on a Pell-type equation satisfied by the
solutions.

1. Introduction

The aim of this paper is to show how symbolic computation tools can be integrated into the
study of classical problems in uniform approximation theory. To exemplify this, we consider the
problem of finding the polynomial of best uniform approximation of the function 1/(x − a)2,
where a > 1 is given, on the interval [−1, 1]; more precisely, we are looking for p∗n ∈ Πn, where
Πn := {pn : pn(x) =

∑n
i=0 cix

i, ci ∈ R}, such that∥∥∥∥ 1

(x− a)2
− p∗n

∥∥∥∥ := max
x∈[−1,1]

∣∣∣∣ 1

(x− a)2
− p∗n(x)

∣∣∣∣
= min

pn∈Πn

max
x∈[−1,1]

∣∣∣∣ 1

(x− a)2
− pn(x)

∣∣∣∣. (1)

We call p∗n the polynomial of best approximation and

yn(x) :=
1

(x− a)2
− p∗n(x) and Ln :=

∥∥∥∥ 1

(x− a)2
− p∗n(x)

∥∥∥∥
the error function of best approximation and the minimum deviation, respectively.

An asymptotic expression for the minimum deviation is well-known, for example [5, p. 122],

Ln ∼
n

(a2 − 1)(n+1)/2

1

(a+
√
a2 − 1)n

,

however explicit expressions for the error function of best approximation and the minimum
deviation do not seem to appear in the classical textbooks on approximation theory; we mention
here [1, 2, 5] and also the more recent [6]. The reason behind this omission is most probably
the fact that not all of the parameters involved in the description of the solution, which can
be represented in terms of elliptic functions, can be given explicitly. As we will also see here, a
pair of parameters is defined as the solution of a system of equations rather involved, but one
which can be easily solved numerically in any of the available computer algebra systems.
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The case of a function having a simple pole, namely 1/(x − a), where a > 1 is given, is
significantly simpler, explicit expressions for the polynomial of best approximation as well
as for the minimum deviation in terms of elementary functions being well-known; see, for
example, [5, p. 120]. These polynomials were recently used in [15, 16] to provide simple
convergence analysis for the algebraic multilevel methods, a three-term recurrence relation
for the polynomials being derived for this analysis. Naturally it would be interesting to know
whether the polynomials of best approximation corresponding to the problem (1) also satisfy
such a recurrence relation, however we will not dwell on this here, but rather study recurrence
relations for their coefficients.

The paper is organized as follows: in § 2 we give the explicit solution of the problem (1) in
terms of elliptic functions as well as explicit expressions for the polynomials of lower degrees.
Section 3 is devoted to the proof of the explicit solution and some additional remarks. In the
concluding § 4 we comment on how to derive a recurrence relation for the coefficients of the
polynomials of best approximation.

2. Main results

By the Chebyshev alternation theorem (see, for example, [1, p. 55]), the error function of best
approximation yn(x) must have at least n+2 alternation points in the interval [−1, 1]. It is easy
to show that the derivative of a function of the form 1/(x−a)2 +pn(x), pn ∈ Πn, has at most n
real zeros. Hence y′n(x) has precisely n distinct real zeros ξ1, . . . , ξn ∈ (−1, 1) and two complex
conjugate zeros z1, z2, and thus the alternation points of yn(x) are −1 < ξ1 < . . . < ξn < 1. In
addition, yn(x) decreases from +∞ to −∞ on the interval (a,∞).

With this clear view of how the graph of the error function of best approximation looks, we
determined with the help of Mathematica the explicit expressions of p∗n(x) and Ln for n = 1
and n = 2 and arbitrary a > 1; see also Figure 2. More precisely,

for n = 1 :

In[1]:= p∗
1[x , a ] := (1− a2 + 3(a(−1 + a2))2/3)/(2(a2 − 1)2) + 2a/(a2 − 1)2x

In[2]:= L1[a ] := (1 + 3a2 − 3(a(a2 − 1))2/3)/(2(a2 − 1)2)

for n = 2 :

In[3]:= r[a ] := Root[−16 + 28a + 45a2 − 90a3 − 35a4 + 84a5 + 16a6 − 32a7 + (−60 + 70a +
200a2 − 230a3 − 168a4 + 172a5 + 80a6 − 64a7)#1 + (−99 + 42a + 383a2 − 196a3 −
350a4 + 44a5 + 176a6)#12 + (−88− 64a + 352a2 + 84a3 − 176a4 − 172a5)#13 +
(−38− 100a + 99a2 + 94a3 + 73a4)#14 + (−4− 38a− 8a2 − 14a3)#15 + (1−
2a + a2)#16&, 1]

In[4]:= c0[a ] := ((a− 1)−2 + (a + 1)−2 + 2(2− 3a + r[a])/((a− 1)2(a− r[a])3))/2

In[5]:= c1[a ] := 2(1− 2a + a2 + 2r[a]− 3ar[a] + r[a]2)/((a− 1)2(a− r[a])3)

In[6]:= c2[a ] := −(2− 3a + r[a])/((a− 1)2(a− r[a])3)

In[7]:= p∗
2[x , a ] := ‖c0[a] + c1[a]x + c2[a]x

2

In[8]:= L2[a ] := −2(1 + r[a])2(1− 2a2 + a‖r[a])/((a2 − 1)2(a− r[a])3)

For the computation of these explicit formulas Gröbner bases [8, 10, 20] were used, a well-
established tool in symbolic computation for solving systems of polynomial equations. Gröbner
bases computations may be computationally very expensive, depending exponentially on the
number of variables in the input and also badly on the polynomial degrees. Finding the linear
polynomial of best approximation is an easy task that can be solved on any computer algebra
system. However, starting from degree two, the computations become very involved and we
used Singular [11] via a Mathematica interface [12].

In order to determine the polynomial of best approximation, we use a generic ansatz
for the polynomial p∗n(x) =

∑n
k=0 ckx

k. Using the fact that the n + 2 alternation points
are −1, ξ1, . . . , ξn, 1 (sorted in increasing order) and that the interior alternation points ξj
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Figure 1. Graphs of y1(x), y2(x) and y3(x) for a = 2.

are extreme points, so that their first derivative vanishes, we obtain a system of 2n+1 equations
in the 2n+ 1 unknowns c0, . . . , cn, ξ1, . . . , ξn:

yn(−1) = (−1)n+1yn(1) and yn(ξj) = (−1)n+jyn(1), 1 6 j 6 n

y′n(ξj) = 0, 1 6 j 6 n.

(2)

Even though ultimately we only need to determine the coefficients ck, currently we do not see
how to set up a system without using the alternation points. Bringing everything to a common
denominator and equating the numerators of these equations to zero yields the polynomial
system. The coefficients ck appear only linearly and the ξk appear in monomials up to
degree n+2. This increase in numbers of variables and degrees explains why we reach a limit in
our computations quickly. For n = 2 it is still possible to obtain the coefficients comparably fast
for symbolic a. Also for degree three it is still possible to obtain the coefficients in reasonable
time (less than 10 min) for specific choices of a. Note that these choices are not floating point
numbers and the result is still exact and can be evaluated to arbitrary precision. Starting from
degree four we could not find closed-form solutions, not even for specific choices of a.

For n = 3 and a = 2 the coefficients of the polynomial of best approximation are algebraic
numbers that are approximately given by

c0 = 0.2339547125, c1 = 0.2062172304, c2 = 0.3018857394, c3 = 0.2382272140.

The minimal polynomial for, for example, c3 is given by

χ(α) = 215892499727278669824α11 − 5459947971497905618944α10

+ 1699378437698250434795520α9 + 4985576127353627620088832α8

− 1487598201477303010010019α7 + 49652231802046011126432α6

− 128259012822418301760α5 − 39565695530318777856α4

+ 1028117822899995648α3 − 23136252868952064α2

+ 277724396519424α− 1099511627776.

A Gröbner basis is a basis for the polynomial ideal spanned by the given set of polynomials
that is unique once a monomial ordering on the variables has been fixed. The basis is normalized
to be monic and it is auto-reduced. If the monomial ordering is lexicographic, then a Gröbner
basis has the elimination property, that is, if we are computing in the polynomial ring
K[x1, . . . , xn] (for some field K) with a lexicographic ordering such that x1 < . . . < xn, then
(with k < n)

I ∩K[x1, . . . , xk] = 〈G ∩K[x1, . . . , xk]〉,

where I denotes the ideal spanned by the input, G its Gröbner basis and 〈S〉 denotes the
polynomial ideal spanned by the set S. This property allows us to use Gröbner bases for
solving polynomial systems of equations.

https://doi.org/10.1112/S1461157013000387 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157013000387


236 i. moale and v. pillwein

In our computations in the first step we eliminate the variables ck from the given system.
Certainly it would be desirable to eliminate the ξk and solve the remaining equations for the
coefficients, however this is computationally too expensive. In the second step, we determine
the solutions ξk of the remaining equations. From this solution set we pick the solution
satisfying −1 < ξ1 < . . . < ξn < 1. Plugging into the original system gives the coefficients ck
we are after.

The following theorem gives the parametric solution to the problem (1) for arbitrary n ∈ N.
As usual K := K(k) is the complete integral of the first kind of modulus k, 0 < k < 1,
K ′ := K ′(k) := K(k′) where k′ :=

√
1− k2, sn(u) := sn(u; k) is the Jacobi elliptic function

and Θ(u) := Θ(u; k), H(u) := H(u; k), H1(u) := H1(u; k) and Θ1(u) := Θ1(u; k) are the four
Jacobi theta functions; see, for example, [2, 6].

Theorem 2.1. Let k, 0 < k < 1, and ρ, 0 < ρ < K/n, be defined by the system

(
n(a− 1) +

2(a− α)(a− β)− (a2 − 1)(2a− α− β)√
(a2 − 1)(a− α)(a− β)

)
cnρdn ρ

sn ρ

− 2n
Θ′(ρ)

Θ(ρ)
− 4

Θ′(ρ̂+ iK ′)

Θ(ρ̂+ iK ′)
− 2πi

K
= 0

sn(ρ̂+ iK ′)−
√
a+ 1

a− 1
sn ρ = 0,

(3)

where

α =
1 + k2sn2ρ

1− k2sn2ρ
, β =

1 + sn2ρ

1− sn2ρ
and ρ̂ =

K

2
− n

2
ρ, (4)

and let

x =
sn2u+ sn2ρ

sn2u− sn2ρ
. (5)

Then the solution of the approximation problem is

yn(x) = (−1)n−1Ln
2

{[
H(ρ+ u)

H(ρ− u)

]n[
Θ(ρ̂+ u)

Θ(ρ̂− u)

]2

+

[
H(ρ− u)

H(ρ+ u)

]n[
Θ(ρ̂− u)

Θ(ρ̂+ u)

]2}
, (6)

Ln =
−e−(π/2)(K′/K)

2

[Θ′(−iK ′)]2

k′2
[Θ(ρ− ρ̂)]n+4

[Θ(ρ+ ρ̂)]n−4

Θ6(0)

Θ2
1(0)H2

1(0)Θ4(ρ)H4(ρ)H4(2ρ̂)
. (7)

The proof of the theorem given in the next section is based on the functional equation (9)
satisfied by the error function of best approximation yn(x), recalling Pell’s equation from
number theory. This equation is the key tool in deriving a recurrence relation for the coefficients
of p∗n(x), see § 4.

Pell-type equations are satisfied by many polynomials appearing in approximation theory,
such as Chebyshev polynomials, Zolotarev polynomials, and Achieser polynomials; see, for
example, [1]. We refer to the survey paper [18] for further details on this topic. Therefore, the
approach we used here to derive a recurrence relation for the coefficients of the polynomials
of best approximation to 1/(x − a)2, a > 1, can be carried over also to the above-mentioned
cases.

3. Proof of Theorem 2.1

The key tool in obtaining the solution of the approximation problem (1) we are considering
here is a Pell-type equation satisfied by the error function of best approximation yn(x).
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To write down this equation, let a < α < β be such that yn(α) = −yn(β) = Ln.
Based on the explanation from the beginning of the previous section and denoting p∗n(x) =
cnx

n + cn−1x
n−1 + . . .+ c0, we have

[yn(x)]2 − L2
n = c2n

(x− ξ1)2 . . . (x− ξn)2(x2 − 1)(x− α)(x− β)

(x− a)4

y′n(x) = −ncn
(x− ξ1) . . . (x− ξn)(x− z1)(x− z2)

(x− a)3
.

(8)

Combining the two relations, we conclude that yn(x) satisfies the following Pell-type equation:

[y′n(x)]2

[yn(x)]2 − L2
n

= n2 (x2 − γ1x+ γ2)2

(x− a)2

1

(x2 − 1)(x− α)(x− β)
(9)

where γ1 := z1 + z2, γ2 := z1z2. The formulas of γ1 and γ2 can be easily obtained using the
explicit form of yn(x) = 1/(x − a)2 − (cnx

n + . . . c0) and of y′n(x) derived from this one, in
combination with equations (8), namely

γ1 = 2a− 2a(a− α)(a− β) + (a2 − 1)(2a− (α+ β))

n
√

(a2 − 1)(a− α)(a− β)

γ2 = a2 − 2(a− α)(a− β) + a(a2 − 1)(2a− (α+ β))

n
√

(a2 − 1)(a− α)(a− β)
.

(10)

Equation (9) implies that

log
yn(x) +

√
y2
n(x)− L2

n

±Ln
=

∫x
−1

n(x2 − γ1x+ γ2)

(x− a)
√

(x2 − 1)(x− α)(x− β)
dx, (11)

where on the right-hand side we have an elliptic integral, which we solve by making a suitable
substitution. For this, let x(u) be the conformal mapping from the rectangle with vertices at
the points u = 0,K,K + iK ′, iK ′, with K and K ′ of modulus k, 0 < k < 1, onto the lower
half-plane with the following normalization:

x(0) = −1, x(iK ′) = 1, x(K + iK ′) = α, x(K) = β.

The conformal mapping is given by

x(u) =
sn2u+ sn2ρ

sn2u− sn2ρ
, (12)

where k, 0 < k < 1, and ρ, 0 < ρ < K, are defined by

k =

√
α− 1

α+ 1

β + 1

β − 1
and sn2ρ =

β − 1

β + 1
.

The expression (12) was found as x = g ◦ f, where f is the conformal mapping from the
rectangle with vertices at the points u = 0,K,K + iK ′, iK ′, onto the upper half-plane with
the normalization f(0) = 0, f(K) = 1, f(K + iK ′) = 1/k2, f(iK ′) = ∞, and g is the
conformal mapping of the upper half-plane onto the lower half-plane with the normalization
g(0) = −1, g(1) = β, g(∞) = 1, g(1/k2) = α. We have f(u) = sn2u, by writing first the
expression of the inverse map with the help of the Schwarz–Christoffel formula, and g(u) =
((β + 1)u+ (β − 1))/((β + 1)u− (β − 1)) obtained as a linear fractional transform satisfying
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the first three normalizing conditions and then obtaining k from the last one. The substitution
we use in the computation of the elliptic integral in (11) is then

x =
z2 + λ2

z2 − λ2
with λ2 =

β − 1

β + 1
, k2 =

α− 1

α+ 1

β + 1

β − 1
,

which implies

α =
1 + k2sn2ρ

1− k2sn2ρ
, β =

1 + sn2ρ

1− sn2ρ
. (13)

Therefore,∫x
−1

x2 − γ1x+ γ2

(x− a)
√

(x2 − 1)(x− α)(x− β)
dx

=
1

a− 1

√
(1− λ2)(1− k2λ2)

λ

∫z
0

(1− γ1 + γ2)z4 + 2(1− γ2)λ2z2 + (1 + γ1 + γ2)λ4

(z2 − λ2)(z2 − a+1
a−1λ

2)
√

(1− z2)(1− k2z2)
dz,

and, after partial fraction decomposition, we arrive at∫x
−1

x2 − γ1x+ γ2

(x− a)
√

(x2 − 1)(x− α)(x− β)
dx

=
1− γ1 + γ2

a− 1

√
(1− λ2)(1− k2λ2)

λ

∫z
0

dz√
(1− z2)(1− k2z2)

− 2λ
√

(1− λ2)(1− k2λ2)

∫z
0

dz

(z2 − λ2)
√

(1− z2)(1− k2z2)

+
2(a2 − aγ1 + γ2)

(a− 1)2
λ
√

(1− λ2)(1− k2λ2)

∫z
0

dz

(z2 − a+1
a−1λ

2)
√

(1− z2)(1− k2z2)
.

For the second and third integral in the last equality above, let ρ and ρ̃ be defined by sn ρ = λ
and sn ρ̃ =

√
((a+ 1)/(a− 1))λ, respectively. We note here that the two conditions imply that

a =
sn2ρ̃+ sn2ρ

sn2ρ̃− sn2ρ
, (14)

hence ρ̃ is the pre-image of a through the conformal mapping (12) and thus it is of the form
ρ̃ = ρ̂+ iK ′, ρ̂ ∈ (0,K). With the above notation for ρ and using [21, p. 523], it can be easily
shown that∫z

0

dz

(z2 − λ2)
√

(1− z2)(1− k2z2)
=

1

sn ρ cn ρ dn ρ

[
1

2
log

H(ρ− u)

H(ρ+ u)
+

Θ′(ρ)

Θ(ρ)
u

]
,

with a similar expression holding for the third integral. Therefore, using the fact that

n(a2 − aγ1 + γ2)

(a− 1)2

sn ρ cn ρ dn ρ

sn ρ̃ cn ρ̃ dn ρ̃
= −2,

we arrive at∫x
−1

n
x2 − γ1x+ γ2

(x− a)
√

(x2 − 1)(x− α)(x− β)
dx

=

[
n(1− γ1 + γ2)

a− 1

cn ρdn ρ

sn ρ
− 2n

Θ′(ρ)

Θ(ρ)
− 4

Θ′(ρ̃)

Θ(ρ̃)

]
u+ n log

H(ρ+ u)

H(ρ− u)
+ 2 log

H(ρ̃+ u)

H(ρ̃− u)
.
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Taking into account also that ρ̃ = ρ̂ + iK ′ we have thus by (11) and the reduction formulas
for Jacobi theta functions:

log
yn(x) +

√
y2
n(x)− L2

n

±Ln
=

[
n(1− γ1 + γ2)

a− 1

cn ρdn ρ

sn ρ
− 2n

Θ′(ρ)

Θ(ρ)
− 4

Θ′(ρ̂+ iK ′)

Θ(ρ̂+ iK ′)
− 2πi

K

]
u

+ log

[
H(ρ+ u)

H(ρ− u)

]n
+ log

[
Θ(ρ̂+ u)

Θ(ρ̂− u)

]2

. (15)

From the condition that yn(x) has n+ 2 alternation points in [−1, 1] we must have

n(1− γ1 + γ2)

a− 1

cn ρdn ρ

sn ρ
− 2n

Θ′(ρ)

Θ(ρ)
− 4

Θ′(ρ̂+ iK ′)

Θ(ρ̂+ iK ′)
− 2πi

K
=

(
n
ρ

K
+ 2

ρ̂

K
− 1

)
π

K ′

and from the condition that yn(x) strictly decreases from Ln to −Ln in [α, β] that

n
ρ

K
+ 2

ρ̂

K
− 1 = 0.

Combining these two we conclude from (15) that

yn(x) = (−1)n−1Ln
2

{[
H(ρ+ u)

H(ρ− u)

]n[
Θ(ρ̂+ u)

Θ(ρ̂− u)

]2

+

[
H(ρ− u)

H(ρ+ u)

]n[
Θ(ρ̂− u)

Θ(ρ̂+ u)

]2}
with ρ and k defined by (3) and α, β and ρ̂ by (4).

The value of Ln follows now from the condition that limx→a(x − a)2yn(x) = 1. By (12)
and (14) we get that x− a is equal to

g(u) :=
2sn2ρ

sn2ρ− sn2(ρ̂+ iK ′)

sn2u− sn2(ρ̂+ iK ′)

sn2u− sn2ρ
, (16)

and, therefore, with f(u) = yn(x(u)),

Ln =
1

limu→ρ̂+iK′ f(u)g(u)2
(17)

which is easily shown to be equal to

Ln =
(−1)n−1

8

Hn(ρ− ρ̂− iK ′)
Hn(ρ+ ρ̂+ iK ′)

[Θ′(−iK ′)]2(sn2ρ− sn2(ρ̂+ iK ′))4

Θ2(2ρ̂+ iK ′)sn4ρ [sn(ρ̂+ iK ′) cn(ρ̂+ iK ′) dn(ρ̂+ iK ′)]2

and, after some transformations, to (7).
The proof of the theorem is complete up to the fact that the system (3) has a unique solution

which satisfies 0 < k < 1 and, since ρ, ρ̂ ∈ (0,K), that 0 < ρ < K/n. We do not consider this
matter here, but rather give the numerical solutions of the system for a = 2 and n = 1, 2, . . . , 8,
which were found with the help of the command FindRoot in Mathematica:

n k ρ

1 0.988912134768707 0.846885238283369

2 0.998506984080587 0.793161228023789

3 0.999760160023856 0.764276888897998

4 0.999957225505635 0.745744327757575

5 0.999991825727615 0.732764470377829

6 0.999998359426700 0.723151786732571

7 0.999999658473260 0.715743316327916

8 0.999999926858805 0.709858166486558
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We note that we have chosen to prove the theorem by computing the elliptic integral on
the right-hand side of (11), rather than introducing Riemann surfaces and considering rational
functions on them, in the hope for availability of algorithms for dealing with such integrals.
Even though many integrals over special functions nowadays can be dealt with by symbolic
computation [3, 7], these particular ones are still out of scope. We consider this paper also as
a challenge to derive new methods that extend to this class of integrals.

We conclude this section with some remarks concerning the best uniform approximation
on the interval [−1, 1] of the function 1/(x− a)2 + B/(x− a), where a > 1 and B ∈ R, by
polynomials of degree n ∈ N.

In the case when B = 0, the expression of the error function of best approximation was
given in Theorem 2.1 in terms of elliptic functions. As we will briefly explain in what follows,
with a different choice of the parameters ρ and k, this expression describes the solution also
when B is in some small neighborhood of 0. More precisely, a function defined by (6), with
Ln and ρ̂ given by (7) and (4), respectively, and with k ∈ (0, 1) and ρ ∈ (0,K/n) arbitrary, is
a rational function of the form ỹn(x) = 1/(x− a)2 +B/(x− a) + pn(x), where pn ∈ Πn and

B=
e(πi/4K)(2K+4ρ̂+3iK′)

8(1− k2)

[Θ′(−iK ′)]2Θ6(0)Θ2(ρ− ρ̂)Θ2(ρ+ ρ̂)

H′(0)Θ2(ρ)H2(ρ)Θ2(ρ̂)Θ2
1(ρ̂)H2(ρ̂)H2

1(ρ̂)

[
4Θ′(2ρ̂+ iK ′)

+

(
(n+ 2)

H′(ρ− ρ̂− iK ′)
H(ρ− ρ̂− iK ′)

+ (n− 2)
H′(ρ+ ρ̂+ iK ′)

H(ρ+ ρ̂+ iK ′)

)
Θ(2ρ̂+ iK ′)

]
. (18)

It is easy to show that indeed also in this general case yn(x) is a rational function with a
single pole x = a of order two, while as we already stated, the definition of Ln is such that
the coefficient of 1/(x− a)2 is equal to 1; see (17) above. The expression (18) was then found
as B = limx→a(yn(x)(x − a)2 − 1)/(x − a), making use of (6) and (16). Now when u runs
in the segment from 0 to iK ′, then |H(ρ + u)/H(ρ − u)| = 1 and |Θ(ρ̂ + u)/Θ(ρ̂ − u)| = 1,
hence |yn(x)| 6 Ln on [−1, 1]. In addition, by a simple application of the argument principle,
yn(x) alternates at least n+2 times between ±Ln on [−1, 1]. Hence the Chebyshev alternation
theorem can be applied, and thus for those values of B in some neighborhood of 0 for which
the system in the unknowns k and ρ formed by (18) and the second equation in (3) has a
solution, we obtain the best approximation to 1/(x− a)2 + B/(x− a). That is, plugging in
the solution values for k and ρ, then yn(x) defined by (6), with Ln given by (7) and ρ̂ by (4),
is the corresponding error function of best approximation.

On the other hand, in the case when B = (2a+ n
√
a2 − 1)/(a2 − 1), the expression of the

error function of best approximation yn(x) of 1/(x− a)2 +B/(x− a) by polynomials of degree
n can be given in terms of elementary functions; namely with x = (1/2)(z + 1/z), |z| = 1,
then

yn(x) =
Ln
2

{
zn
(
λ− z
1− λz

)2

+ z−n
(

1− λz
λ− z

)2}
, Ln =

8λn+4

(1− λ2)4
,

where λ := a −
√
a2 − 1. This follows immediately from the Chebyshev alternation theorem,

again using the argument principle.

4. Recurrence relation for the polynomials of best approximation

With k and ρ defined by the system (3) from Theorem 2.1, we have α and β defined by (4),
γ1 and γ2 defined by (10) and the Pell-type equation (9) for yn(x). By differentiating relation
(9) we obtain the following linear differential equation for yn(x) with polynomial coefficients

2f0(x)f1(x)y′′n(x) + (f ′0(x)f1(x)− f0(x)f ′1(x))y′n(x)− 2f2
1 (x)yn(x) = 0, (19)
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where

f0(x) = (x2 − 1)(x− a)2(x− α)(x− β) and f1(x) = n2(x2 − γ1x+ γ2)2.

It is well known that this type of differential equation can be turned into a recurrence
relation for the coefficients in the series expansion of yn(x) around x0 = 0. Also the
given function 1/(x− a)2 satisfies a linear differential equation with polynomial coefficients.
Hence, the difference p∗n(x) = 1/(x − a)2 − yn(x) satisfies such a differential equation and
a recurrence for its coefficients in the monomial expansion can be computed. This transfer
from differential to recurrence equation can be done entirely automatically using symbolic
computation. The framework for this are holonomic functions, that is, functions (discrete
and/or continuous) satisfying systems of linear difference/differential relations with polynomial
coefficients. Algorithms for executing the transfer between differential equation for the function
and recurrence relation for the coefficients or for executing closure properties, for example,
given recurrences for two sequences return the recurrence for the termwise sum of these
sequences, have been implemented in different computer algebra systems [9, 13]. Here we
use Koutschan’s Mathematica implementation [14] ‘HolonomicFunctions’†.

The algorithms implemented in HolonomicFunctions deal with difference/differential
equations in operator form over some appropriate algebra. For the underlying computations
again Gröbner bases are involved, this time also in non-commutative rings. We use this
tool to derive a recurrence relation for the coefficients bk of the power series expansion
yn(x) =

∑
k>0 bkx

k. After loading the package in the first step we translate the given
differential equation (19) into operator notation:

In[9]:= annY = ToOrePolynomial[ode, y[x]];

Then in the second step we pass from the differential equation of yn to the recurrence relation
for the coefficients bk using the ‘DFiniteDE2RE’ command (differential equation to recurrence
equation). The output is again in operator notation, but we can use the ‘ApplyOreOperator’
command to write it in traditional form:

In[10]:= annB = DFiniteDE2RE[annY, {x}, {k}];
In[11]:= recB = ApplyOreOperator[annB, b[k]];

Out[11]= {2(a− 1)a2(a+ 1)(k + 7)(k + 8){αβ(a− α)(a− β)(a6n− a5n(α+ β) + a4(n(αβ − 1)− 2R)
+ a3(n+R)(α+ β)− a2nαβ + aR(α+ β)− 2Rαβ)b[k + 8]
. . .
− 2(a− 1)2(a+ 1)2n(a− α)2(a− β)2(k − n)(k + n)b[k]}.

Here we omit the full output because of size and abbreviate the root expression R =√
(a2 − 1)(a− α)(a− β) for better readability. The resulting recurrence is of order eight,

because the polynomial coefficients of the given ordinary differential equation are up to degree
eight. The polynomial coefficients in the recurrence are of degree two in the variable k each.

The Taylor series expansion of 1/(x− a)2 around x0 = 0 is well known and thus we have

yn(x) =
∑
k>0

bkx
k =

1

(x− a)2
− p∗n(x) =

∑
k>0

(k + 1)

(
1

a

)k+2

xk −
n∑
k=0

ckx
k.

In other words, bk = (k + 1)a−k−2 for k > n, which is also reflected by the factor n − k in
the trailing coefficient of the recurrence above. Given a recurrence for the coefficients of yn(x)
and a recurrence for (k + 1)a−k−2 (that is easily calculated), by holonomic closure properties
a recurrence for the coefficients ck of the polynomial of best uniform approximation can be
computed:

†Available at http://www.risc.jku.at/research/combinat/software/.
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Figure 2. Error function for n = 7, 8 for the approximate polynomials p̃∗n(x).

In[12]:= annF = Annihilator[a−k−2(k + 1), {S[k]}]

Out[12]= {a(k + 1)Sk − (k + 2)}

In[13]:= annC = DFinitePlus[annB, annF];
In[14]:= Support[annC]

Out[14]= {{S8
k , S

7
k , S

6
k , S

5
k , S

4
k , S

3
k , S

2
k , Sk, 1}}

In[15]:= rec = ApplyOreOperator[annC, c[k]]

Out[15]= {−2a2(a2 − 1)αβ(k2 + 15k + 56)(a− α)(a− β)(a6n− a5n(α+ β) + a4(n(αβ − 1)− 2R)
+ a3(α+ β)(n+R)− αa2βn+ aR(α+ β)− 2αβR)c[k + 8]
. . .
+ 2(a2 − 1)2n(a− α)2(a− β)2(k2 − n2)c[k]}.

As can be seen from the Mathematica output above, the resulting recurrence is also of
order eight, where we do not display the full output† and reuse the abbreviation R =√

(a2 − 1)(a− α)(a− β). For the recursive evaluation of the coefficients we follow the approach
in [19]. First of all, we need the numerical values from the table of the previous section in order
to initialize the parameters α and β. The recurrence is unwound starting from the coefficient
cn down to c0. As initial value first we normalize cn = 1 and, since we know that p∗n(x) is
polynomial, all cn+m for m = 1, . . . , 7 are set to zero. In the second step the coefficients are
adjusted to match Ln as the minimum deviation. Using the precomputed values from the
previous section, α, β and Ln can be computed and using the recurrence relation we obtain
the approximations

p̃∗7(x) = 0.0378802x7 + 0.056484x6 + 0.0243862x5 + 0.0569877x4

+ 0.13294x3 + 0.192055x2 + 0.249238x+ 0.249851,

and

p̃∗8(x) = 0.0227427x8 + 0.0345011x7 + 0.0110035x6 + 0.0303003x5 + 0.0854089x4

+ 0.129983x3 + 0.186372x2 + 0.249608x+ 0.250028,

for the polynomials of best uniform approximation for degree n = 7 and n = 8, respectively,
and a = 2. Figure 2 displays the error functions of best approximation in these cases. It
is clearly visible that the approximation is a rather accurate one, showing also the required
number of alternation points, at least approximately.

In [19] a recursive evaluation for the Zolotarev polynomials in Chebyshev expansion is also
given. We note that such a recurrence for the coefficients of yn(x) can be obtained similarly

†For the complete recurrence see the Mathematica notebook available for download at http://www.risc.jku.
at/people/vpillwei/Results.nb.
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entirely automatically using the results of Benoit and Salvy [4]. Certainly it would be desirable
to have a recurrence relation in n for the polynomials p∗n(x). At the current stage this is beyond
the capabilities of the available symbolic tools, but it remains an interesting open question.

Another possible direction for further investigations, as pointed out by one of the referees,
is the application of the polynomials derived in this paper to approximating solutions of
systems of linear equations Ax = b, with A symmetric but indefinite. So far in this setting the
polynomials of best uniform approximation to 1/x and 1/x2 on the union of two symmetric
intervals [−β,−α] ∪ [α, β] were used, which can be given in terms of Chebyshev polynomials
of the first kind; see, for example, [1, p. 249] and also [17] for the case β = 1, and [16],
respectively.
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