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Abstract

In the Transdanubian Range, Pannonian Basin, Hungary, karstic sinkholes on a planation
surface of Triassic carbonates are filled by grey clayey-silty kaolin deposits. The provenance
and accumulation age of these strongly altered terrestrial karst-filling sediments are constrained
by X-ray powder diffraction, heavy mineral analysis and zircon U-Pb dating. The heavy
minerals of the Southern Bakony Mountains samples are dominated by the ultra-stable
zircon-rutile-tourmaline association. Zircon U-Pb data indicate accumulation between
20 and 16 Ma. Furthermore, Archaean to Palaeogene grains were also determined, reflecting
the principally fluvial recycling of Eocene bauxites and their cover sequences. In contrast,
the sample from the Keszthely Hills consists almost exclusively of airborne material including
zircons of 18-14 Ma, reflecting a dominant contribution from the Carpathian-Pannonian
Neogene volcanism. The shift in the Miocene age components is inferred to have been caused
by the landscape evolution and burial history of the planation surface remnants controlled by
local block tectonics.

1. Introduction

In the Keszthely Hills (KH) and the Southern Bakony Mountains (SBM), kaolin deposits fill
~100 m deep karstic sinkholes of a planation surface formed on Upper Triassic carbonate rocks.
The study area is part of the Transdanubian Range (TR) that belongs to the Alpine-Carpathian-
Pannonian (ALCAPA) composite terrain (Fig. 1; Balazs et al. 2016 and references therein).
Several erosional events since the Albian resulted in large stratigraphic gaps in the carbonate-
dominated Triassic to Miocene sequences and led to the formation of now fossilized palaeosink-
holes and dolinas in the Upper Triassic carbonates (Csillag & Sebe, 2015). The Kkarstic
depressions trapped strongly altered weathering products, such as kaolin, red clay and/or
bauxite deposits, from the contemporaneously exposed basement and siliciclastic assemblages
(Budai et al. 1999; Mindszenty et al. 2000).

The studied Cserszegtomaj Kaolin Formation (Bohn, 1979; Budai et al. 1999) is a yellow,
grey terrestrial pelite filling some of the sinkholes in the KH and SBM (Fig. 2). The
earliest reports considered this up to 100 m thick formation as a heteropic facies of the
Eocene bauxites (Szentes, 1957; Csillag, 1959; Bardossy, 1961), but later studies suggested a
Miocene age based on a reworked Middle Eocene to Late Oligocene nannoplankton assemblage
(Bohn, 1979).

This study provides an up-to-date description of the composition, provenance and age of the
Cserszegtomaj Kaolin Formation using X-ray diffraction (XRD), heavy mineral analysis and
zircon U-Pb geochronology. The results obtained from this highly altered terrestrial sediment
trapped and preserved in sinkholes also proved to be useful in understanding the evolution of
carbonate etchplain surfaces (cf. Thomas, 2016) in time and space characterized by intense
erosion.

2. Geological setting

The TR is characterized by up to 3 km thick Triassic to Cretaceous marine sediments covering
Variscan low-grade metamorphic rocks and Permian siliciclastics (Fig. 2; Haas, 2013). The
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Fig. 1. (Colour online) The position of the study area within the Transdanubian Range in the western part of the Pannonian Basin System. Modified after Molnar et al. (2019). The

black bracket indicates the study area.

sedimentation of Mesozoic sequences has been controlled and
interrupted by multiphase events of Cretaceous Eo-Alpine
tectonics. The uplifted, subaerially exposed strata suffered erosion
and karstification accompanied by the formation of Albian and
Santonian bauxite deposits and their siliciclastic cover sequences
(Mindszenty et al. 2000). This terrestrial sedimentation was
followed by marine sequences until an uplift event at the end of
the Late Cretaceous, causing long-lasting denudation, karstifica-
tion and etchplanation under tropical climatic conditions which
lasted until the Middle Eocene. This subaerial exposure led finally
to the formation of the Eocene bauxite (Csillag & Sebe, 2015),
which trapped airborne volcanic ash from the Periadriatic igneous
activity (Dunkl, 1992). Middle Eocene to Early Oligocene times
were characterized by the development of the Slovenian-
Hungarian Palacogene Basin (Baldi, 1984; Fodor et al. 1998).
Between the Oligocene and Middle Miocene, the TR became
detached from the Alpine realm by strike-slip faults and reached
its present position (Balazs et al. 2016 and references therein).
The large-scale horizontal movement and rotation triggered
inversion of the Palaeogene basin, and generated erosion but also
an accumulation of up to 800 m thick Oligocene to Lower Miocene,
Alpine-derived molasse-type siliciclastic sediments that covered
much of the Bakony Mountains (Korpas, 1981; Benedek et al.
2001). By the end of this deposition event, the Upper Triassic
carbonates became generally exposed in the TR. Most of the
younger Mesozoic and early Palaeogene strata have been removed
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in the KH, while in the SBM their remnants are preserved until
present times (Bohn, 1979; Budai et al. 1999). Karstification caused
etchplanation on the Late Triassic carbonate plateaus while along
major faults deep sinkholes developed and filled up with kaolin
deposits with reworked Middle Eocene to Late Oligocene
nannoplankton implying their Miocene age (Bohn, 1979). These
sinkholes, despite being partly eroded, can reach ~50 m depth in
the KH area and ~100 m in the SBM (Bohn, 1979).

Between 21 and 10 Ma, a massive ash-veneer produced by the
Carpathian-Pannonian volcanism spread over the Eastern Alps,
the northwestern Dinarides and the northeastern Southern Alps
(e.g. Lukdcs et al. 2015, 2018; Rocholl et al. 2018). Thus, the TR
became episodically covered with volcanic ash (e.g. Pispoki
et al. 2005). From Langhian to Serravallian times (16.5-11.5 Ma),
the TR was dissected and the newly formed molasse-type basins
became filled up with limestone in the KH area. In the SBM area,
the basin filled sequentially with siliciclastic conglomerate,
sandstone and limestone (Budai et al. 1999). Some of the eroded
Cretaceous and Eocene bauxite deposits were resedimented as
red clays (T6th & Varga, 2014; Kelemen et al. 2017). There is an
ongoing debate as to whether the Middle Miocene Climatic
Optimum (17-15 Ma; Zachos et al. 2001) could have caused
authigenic kaolinite formation in the red clays and in the
kaolin deposits or if their kaolinite content was inherited from
Cretaceous—Palacogene red clays and bauxites (Schwarz, 1997;
Kelemen et al. 2017).
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Fig. 2. (Colour online) Simplified geological map of the study area and the locations of the Uzst-2 and Kht-4 boreholes in the Southern Bakony Mountains and Keszthely Hills

(map base after Gyalog, 2005).

3. Materials and Methods

Kaolin samples of ~500 g initial mass were collected from the
vertical boreholes of Uzst-2 (top: 18-20 m; middle: 58—-60 m; base:
106-107 m) and Kht-4 (4.7 m; Fig. 2). XRD analyses were carried
out at the Institute for Geological and Geochemical Research of the
Hungarian Academy of Sciences and the Eotvos Lorand
University, Budapest. Kht-4 is dominated by grey and ochre-
coloured clay and the Uzst-2 core divides into an upper, red, silty,
and a lower, grey, clayey, pyrite-bearing section (Fig. 3).

For further analysis, samples were treated with warm-water
(~50 °C) ultrasonic agitation and decantation to remove the loose
clay matrix. The residual sand fraction yielded 0.002 wt % for the
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KH sample, ~0.1 wt % for the top/middle and 0.02 wt % for the
base of the Uzst-2 core. Approximately 1 mm sized, well-rounded
quartz grains are present in all Uzst-2 samples. The 63-125 pm
sieve fractions were used for heavy mineral analysis and zircon
U-Pb geochronology. Due to the limited amount of available
detrital grains, after Na—polytungstate heavy liquid separation,
all transparent detrital grains were handpicked and embedded in
1 inch (2.54 cm), polished epoxy mounts. These were used later
for both heavy mineral identification and U-Pb zircon dating with
the laser ablation-inductively coupled plasma-mass spectrometer
(LA-ICP-MS) method. Zircon-tourmaline-rutile (ZTR) index
values were calculated according to Hubert (1962). LA-ICP-MS
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Figure S1 (available online at https://doi.org/10.
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10

measurements were carried out at the Gochron Laboratories,
Geoscience Center, University of Goéttingen. Details of this tech-
nique are available in Kelemen et al. (2017) and references therein.

4. Results
4.a. X-ray diffraction data

The evaluated XRD diagrams are presented in Supplementary
Figure S1 (available online at https://doi.org/10.1017/
S0016756820000515). XRD analysis revealed only kaolinite in
the Kht-4 sample, while in the Uzst-2 samples quartz and iron-
bearing phases were identified along with kaolinite. In the upper,
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red part the dominant iron-bearing phases are goethite and
hematite, while the lower, grey section contains mostly pyrite
and some jarosite (Fig. 3).

4.b. Heavy mineral spectra

The ultra-stable minerals (zircon, tourmaline, rutile) dominate
the heavy mineral fractions of all samples (Fig. 4). The Kht-4
sample has a ZTR index of ~96 %. Zircon is a major phase
(~75 %), while rutile and tourmaline are about ~15 and ~5 %,
respectively, and some other phases such as staurolite, amphibole,
pyroxene and monazite were detected in trace amounts (<2 %).
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Fig. 5. (a) Cumulative plot of 90-110 % concordant detrital zircon U-Pb ages of the samples from the Kht-4 and Uzst-2 boreholes (Keszthely Hill and Southern Bakony Mountains).
The Kht-4 sample has a high proportion of Miocene ages (89 %; 101 out of 113 respectively), while the Uzst-2 samples show much fewer Miocene ages (10-52 %) and contain
significant amounts of Precambrian to Eocene ages. (b) The ages younger than 20 Ma are normalized to 100 % and plotted on a cumulative diagram insert. The individual zircon
ages of all three Uzst-2 samples are mostly scattered within the 19-16 Ma time intervals, while the Kht-4 sample shows significantly younger ages and the data ranges of the two
sampling locations have minor overlap. For more details see Supplementary Table S3 (available online at https://doi.org/10.1017/S0016756820000515).

In borehole Uzst-2, all samples are dominated by a balanced
zircon-rutile-tourmaline assemblage (ZTR values ~92-95 %),
but minor amounts of kyanite, staurolite, amphibole and pyrox-
ene are also present (<5 %) in the Uzst samples (Fig. 4). The
ratio of euhedral zircon crystals to the total number of zircons
is between 17 % and 42 %. Detailed heavy mineral data are
presented in Supplementary Table S2 (available online at
https://doi.org/10.1017/S0016756820000515).
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4.c. Zircon U-Pb ages

The U-Pb raw data are listed in Supplementary Table S3 (available
online at https://doi.org/10.1017/S0016756820000515). In the
Kht-4 sample, the majority of the ages are Miocene (89 %), ranging
in a tight cluster between 18 and 14 Ma (Fig. 5). Some Permo-
Triassic ages are also present (~6 %), along with a very few
scattered Proterozoic to Eocene ages. The Uzst-2 samples show
a more complex age spectrum. The Miocene ages (10-52 %) are
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between 20 and 16 Ma, significantly older than that of the
Kht-4 sample (18-14 Ma; Fig. 5b). Palaecogene ages range
between 44.1 and 29.3 Ma and form a significant group in two
of the samples (top: 8 %, middle: 12 %), while all Uzst-2 samples
show various ages from Proterozoic to Cretaceous (Fig. 5).

5. Discussion

5.a. Provenance of the kaolin deposit in the Southern Bakony
Mountains (Uzst-2 borehole)

The well-constrained age components (Supplementary Table S4
available online at https://doi.org/10.1017/S0016756820000515)
identified by the procedures of Dunkl & Székely (2003) and
Vermeesch (2012) conform well to some of the major eruption
phases of the Carpathian-Pannonian Neogene volcanism
(Lukécs et al. 2015; Rocholl et al. 2018). Thus, we propose that
the eruptions at c. 17.8 £ 0.1 to 16.7 + 0.2 Ma delivered the majority
of Miocene zircons to the Uzst-2 samples (Fig. 6). The similarity in
the Th/U ratio of the zircon crystals in the kaolin and in the ashes
provides further evidence for the volcanogenic provenance of the
youngest zircons (Fig. 7). The trace amounts of amphibole and
pyroxene grains most likely had the same source. Two samples
contain a significant amount of Eocene zircon crystals (means
of the age components: 37.4+0.4 to 36.7+3.3 Ma). The pre-
Cenozoic U-Pb age components (Fig. 6; Supplementary Table S4
available online at https://doi.org/10.1017/50016756820000515)
most likely derived from Proterozoic to Cadomian-, Ordovician-
and Variscan igneous formations, as well as Permian and Middle
Triassic volcanics of the TR (Fig. 6). These principal age compo-
nents and the ultra-stable heavy mineral compositions are similar
to those recorded in the Miocene red clays of the Bakony
Mountains and Balaton Highlands, which are considered to reflect
recycled Eocene and Cretaceous bauxite deposits (Kelemen et al.
2017). This fact indicates that the Uzst-2 sinkhole most likely
received recycled sediments from locally exposed Palaeogene
sequences most probably by fluvial transportation (Fig. 8).

5.b. Provenance of the kaolin deposit in the Keszthely Hills
(Kht-4 borehole)

The extremely low sand content, zircon-dominated heavy mineral
spectrum and predominant Miocene U-Pb ages suggest that the
sediment in the Kht-4 sinkhole is mostly airborne in origin and
altered in situ. This implies that the filling is mainly of tephra
originating from the Carpathian-Pannonian Neogene volcanics,
which provided the majority of zircons and some amphibole
and pyroxene crystals. An additional admixture must have been
windblown dust derived from the exposed Slovenian-Hungarian
Palaeogene Basin which supplied nannoplankton, rutile, tourma-
line, staurolite and monazite. The single Palacogene zircon crystal
has only limited significance as a provenance indicator. The
Triassic zircons most likely derived from the “pietra verde”
tuff intercalations of the Triassic sequence of the TR (Dunkl
et al. 2019).

5.c. Development and timing of the sinkholes

The development of the c¢. 50 and 100 m deep kaolin-bearing
sinkholes in KH and SBM along with appropriate, tectonically
controlled fracturing requires warm-humid climate conditions
and an elevated topographic position above the karst water
table (e.g. D’Argenio & Mindszenty, 1995). The continuous age
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distribution between 20 and 16 Ma in the Uzst-2 samples
(Fig. 5b) implies that the source materials of the red clay and kaolin
assemblages in this area were deposited during and prior to the
Miocene Climatic Optimum (17-15 Ma; Zachos et al. 2001).
The dominance of Miocene ages and the almost total absence of
Palaeogene ages in the Kht-4 sinkhole suggest that kaolin deposits
in the KH area accumulated soon after the formation of their
hosting sinkholes, or both the sinkhole formation and filling events
occurred contemporaneously, in agreement with Csillag & Sebe
(2015). The shift between the Miocene ages of the SBM and KH
samples suggests that by c. 16 Ma the Uzst-2 sinkhole had already
been filled, thus could not accommodate more airborne material,
and became covered by Middle Miocene sediments deposited after
a horst- and graben-forming tectonic event (Csillag & Nador, 1997;
Fig. 8b, ¢). Meanwhile the Kht-4 sinkhole was still exposed and
accumulated material until 15-14 Ma. The in situ transformation
into kaolin likely occurred during the Middle Miocene Climatic
Optimum (Zachos et al. 2001) under at least subtropical warm
and humid climatic conditions dominating the Pannonian Basin
during this time interval (Jiménez-Moreno, 2007).

Bauxites and bauxitic to kaolinitic red clays were reported from
the Early to the Middle Miocene, from several localities in the
wider surroundings of the Pannonian Basin and across Europe.
Wagreich et al. (1997) mentioned gibbsitic karst bauxites from
the Hieflau area in the Northern Calcareous Alps. Further north,
a 50 m thick bauxitic laterite profile was described on the Miocene
Vogelsberg continental basalt lavas palaeolattitude 45 by Schwarz
(1997). Subaerial exposure in the Apennines and Dinarides also
resulted in bauxitic (ferrallitic) weathering products probably
related to the Middle Miocene Climatic Optimum (Kici et al.,
1991; Simone et al., 1991; Sinkove¢ & Sakaé, 1991).

6. Conclusions

The XRD, heavy mineral and U-Pb age data reveal major
differences of the Keszthely Hills and Southern Bakony
Mountains regarding the source of their kaolin deposits, mainly
because they developed during different time intervals (Fig. 8a-d).

The major sources of the Uzst-2 sinkhole (Southern Bakony
Mountains) are fluvially resedimented local Eocene bauxites with
their Palaeogene cover sequences and airborne ash from the distal
Carpathian-Pannonian Neogene volcanism. The strongly altered
parent materials were transported into a pre-existing, deep sink-
hole between 20 and 16 Ma.

The Kht-4 sinkhole (Keszthely Hills) hosts a different
assemblage of airborne origin. The most important source is from
the Carpathian-Pannonian Neogene volcanism. The airborne
volcanic ash trapped in newly formed sinkholes and underwent
in situ weathering during the Middle Miocene Climatic Optimum.
The presence of Palaeogene nannoplankton assemblages indicates
that this site also received redeposited material from the inverted
Slovenian-Hungarian Palaeogene Basin.

Formation processes were controlled by the tectonic evolution
of the surrounding landscape. Uplift between 18 and 14 Ma
triggered karstification and formation of kaolin deposit in the
Kht-4 sinkhole under the warm and humid conditions of the
Miocene Climatic Optimum. This study confirms that heavy
mineral studies combined with single-crystal dating of detrital
grains may be particularly useful to reconstruct stages of landform
evolution and denudational history of tectonically affected
planation surfaces.
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