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Abstract

In this paper we present a stability criterion for processor-sharing queues, in which the
throughput may depend on the number of customers in the system (such as in the case
of interferences between users). Such a system is represented by a point measure-valued
stochastic recursion keeping track of the remaining processing times of the customers.
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1. Introduction

In this paper we address the question of stationarity in the general ergodic framework for
processor-sharing queues, in which the throughput (i.e. the quantity of work achieved by the
server(s) per unit of time) may depend on the state of the system. More precisely, we assume
hereafter that the server(s) (it will be clear in the sequel that the effective number of servers
does not really matter, only the quantity of work consumed per unit of time matters) processes
all the jobs present in the system simultaneously and fairly. Whenever there are n customers
in the system, each of them is thus served at a rate that depends on n, say r(n). The classical
case is when r(n) = 1/n, n ≥ 1, so that the total throughput equals nr(n) = 1 whenever the
system is nonempty: this is the classical processor-sharing queue. Hereafter, we consider a
more general context in which the total throughput may decrease with the number of customers
in the system (hence, nr(n) ≤ 1). This is the case, for instance, in a wireless network in which
the number of users currently active may decrease the efficiency of the resources. Another case
is when the value of n, the number of customers, does not change the nominal service rate r(n),
say r(n) = 1 for all n. This corresponds to the classical queue with infinitely many servers.

In both cases and under general stationary ergodic assumptions, Loynes’ stability result
does not hold, since this is not a proper G/G/1 queue (the throughput may be less or larger
than 1). We address the question of the existence of a stationary version of such queues by
representing them with point measure-valued stochastic recursions in the Palm setting, so as
to take into account the dependency on the number of customers. These point measures keep
track of all the remaining service times of all the customers in the system. Then it is possible
to provide conditions for the existence of a stationary version of this sequence, which allows
us to explicitly construct stationary queues under these assumptions.

This paper is organized as follows. After some preliminaries in Section 2, we present the
queueing models we consider in Section 3. In Section 4 we study the particular case of the
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G/G/∞ queue, and in Section 5 we present a stability criterion for generalized processor queues
with state-dependent throughput.

2. Preliminaries

Let M+
f and Cb respectively denote the set of positive finite measures on R

∗+ and the set
of bounded continuous functions from R to R. Equipped with the weak topology σ(M+

f , Cb),
M+

f is a Polish space (see [2]). Let 0̃ be the zero measure on R (i.e. such that 0̃(B) = 0 for
any Borel set B on R). For any µ ∈ M+

f and any measurable f : R → R, we classically write
〈µ, f 〉 := ∫

f dµ. For any y ∈ R and any measurable f : R → R, let τyf (·) = f (·−y)1{·>y}.
Then, for any µ ∈ M+

f , τyµ denotes the only element of M+
f such that 〈τyµ, f 〉 = 〈µ, τyf 〉.

Let the set M+
f be endowed with the increasing partial integral order, ‘	’: for any two

µ, ν ∈ M+
f , µ 	 ν if 〈µ, f 〉 ≤ 〈ν, f 〉 for any measurable nondecreasing function f such that

these integrals exist. Of course, 0̃ 	 µ for any µ ∈ M+
f . Furthermore, we note the following

lemma.

Lemma 1. Any sequence of M+
f that is ‘	’-increasing and bounded above converges for the

weak topology.

Proof. Let {µn}n∈N be a ‘	’-increasing sequence of M+
f that is bounded above by µ ∈ M+

f .
Then, as easily seen, the sequence of nonincreasing real functions, {µn([·, ∞))}n∈N, tends
pointwise and, hence (this is the Diniz theorem), uniformly to a nonincreasing real function
f that is right continuous and has a countable number of discontinuities. Moreover, f (0) ≤
µ(R∗+) < ∞, and we can fully characterize a measure µ∗ ∈ M+

f setting µ∗((0, x)) = f (0) −
f (x) for all x ∈ R

∗+. In particular, supx∈R
∗+ |µn((0, x)) − µ∗((0, x))| −→ 0 as n → ∞;

hence, µn tends to µ∗ in total variation. This completes the proof.

Now let M ⊂ M+
f be the subset of finite (simple) counting measures on R

∗+. Any µ ∈
M \ {0̃} reads µ = ∑N(µ)

i=1 δαi(µ), where N(µ) := µ(R∗+) is the number of atoms of µ,
δx is the Dirac measure at x ∈ R+, and α1(µ) < α2(µ) < · · · < αN(µ)(µ). Then,
τy(µ) = ∑N(µ)

i=1 δαi(µ)−y1{αi(µ)>y} and, for any two µ, ν ∈ M \ {0̃}, µ 	 ν whenever

(i) N(µ) ≤ N(ν),

(ii) for all i = 0, . . . , N(µ) − 1, αN(µ)−i (µ) ≤ αN(ν)−i (ν).

For any µ ∈ M \ {0̃}, let Z(µ) = αN(µ)(µ), the largest atom of µ. Finally, we write x+ =
max{x, 0} for any real number x, and

∑k
i=j · ≡ 0 whenever k < j and max{∅} ≡ 0.

3. The model

Let us first introduce our definitions and assumptions on the queueing systems we will
consider in the sequel. Let (�, F , P, θt ) be a probability space furnished with a bijective
flow (θt )t≥0, under which P is stationary and ergodic. Define on � the θt -compatible simple
point process (At )t∈R of points · · · < T−2 < T−1 < T0 ≤ 0 < T1 < T2 < · · · , which
represent the arrival times of the customers in a queue without a buffer. The process (At )t∈R

is marked by a sequence {σn}n∈Z, where, for all n ∈ Z, σn is the service duration requested by
customer Cn who arrived at time Tn. Also, for all n ∈ Z, let ξn = Tn+1 − Tn, and suppose that
the generic random variables (RVs) σ and ξ are integrable. We consider servers that follow
a generalized processor-sharing discipline. By this we mean that all present customers are
taken care of simultaneously at a rate r , which is equal for all customers. An example is of
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Table 1.

Number of customers Nominal service rate Throughput

1 1.000 1.00
2 0.495 0.99
3 0.300 0.90
...

...
...

100 0.008 0.80

course provided by the classical processor-sharing queue, but it will be shown in the subsequent
sections that significant results can also be obtained for a wider class of systems. Indeed, in
many cases, it is plausible to assume that the amount of work in the system might affect the
throughput, considering, for instance, the working cost induced by the switching mechanism
in the processor or the interferences between the users of a wireless network. In both cases,
it is then natural to assume that the rate r is a nonincreasing function of the service profile,
i.e. µ 	 ν implies that r(µ) ≥ r(ν). Hereafter, for the sake of simplicity, we will restrict our
attention to the subcase, where r is a nonincreasing function of the number of customers in
the system, although it should be clear that all the results below also hold when r is a function
of the whole service profile. In other words, at any t , each customer is allocated a quantity of
work, r(Qt ), per unit of time, where Q(t) denotes the number of customers in the system at t ,
that is, r(i) ≥ r(j) for all i, j ∈ N

∗ such that i ≤ j . In Table 1 we illustrate, through a naive
example, the effect of a large number of customers on the throughput.

Provided that Cn is in the system at t , his remaining processing time at this instant is the time
before his service completion. The service profile of the system at t is the M-valued process
keeping track of the remaining processing times of all the customers in the system at t :

µ(t) =
Q(t)∑
i=1

δαi(µ(t)),

where α1(µ(t)) ≤ α2(µ(t)) ≤ · · · ≤ αQ(t)(µ(t)) denote the remaining processing times of
the customers in the system at t , ranked in decreasing order. Let W(t) denote the workload
at t . Then the workload and the congestion processes can be recovered easily from the service
profile process by writing, for all t ,

Q(t) = N(µ(t)), W(t) = 〈µ(t), I 〉,

where I is the identity function. The processes µ, Q, and W have càdlàg paths (i.e. paths that
are continuous from the right with left limits), and, for all t , let µ(t−) = lims↑↑t µ(s) (and
similarly for Q(t−) and W(t−)). For all n ∈ N, we respectively denote by µn = µ(Tn−),
Qn = Q(Tn−), and Wn = X(Tn−) the service profile, the congestion, and the workload just
before the arrival of customer Cn.

Let (�, F , P0) be the Palm space of A, let θ := θT1 , let θ−1 be its measurable inverse, and,
for all n ∈ Z, let θn = θ ◦ θ ◦ · · · ◦ θ and θ−n = θ−1 ◦ θ−1 ◦ · · · ◦ θ−1. Note that P0 is
stationary and ergodic under θ , i.e. for all A ∈ F , P0[θ−1A] = P0[A] and θA = A implies that
P0[A] = 0 or 1 and that all θ -contracting events (such that P0[Ac ∩θ−1A] = 0) are θ -invariant.
Letting ξ := ξ0 and σ := σ0, we have, for all n ∈ Z, ξn := ξ ◦ θn and σn := σ ◦ θn.
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We say that the E-valued random sequence {Xn}n∈N is a stochastically recursive sequence
(SRS) whenever, for some random mapping φ : E → E,

Xn+1 = φ ◦ θn(Xn), n ∈ N, P0-almost surely (P0-a.s.).

For any E-valued RV Y , let {X[Y ]
n }n∈N be the SRS {Xn}n∈N such that X

[Y ]
0 = Y , P0-a.s. We

follow the formalism of [1] and formulate the question of stationarity for the SRS {Xn}n∈N in
the following terms. There exists a stationary version of {Xn}n∈N whenever, for some Y and
all n, X

[Y ]
n = Y ◦ θn, P0-a.s., or, in other words, provided that the equation

Y ◦ θ = φ(Y )

admits a solution that is an E-valued RV. We say that two sequences of RVs {Xn}n∈N and
{Yn}n∈N couple provided that

P0[there exists N(ω), Xn(ω) = Yn(ω) for all n ≥ N(ω)] = 1

and that there is strong backwards coupling from {Xn}n∈N with the stationary sequence {Y ◦θn}
whenever

P0[there exists N ′(ω), Xn ◦ θ−n(ω) = Y (ω) for all n ≥ N ′(ω)] = 1.

Lemma 2. The sequence {µn}n∈N is stochastically recursive for any rate function r: letting,
for all µ ∈ M and x ∈ R

∗+,

• for all i ≤ N(µ),

γ r
i (µ, x) = r(N(µ) − i + 1)

(
x −

i−1∑
j=1

αj (µ)

(
1

r(N(µ) − j + 1)
− 1

r(N(µ) − j)

))
,

• ir (µ, x) = max{i ≤ N(µ); αi(µ) ≤ γ r
i (µ, x)},

• γ r(µ, x) := γ r
(ir (µ,x)+1)∧1(µ, x),

• �r(µ, x) = τγ r (µ,x)µ,

we have, for any initial profile µ0 and all n ∈ N,

µn+1 = �r(µn + δσn, ξn). (1)

Proof. Just after the arrival of Cn, the service profile reads µ := µn + δσn . Set T ′
0 := Tn

and α0(µ) = 0. For any i ∈ {1, . . . , N(µ)}, let T ′
i be the theoretical departure of customer

C̃i whose remaining service time at Tn is αi(µ). The remaining service time of C̃i at T ′
i−1 is

αi(µ) − αi−1(µ), and between T ′
i−1 and T ′

i , C̃i is served at rate r(N(µ) − i + 1). Hence, we
have the induction formula

T ′
i = T ′

i−1 + αi(µ) − αi−1(µ)

r(N(µ) − i + 1)
, i ∈ {1, . . . , N(µ)}, (2)

from which we deduce, for all i ∈ {1, . . . , N(µ)},

T ′
i = Tn + αi(µ)

r(N(µ) − i + 1)
+

i−1∑
j=1

αj (µ)

(
1

r(N(µ) − j + 1)
− 1

r(N(µ) − j)

)
. (3)
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For any i, customer C̃i leaves the system before Tn+1 provided that T ′
i − Tn ≤ ξn, which is

equivalent to αi(µ) ≤ γ r
i (µ, ξn) in view of (3). In particular, ir (µ, ξn) denotes the index of

the last customer leaving the system before Tn+1 (or 0 if there is no departure between Tn and
Tn+1). Then the system is not empty at Tn+1− provided that ir (µ, ξn) < N(µ), and in this
case, {C̃i , i ∈ {ir (µ, ξn) + 1, N(µ)}} is the set of customers present in the system at Tn+1−.
For such i > ir (µ, ξn), the remaining service time of C̃i at Tn+1 is given by

αi(µ) − αir (µ,ξn)(µ) − r(N(µ) − ir (µ, ξn))(Tn+1 − T ′
ir (µ,ξn)) = αi(µ) − γ r(µ, ξn).

Thus, functional mapping of the profile at Tn onto the profile at Tn+1− reads

�r(·, ξn) : µ �−→
N(µ)∑

i=ir (µ,ξn)+1

δαi(µ)−γ r (µ,ξn).

To obtain the announced result, we note that, for any µ ∈ M, x ∈ R
∗+, and any i < N(µ), we

have

γ r
i+1(µ, x) − γ r

i (µ, x) = r(N(µ) − i) − r(N(µ) − i + 1)

r(N(µ) − i + 1)
(γ r

i (µ, x) − αi(µ)),

which is nonnegative if and only if i ≤ ir (µ, x). Hence,

γ r(µ, x) = max
1≤i≤N(µ)

γ r
i (µ, x) (4)

and, in particular, �r(µ, ξn) = τγ r (µ,ξn)µ, P0-a.s.

For a fixed x ∈ R+, the two following monotonicity properties of the mappings �r(·, x)

hold, as shown in Appendix A.

Lemma 3. For any x ∈ R+ and any rate function r , the mapping �r(·, x) is nondecreasing
from M into itself.

Lemma 4. For any x ∈ R+ and any µ ∈ M, and for any two rate functions r and r̃ such that
r(i) ≤ r̃(i) for all i ∈ N

∗, �r(µ, x) � �r̃(µ, x).

4. The pure delay system

Let us first consider the case where the rate function is constant with respect to the size of
the system, say r(i) = 1 for any i ≥ 1. This corresponds to the classical ‘pure delay’ G/G/∞
queue: all present customers are simultaneously served at unit rate and, hence, spend a time
equal to their service duration in the system, which is equivalent to saying that there is an infinite
number of servers. In this case, the recursive equation (1) driving the service profile sequence
(for which a diffusion approximation is given in [5] in the M/GI/∞ case) specializes to

µn+1 = τξn(µn + δσn)

and a stationary service profile for the queue is a solution to the equation

µ ◦ θ = τξ (µ + δσ ). (5)

The following lemma (see [7]) will be used in the sequel.
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Lemma 5. There exists a unique P0-a.s. finite solution to the equation

L ◦ θ = [max{L, σ } − ξ ]+ (6)

given by

L :=
[

sup
j∈N∗

(
σ−j −

j∑
i=1

ξ−i

)]+
.

Proof. Existence. Loynes’ theorem for stochastic recurrences (see [1, p. 107] and [6]) can
be applied since the mapping x �→ [max{x, σ } − ξ ]+ is P0-a.s. continuous and nondecreasing.
The minimal solution L to (6) classically reads as the P0-almost sure limit of Loynes’s sequence
{L[0]

n ◦ θ−n}n∈N, where {L[0]
n }n∈N is the initially null SRS that is defined by

L
[0]
n+1 = [max{L[0]

n , σn} − ξn]+ for all n ∈ N.

It is routine to check from Birkhoff’s ergodic theorem (and the fact that σ is not identically 0)
that L is P0-a.s. finite.

Uniqueness. Let L̃ be a solution to (6). First, note that if L̃ > σ , P0-a.s. would imply that,
on a P0-a.s. event,

L̃ ◦ θ > 0 ⇐⇒ L̃ ◦ θ = L̃ − ξ,

a contradiction to the ergodic lemma. Hence, in view of the minimality of L we have

P0[L̃ = L] = P0[L̃ ◦ θ ≤ L ◦ θ ] ≥ P0[L̃ ≤ σ ] > 0,

which implies that {L̃ = L} is P0-almost sure since it is θ -contracting.

We can now state the following result.

Theorem 1. Equation (5) admits a finite solution, given by

µ∞ =
∞∑
i=1

δ
(σ−i−∑i

j=1 ξ−j )
1{σ−i≥∑i

j=1 ξ−j }.

Moreover, provided that

P0[L ≤ 0] > 0, (7)

this solution is unique and, for all ζ such that Z(ζ ) ≤ L, P0-a.s., the sequence {µ[ζ ]
n }n∈N

converges with strong backwards coupling to µ∞.

Proof. Existence. It is a straightforward consequence of Birkhoff’s ergodic theorem that

P0[µ∞ ∈ M] = P0
[

card

{
i ∈ N

∗, σ−i −
i∑

j=1

ξ−j ≥ 0

}
< ∞

]
> 0.

This θ -contracting event is thus P0-almost sure. On the other hand, in view of Lemma 3,
the mapping µ �→ τξ (µ + δσ ) is P0-a.s. nondecreasing from M into itself. Furthermore, it
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is continuous for the weak topology, as easily checked from the fact that, for any M-valued
sequence {νn}n∈N tending weakly to ν, any x, s ∈ R+, and any φ ∈ Cb,

〈τxνn + δs, φ〉 =
∫

φ(y − x) dνn(y) + φ(s)

→
∫

φ(y − x) dν(y) as n → ∞
= 〈τxν + δs, φ〉.

Thus, we can follow the steps of Loynes’ construction (Lemma 1) to conclude that µ∞ is the
‘	’-minimal solution of (5) since it is the P0-almost sure limit of the sequence given, for all
n ∈ N, by

µ[0̃]
n ◦ θ−n =

∞∑
i=1

δ
(σ−i−∑i

j=1 ξ−j )
1{σ−i≥∑i

j=1 ξ−j }.

Uniqueness. It is easily checked that, for any solution µ of (5),

Z(µ) ◦ θ = Z(τξ (µ + δσ )) = [max{Z(µ), σ } − ξ ]+;
hence, Z(µ) = L, P0-a.s. Moreover, since µ∞ is the minimal solution of (5), we have

{µ = µ∞} ⊇ {µ = 0̃} = {Z(µ) = 0} = {L = 0}.
Hence, whenever (7) holds, the event {µ = µ∞} has a positive probability. Since it is
θ -invariant, it is P0-almost sure.

Coupling. Let ζ be an M-valued RV such that Z(ζ ) ≤ L, P0-a.s. It is easy to construct
another M-valued RV ζ̃ such that ζ 	 ζ̃ and Z(ζ̃ ) = L, P0-a.s. by setting, for example,

ζ̃ = ∑N(ζ)−1
i=1 δi(ζ ) + δL. From Lemma 3, it follows by induction that µ

[ζ ]
n 	 µ

[ζ̃ ]
n , P0-a.s. for

all n ∈ N. Now note that, for all n ∈ N, Z(µ
[ζ̃ ]
n ) = L ◦ θn, as is easily checked by induction.

Hence, for all n ∈ N, we have

En := {L ◦ θn = 0} = {Z(µ[ζ̃ ]
n ) = 0} = {µ[ζ̃ ]

n = 0̃} ⊆ {µ[ζ ]
n = 0̃}.

Therefore, {En}n∈N is a stationary sequence of renovating events of length 1 for {µ[ζ ]
n }n∈N

(see [3] and [4]) for any ζ such that Z(ζ ) ≤ L, P0-a.s. Assumption (7) implies the coupling
property for such an initial condition in view of Corollary 2.5.1 of [1].

As simple consequences of the latter result, let us note the following coupling properties.

Corollary 1. Under condition (7), for any ζ such that Z(ζ ) ≤ L, P0-a.s.,

(i) {X[N(ζ)]
n }n∈N converges with strong backwards coupling to N(µ∞),

(ii) {W [〈ζ,I 〉]
n }n∈N converges with strong backwards coupling to 〈µ∞, I 〉.

5. Processor-sharing queues

We will now consider the case where the rate function depends on the number of customers
in the system at the current time. We assume hereafter that the nondecreasing function r is such
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that
sup
n∈N∗

nr(n) ≤ 1, (8)

Kr = inf
n∈N∗ nr(n) > 0. (9)

Assumption (8) amounts to saying that there is a single server, since the throughput at time t ,
given by Q(t)r(Q(t)), may not exceed 1. A typical case is the classical processor-sharing
queue: assume that r(n) = n−1 for any n (and, hence, Kr = 1), meaning that all customers
are served at a rate that is inversely proportional to the number of customers. In this case the
server works at unit rate whatever the number of customers in the system. Whenever Kr < 1,
the number of customers affects the velocity of service, so that the total throughput may be less
than 1. Nevertheless, we assume in (9) that a minimal throughput Kr is granted for a given
r , i.e. the server always achieves at least Kr units of work per unit of time. An example is
provided by the following idealistic scenario: the server works at unit rate whenever there is
only one customer in the system (r(1) = 1), and, when there are several customers in service at
the same time, the interferences (or operating cost) decrease the efficiency of the server by half,
so that r(i) = 1/2i for any i ≥ 2, which implies in particular that (9) is satisfied for Kr = 1

2 .
In view of Lemma 2, a stationary service profile is a solution to the equation

µ ◦ θ = �r(µ + δσ , ξ). (10)

We have the following result.

Theorem 2. Let r be a rate function satisfying assumptions (8) and (9). Then, provided that

E0[σ ] < Kr E0[ξ ], (11)

(10) admits a unique finite solution µr . Moreover, for any M-valued RV ζ such that 〈ζ, I 〉 ≤
WKr , P0-a.s. (where WKr is the unique solution of (12), below), the sequence {µ[ζ ]

n }n∈N

converges with strong backwards coupling to µr .

Proof. Existence. Fix r to satisfy assumptions (8) and (9). From Loynes’s fundamental
stability result, the equation

W ◦ θ = [W + σ − Krξ ]+ (12)

admits a unique P0-a.s. finite solution, say WKr , provided that (11) holds. Let r̃ be the rate
function such that, for all µ ∈ M, r̃(µ) = Kr/N(µ), so that the throughput under r̃ always
equals Kr whenever the system is nonempty. Let ζ be an M-valued RV such that 〈ζ, I 〉 ≤ WKr

and
ζ̃ = ζ + δWKr −〈ζ,I 〉1{WKr >〈ζ,I 〉}.

It is then clear that 〈ζ̃ , I 〉 = WKr . Moreover, we have, P0-a.s. for all n ∈ N,

〈µr̃,[ζ̃ ]
n+1 , I 〉 = [〈µr̃,[ζ̃ ]

n , I 〉 + σn − Krξn]+,

as the throughput equals Kr at any time (as is easily checked from Lemma 2), so that

〈µr̃,[ζ̃ ]
n+1 , I 〉 = WKr ◦ θn for all n ∈ N. On the other hand, ζ 	 ζ̃ ; hence, in view of Lemmas 3

and 4, an immediate induction shows that µ
r,[ζ ]
n 	 µ

r̃,[ζ̃ ]
n for all n ∈ N, which in turn implies

that
〈µr,[ζ ]

n , I 〉 ≤ 〈µr̃,[ζ̃ ]
n , I 〉 = WKr ◦ θn for all n ∈ N.
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Therefore, for all n ∈ N, on An := {WKr ◦ θn = 0}, we have 〈µr,[ζ ]
n , I 〉 = 0; hence,

µr,[ζ ]
n = 0̃ and µ

r,[ζ ]
n+1 = �r(δσn, ξn).

Therefore, {µr,[ζ ]
n }n∈N admits {An}n∈N as a stationary sequence of renovating events of length 1.

Furthermore, the event A0 = {WKr = 0} has a strictly positive probability, since the contrary
would imply that

E0[WKr ◦ θ − WKr ] = E0[σ − Krξ ] < 0,

an absurdity in view of the ergodic lemma. Then it follows from [1, Theorem 2.5.3] that there
is strong backwards coupling of µ

r,[ζ ]
n with the stationary sequence {µr ◦ θn}n∈N, where µr is

a proper solution to (10).
Uniqueness. Fix r and r̃ to be as above. There exists a solution µr̃ to (10). Then we have,

P0-a.s.,
〈µr̃, I 〉 ◦ θ = 〈�r̃(µr̃ + δσ , ξ), I 〉 = [〈µr̃, I 〉 + σ − Krξ ]+;

hence, 〈µr̃, I 〉 equals WKr , P0-a.s. Moreover, on {〈µr, I 〉 ≤ WKr }, we have, in view of
Lemma 2,

〈µr, I 〉 ◦ θ ≤ 〈�r̃(µr + δσ , ξ), I 〉 = [〈µr, I 〉 + σ − Krξ ]+ ≤ WKr ◦ θ P0-a.s.;
thus, the event {〈µr, I 〉 ≤ WKr } is θ -contracting. Moreover,

P0[〈µr, I 〉 ≤ WKr ] ≥ P0[〈µr, I 〉 = 0] > 0,

as another consequence of (11) and the ergodic lemma. Therefore, 〈µr, I 〉 ≤ WKr , P0-a.s., so
that

An ⊆ {〈µr, I 〉 ◦ θn = 0} = {µr ◦ θn = 0̃}.
Consequently, {An}n∈N is a stationary sequence of renovating events of length 1 for {µr ◦θn}n∈N

for any solution µr of (10) associated to the rate r . Since P0[A0] > 0, there exists a unique
solution to (10) in view of Remark 2.5.3 of [1].

In particular, we have the following corollary.

Corollary 2. Under condition (11), for any ζ such that 〈ζ, I 〉 ≤ WKr , P0-a.s.,

(i) {X[N(ζ)]
n }n∈N converges with strong backwards coupling to N(µr),

(ii) {W [〈ζ,I 〉]
n }n∈N converges with strong backwards coupling to 〈µr, I 〉.

Appendix A. Proofs of monotonicity

For easy checking, in this appendix we present the details of the proofs of Lemmas 3 and 4.

Proof of Lemma 3. We again fix x ∈ R+ and µ, ν ∈ M such that µ 	 ν. Whenever
ir (µ, x) < N(µ) (otherwise �r(µ, x) = 0̃), we have

N(ν)−N(µ)+ir (µ,x)∑
j=1

αj (ν)

(
1

r(N(ν) − j + 1)
− 1

r(N(ν) − j)

)

≥
ir (µ,x)∑
j=1

αj (µ)

(
1

r(N(µ) − j + 1)
− 1

r(N(µ) − j)

)
,
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which implies that

αN(ν)−N(µ)+ir (µ,x)+1(ν) ≥ αir (µ,x)+1(µ)

≥ r(N(µ) − ir (µ, x))

×
(

x −
ir (µ,x)∑
j=1

αj (µ)

(
1

r(N(µ) − j + 1)
− 1

r(N(µ) − j)

))

≥ γ r
N(ν)−N(µ)+ir (µ,x)+1(ν, x).

This means that i0(ν, x) ≤ N(ν)−N(µ)+ i0(µ, x), i.e. N(�r(µ, x)) ≤ N(�r(ν, x)). Hence,
in view of (4) we have

γ (µ, ξ) = γ r
ir (µ,ξ)+1(µ, x)

≥ γ r
(ir (ν,ξ)+N(µ)−N(ν))++1(µ, x)

≥ r(N(ν) − ir (ν, x))

(
x −

ir (ν,x)∑
j=1

αj (ν)

(
1

r(N(ν) − j + 1)
− 1

r(N(ν) − j)

))

= γ r(ν, x),

which clearly implies that �r(µ, x) 	 �r(ν, x).

Proof of Lemma 4. We now fix µ ∈ M and x ∈ R+. For any two rate functions r and
r̃ such that r(i) ≤ r̃(i) for any i ∈ N

∗, the induction formula, (2), straightforwardly shows
that ir (µ, x) ≥ ir̃ (µ, x), i.e. N(�r(µ, x)) ≤ N(�r̃(µ, x)). Hence, as in the previous proof,
γ r(µ, x) ≤ γ r̃ (µ, x).
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