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Abstract

Benchmarking function modeling and representation approaches requires a direct comparison, including the inferencing
support by the different approaches. To this end, this paper explores the value of a representation by comparing the ability
of a representation to support reasoning based on varying amounts of information stored in the representational components
of a function structure: vocabulary, grammar, and topology. This is done by classifying the previously developed functional
pruning rules into vocabulary, grammatical, and topological classes and applying them to function structures available from
an external design repository. The original and pruned function structures of electromechanical devices are then evaluated
for how accurately market values can be predicted using the graph complexity connectivity method. The accuracy is found
to be inversely related to the amount of information and level of detail. Applying the topological rule does not significantly
impact the predictive power of the models, while applying the vocabulary rules and the grammar rules reduces the accuracy
of the predictions. Finally, the least predictive model set is that which had all rules applied. In this manner, the value of a
representation to predict or answer questions is quantified.

Keywords: Artificial Neural Networks; Benchmarking; Complexity; Function Structures; Functional Composition;
Graph Complexity Connectivity Method; Information Content; Pruning

1. INTRODUCTION

1.1. Defining the value of a representation

Function models are one of the many design representations
used by designers to understand the description of the product
at an initial stage (Otto & Wood, 2001; Ulrich & Eppinger,
2008; Ullman, 2010; Pahl et al., 2013). A representation
can be thought of as a language that can be used for creating
models that are abstractions or substitutions for actual entities.
For example, if a juicer is an entity, it can be modeled by
using a method of representation, that is, a sketch, or a func-
tion model, or a three-dimensional geometric model. Each of
these three representations has its own unique vocabulary,
grammar, and expression used (Summers & Shah, 2004).

In reverse engineering, function models are important be-
cause they help to define clear system boundaries around cus-
tomer needs (Otto & Wood, 2001). Moreover, the functional
modeling representation helps engineers in ideation by pro-

viding means to abstract and decompose problems so as to
manipulate partial solutions (Otto & Wood, 2001). Previous
research has helped to develop a deeper understanding of
how much value this design representation has in terms of in-
formation content and designer interpretability (Caldwell &
Mocko, 2008; Sen, Caldwell, et al., 2010; Caldwell, Thomas,
et al., 2012). The objective of the current research is to de-
velop a deeper understanding of the value contained in this
representation from a computational or information-centric
perspective.

Value in a general context is understood as how beneficial
something is perceived to be. In terms of value of a represen-
tation, it is defined as how well the representation can support
reasoning activities. For instance, in comparing two func-
tional models of a product, the one that is able to more accu-
rately answer questions about the product could be considered
to be more valuable. In this work, the ability of a function
model to support the prediction of the market price of the
product is one measure of value of the representation. The
cost associated with creating the models in the different repre-
sentations is out of scope for this study and reserved for future
investigation.
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In much the same manner that the value of information
presents engineers and decision makers with a means of jus-
tifying how much effort or resources to expend to gather more
information when making a decision (Bradley & Agogino,
1994; Thomke, 1998; Radhakrishnan & McAdams, 2005;
Messer et al., 2008; Panchal et al., 2008), this approach pro-
vides engineers with a means to compare representations in
which to model their products. It is important to note that
there are multiple function modeling methods available for
designers to choose from, as will become clear from Section
2. Besides, even within the function structures, modifications
can be made in order to create a distinct representation, as will
become clear from Section 4. Under these circumstances, it is
of the utmost important that these representations be classi-
fied using their value as a benchmark as a decision-making
aid to the designers using these representations during the
conceptual stage. While the method presented here can be ex-
tended to evaluate representations other than function mod-
els, the discussion in this work will be limited to function
models only.

While some researchers have employed information theory
as a means to measure the information content and therefore
the value of the information (Shimomura et al., 1998), the ap-
proach taken here is focused on the ability of the model within
a representation to predict future information.

2. FUNCTION MODELING: A BACKGROUND

Function structures are discussed in engineering design text-
books, as one of the important component of the conceptual
design phase (Otto & Wood, 2001; Ulrich & Eppinger, 2008;
Ullman, 2010; Pahl et al., 2013). In the case of new products,
it is all the more important to establish a function structure.
Function structures assume an even more important role
when it comes to product design textbooks. In the systematic
design process, function structures are synthesized from cus-
tomer requirements, and hence are instrumental in mapping
customer requirements to possible physical solutions. More-
over, they are the among the earliest models of a solution,
capturing at a high level how the desired functions within a
product are supported through enabling functional transfor-
mations of material, energy, or signal. Outlining the initial
functionality of a product is an important first step, although
there are design representations other than function structures
that can be used to do so.

Function representation is useful across engineering disci-
plines, most notably in the field of mechanical and electrical
engineering (Chandrasekaran et al., 1993; Chandrasekaran &
Josephson, 2000). Function representation in form of func-
tion behavior state is used to integrate conceptual design
and computer-aided design (Umeda et al., 1996). One of
the notable function representations is the function, behavior,
structure model, which is widely used in the domain of pro-
tocol studies to understand how design engineers address
problems (Gero & Kannengiesser, 2004). Function modeling
can be useful in many other domains, but the representations

selected here have been explicitly developed to model elec-
tromechanical systems.

Beyond the focus of defining function vocabulary (Szyk-
man et al., 1999; Hirtz et al., 2002; Kurtoglu et al., 2005), re-
searchers have explored ways to use the function models in
supporting engineering design activities. For instance, re-
searchers have employed functional representations as a basis
for analogy identification, including defining critical function
flows to define solution elements (Lucero et al., 2014, 2016).
Their definitions of critical function flows suggest that some
elements of the functional model are more significant than
others, which may be interpreted as being information rich.
Other approaches also employ functional models to generate
textual analogies based on equating functions with physical
effects and physical effects with linguistic database searches
(Qian & Gero, 1996; Nix et al., 2011; Russo et al., 2012;
Russo & Rizzi, 2014; Montecchi & Russo, 2015). Many of
these efforts have focused on developing conceptual compu-
ter-aided design tools to aid in the synthesis of artifact models
(Umeda & Tomiyama, 1997; Vargas-Hernandez & Shah,
2004; Chakrabarti et al., 2011).

Because of their significance in mechanical, electrical, and
product design, researchers have tried to understand how to
characterize and use function structures. One such effort in-
cludes attempts to formalize the function structures using a
functional basis, which basically constitutes a standard func-
tional design vocabulary (Stone & Wood, 2000). A detailed
study on the expressiveness of the functional basis found
that the functional basis needs more formalization to achieve
an increase in usefulness for reverse engineering and an in-
creased level of expressiveness that can be achieved by an in-
creased vocabulary for flow labels and an extended tertiary
level vocabulary (Caldwell et al., 2010). A study was also
conducted to understand how effectively student designers
can use the formalizing rules to create function structures
(Nagel et al., 2015). It was found that with better instructions
and formal rules, students construct better and more complete
function structures. There have also been calls to the design
community to work toward formalizing benchmarking proto-
cols based on representation characteristics of function struc-
tures in order to create a formal comparison (Vucovich et al.,
2006).

From the recent developments in this field, it is seen that
there is an emphasis on standardizing the creation and evalu-
ation of function structures. This study aims at evaluating
function structures representations from an inferencing view-
point. While doing so, it is also important to adhere to some
form of benchmarking approach in order to classify different
types of function representations (Summers et al., 2013). The
benchmarking approach adhered to in this research is mod-
eler-driven benchmarking. It is important for the user to un-
derstand the value in and the utility of each type of the func-
tion structure in different stages of design or even for different
kinds of tasks. Hence, even though different types of function
structures may look similar on the surface, there is a marked
difference between them based on their content (Rosen &
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Summers, 2012; Summers & Rosen, 2013). This difference
makes it worthwhile to study whether this difference in the
content of different types of function structures qualifies
each type to be considered a different design representation.
One such study describing the classification of design repre-
sentations is of special interest to this research (Summers &
Shah, 2004). As per this research, any design representation
can be completely described by a set of five characteristics:
vocabulary, grammar, expression, purpose, and abstraction
(Summers & Shah, 2004). The next section lists the objec-
tives of this research in greater detail.

3. RESEARCH MOTIVATION: COMPARATIVE
STUDIES ON REPRESENTATION
INFERENCING SUPPORT

This research is motivated by the need to define an objective
method to select between different available representations.
While most of the comparative studies on function repre-
sentations have addressed starkly different vocabularies and
grammars, this research seeks to determine whether there
are differences between similar representations that would
warrant the selection of one representation over another. As
will be described in detail in the following sections, a change
in the level of abstraction of a function structure gives rise to
distinctly different function structure representation. For this
reason, the function structure is selected as the base represen-
tation.

In order to experiment with various vocabularies and gram-
mars, the function structures are pruned of whichever of these
components are being studied. Thus, any impact on the value
of the representation can be attributed to the pruned compo-
nent. A series of similar representations are defined using pre-
vious work on function “pruning” rules (Caldwell & Mocko,
2012). The inferencing support (surrogate) explored here is
the ability of a representation to support the prediction of a
market value for a product based on the functional descrip-
tion. This work builds on previous work that explored market
value prediction (Mathieson et al., 2011), the accuracy of pre-
diction models (Sridhar et al., 2016a), and the precision of
these prediction models (Mohinder et al., 2014, 2016). The
research questions are the following:

† Can the value of a representation be used to compare
two similar function representations?

† Can the value of a representation be associated with spe-
cific pruning rules?

Previous research has focused on quantifying the informa-
tion content of function models in an information theoretic
approach (Sen, Caldwell, et al., 2010; Sen, Summers, et al.,
2010) and also by means of user studies (Caldwell et al.,
2010; Caldwell, Ramachandran, et al., 2012; Caldwell, Tho-
mas, et al., 2012). An information metric was developed that
is applicable to function structures constructed using vo-
cabulary and nouns from a predetermined set of the same

(Sen, Caldwell, et al., 2010). The information content is inter-
preted as the number of binary questions that need to be an-
swered in order to re-create the function structure. The
method of calculating the information content entails uncer-
tainty, which can be offset to some extent by incorporating
the topological information content of the function structure.
This was extended to explore the information content found
within the topology of a model (Sen, Summers, et al.,
2010). In these approaches, the reasoning was supported
through deductive reasoning, rather than historical reasoning
(Summers, 2005). Thus, this research explores an approach to
comparing representations based on a different type of rea-
soning using historical learning through neural networks.

4. ABSTRACTION BY PRUNING AS A
DISTINGUISHING CHARACTERISTIC
OF FUNCTION STRUCTURES

Researchers have studied how composing the function struc-
tures can impact its level of detail (Caldwell & Mocko, 2008).
It was found that when the function structures were pruned to
simplify functional models, they still retain the same level of
detail and retain their usefulness to the designer. This was
verified by a user study (Caldwell, Thomas, et al., 2012).
Thus, the value of the representation is maintained with re-
spect to the ability of engineers to interpret the models cor-
rectly. Recognizing that different metrics applied against sim-
ilar products through different representations can result in
different evaluations (Ameri et al., 2008), it is important to
explore whether the pruning representations defined in Cald-
well and Mocko (2008) result in an improved or decreased
ability to predict market price based on historical reasoning.

Since changing the abstraction in a design representation
can possibly lead to it being classified as a different design
representation and the pruning rules themselves relate to
both the grammar and the vocabulary allowed (Summers &
Shah, 2004), it is important to verify the impact on the origi-
nal set of function structures of different abstractions carried
out in the following section. In order to provide a uniform
base for comparison of different representation, the same
set of 20 consumer products were used for this study and
are similar to the sets used in previous work (Mathieson
et al., 2011; Mohinder et al., 2014; Gill & Summers, 2016;
Sridhar et al., 2016b).

5. PRUNING FUNCTION STRUCTURES: NEW
FUNCTION REPRESENTATIONS

5.1. Functional pruning

A function structure is made by combining a number of indi-
vidual functions (Pahl et al., 2013), connecting these transform-
ers by material and energy flow. For engineers to be able to use
this tool meaningfully, it is important that it can be de-
composed into smaller problems that can lead to known solu-
tions. An identified challenge with using the function struc-
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tures effectively is that the functional basis vocabulary was
developed through reverse engineering (Caldwell et al.,
2010). Thus, some aspects of this vocabulary are more rele-
vant for describing existing products rather than future pro-
ducts. Further, a review of function models in a design repos-
itory found that most of the models were generated through
reverse engineering (Bohm et al., 2005, 2008). To address
the challenge of pruning reverse engineering based function
models to their core elements, a set of rules were developed
(Caldwell & Mocko, 2008). In addition, the products whose
function structures have been used in this study have all been
developed using reverse engineering. This was done to ensure
that the vocabulary was in line with the functional basis on
which the set of rules is based.

Two methods developed to create function structures in-
clude using the functional basis hierarchy and definition
based on functionality (Caldwell & Mocko, 2012). This re-
search will focus on the latter, because synthesis using func-
tional basis hierarchy does not present itself as an adequate
method on which rules can be formalized. The next section
discusses the rules that are defined.

5.2. Rules for functional pruning

When a function structure undergoes functional pruning, func-
tion blocks are removed and the function flows are rerouted ac-
cordingly. The pruning is carried out in accordance with the
rules that have been previously developed (Caldwell & Mocko,
2008). It is important to understand that these rules were devel-
oped empirically. Another limitation of these rules is that they
are applicable to function structures of electromechanical de-
vices, and more specifically the ones present in the Design Re-
pository (currently housed at Oregon State University). A total
of nine rules were developed to prune the function structures.
The rules are intended to prune the functions that tend to be so-
lution specific and leave behind function structures that tend to
be solution neutral. While initially developed to reduce the

models, these rules can be enforced during model construction.
Similarly, if product functionality can be implied by the flow
or connections between the functions, they will not add
much value to the higher level of composition and need to
be pruned. These rules are listed in Table 1.

The nine rules of pruning (Caldwell & Mocko, 2008) are
classified here into three different categories: vocabulary,
grammar, and topology. It is imperative to classify these rules
according to their impact on a function structure. The rules
that deal with just the text in the function block need to be dif-
ferentiated from the rules that act on the function structures
depending on the type of energy flow that is interacting
with a function block containing a specific wording. There-
fore, rules that deal with the usage of specific words in the
functions are classified as vocabulary pruning rules. The rules
that deal with function vocabulary that is used in conjunction
with specific type of materials, energy, or signals were clas-
sified as grammar pruning rules. This classification is in
line with the representation classification characteristics pre-
viously developed (Summers & Shah, 2004). Vocabulary re-
fers to the entities that make up the presentation, which in this
case are the function blocks that contain the text. Grammar or
structure refers to the structure of the representation, the rules
that allow the vocabulary elements to be linked (Summers &
Shah, 2004). Topology pruning rules are those that deal with
arrangement or sequencing of functions. Topology rules also
deal with the structure of the function structure, but unlike
grammar rules, do not interact with the vocabulary at all,
and hence are classified separately. Pruning the reverse engi-
neered models serves the purpose of removing specific func-
tion blocks. Function blocks that have been identified to be-
long to one of the categories identified in Table 1 are
removed from the function structure so that the pruned func-
tion structure only contains the function blocks that fall in ei-
ther one of the other categories or do not fall in any of those
categories. Pruning is done to understand the information
content of the function blocks that were removed.

Table 1. Classification of pruning rules

Comp.
Rule Pruning Rule

Pruning
Classification

CR1 Remove all import and export functions. Vocabulary
CR2 Remove all channel, transfer, guide, transport, transmit, translate, rotate, and allow DOF

functions referring to any type of energy, signals, or human material.
Grammar

CR3 Remove all couple, join, and link functions referring to any type of solid. Grammar
CR4 Remove all support, stabilize, secure, and position functions. Vocabulary
CR5 Remove all control magnitude, actuate, regulate, change, stop, increase, decrease,

increment, decrement, shape, condition, prevent, and inhibit functions.
Vocabulary

CR6 Remove all provision, store, supply, contain, and collect functions referring to any type
of energy or signal.

Grammar

CR7 Remove all distribute functions referring to any type of energy. Grammar
CR8 Remove all signal, sense, indicate, process, detect, measure, track, and display functions. Vocabulary
CR9 Combine adjacent convert functions if the output flows of the first function block are

identical to the inputs of the second function block.
Topology
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The pruning rules are also accompanied by an independent
set of six rules that guide the user in reconfiguring the flows
while functions are being pruned. This set of six flow recon-
figuration rules ensures the consistency of the flows while pre-
venting duplication. These flow rules are provided in Table 2.

5.3. Pruning of function structures

In this research, each set of these rules was used separately to
prune the function structures. In this manner, the effect of the
pruning rules on the overall representation to predict informa-
tion or answer questions can be measured. The application of
these rules to reduce the number of functions in the function
structures is called “pruning” instead of composition. This

distinction has been made because composition implies ap-
plying all these rules at once, whereas pruning implies apply-
ing a subset of rules one at a time. The need for distinguishing
the two terms also arises because the motivation of these rules
is not to develop a method for composition, but rather to study
how different components of a function structure impact the
level of detail and amount of information content from the
perspective of artificial intelligence.

To illustrate the pruning, an example of a juice extractor
function structure as found in the Design Repository (http://
design.engr.oregonstate.edu/repo) is used. These are the
same function models used in previous work on predicting as-
sembly time and market price (Mathieson et al., 2011; Sridhar
et al., 2016b). Figure 1 shows the initial function structure for

Fig. 1. Unpruned function structure of a juicer.

Table 2. Rules for rerouting the flows

Rule Flow Rerouting Rules

1 If a flow enters and exits a function block, then the output flow should be removed and the input flow should become the input
to the succeeding function block.

2 If a flow enters a function block but does not exit the function block, then the flow should enter the succeeding function block.
3 If branch, separate, or distribute is removed, then the flow entering the block should be divided without the use of the function.
4 If two convert functions are combined, then the flow between the adjacent functions should be removed.
5 If a flow exists without a function, then the flow should be removed.
6 If identical flows have the same starting and ending locations, then the flows should be combined into one flow.
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the juicer. There are a total of 24 function blocks in the model.
It is noted that the function model does not include a clearly
identified system boundary as recommended by several re-
searchers (Kurfman et al., 2000; Otto & Wood, 2001; Ull-
man, 2010; Pahl et al., 2013; Schultz et al., 2014; Nagel
et al., 2015). Other limitations of the model include inconsis-
tently applied conservation principles and vocabulary. The
model was not modified from what was found in the Design
Repository. The intention of these observations is to highlight
the limitations of the function structures obtained from the
Design Repository and is not intended to be a comment on
the robustness of the pruning rules.

Other products extracted from the Design Repository and
used for training in this research include electric toothbrush,
sander, garage door opener, hot air popper, iRobot Roomba,
nail gun, mixer, hair dryer, lawn mower, jigsaw, sewing ma-
chine, blender, drill, and hole punch. Five separate products
were randomly selected to be used for testing: grill, Maglite,
solar yard light, vise, and stapler. This is a similar product da-
tabase as used in previous studies (Mathieson et al., 2011;
Sridhar et al., 2016b). Applying the vocabulary rules (CR1,
CR5, and CR8) to the juicer function model results in a
pruned model (Fig. 2).

Applying the grammar rules to the initial function structure
for the juicer (Fig. 1) results in a pruned function structure
with only 13 functions (Fig. 3).

A third function model is generated from the initial juicer
model by applying the topological pruning rules (Fig. 4). It

should be noted that no changes resulted from the application
of the topological rules. Changes were found in other product
models when the topological rules were applied.

Finally, all rules are applied to the juicer function model,
resulting in Figure 5. Note that the remaining functions and
flows in Figure 5 closely resemble the critical functions and
flows described in (Lucero et al., 2014, 2016).

The same process is applied to all the function structures.
As these are models derived from the same reverse engi-
neered products, and the differences in ability to predict mar-
ket price is dependent only on the information contained
within the models. Table 3 illustrates the results from the
pruning activities in terms of the removed flows and functions
for each product. For all the products analyzed, the amount of
function blocks removed due to application of these four sets
of rules (vocabulary, grammar, topology, and a combination
of vocabulary þ grammar þ topology) are listed in the col-
umns. The number of function blocks removed as a percent-
age of the total number of functions contained in the original
function structure of the product has been listed in the column
corresponding to the absolute number of function removed.
This percentage is useful for a relative comparison of the
amount of function blocks that get removed as a result of
the application of the particular set of rules. At this point, it
is also important to note that the 15 products listed in Table 3
are used to train the artificial neural networks (ANNs), and
the last five are used to test the model. More details on the
ANNs have been listed in Section 7.2.

Fig. 2. Vocabulary pruned function structure for juicer.
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Fig. 3. Grammar pruned function structure of a juicer.

Fig. 4. Topology pruned function structure of a juicer (no impact of pruning).
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6. CLASSIFICATION OF PRUNED FUNCTION
STRUCTURES AS INDEPENDENT
REPRESENTATIONS

From the previous discussions on pruning and comparison of
error values obtained from the graph connectivity complexity

method, which will be discussed further in Section 7, it is clear
that there is a marked difference in how well each of the various
pruned function structure sets behave as prediction models.
This method has been used for market price prediction (Ma-
thieson et al., 2011; Mohinder et al., 2014; Sridhar et al.,
2016b), for assembly time estimation (Owensby et al., 2012;

Fig. 5. Vocabulary þ grammar þ topology pruned function structure of a juicer.

Table 3. Number of function blocks removed as a percentage of the total function blocks removed

Vocabulary Pruned Grammar Pruned Topology Pruned

Vocabulary +
Grammar +

Topology Pruned

Product No. % No. % No. % No. %

Electric toothbrush 5 35.7 6 42.9 1 7.1 12 85.7
Sander 8 47.1 7 41.2 0 0.0 15 88.2
Garage door opener 15 46.9 7 21.9 0 0.0 22 68.8
Hot air popper 7 41.2 6 35.3 1 7.1 14 83.6
iRobot Roomba 18 32.1 15 26.8 0 0.0 33 58.9
Juicer 7 29.2 13 54.2 0 0.0 20 83.3
Nail gun 6 35.3 7 41.2 0 0.0 13 76.5
Mixer 10 50.0 6 30.0 0 0.0 16 80.0
Hair dryer 7 38.9 8 44.4 0 0.0 15 83.3
Lawn mower 16 53.3 7 23.3 0 0.0 23 76.7
Jigsaw 4 23.5 9 52.9 0 0.0 13 76.5
Sewing machine 9 21.4 22 52.4 0 0.0 31 73.8
Blender 3 15.0 4 20.0 0 0.0 7 35.0
Drill 17 48.6 11 31.4 0 0.0 28 80.0
Hole punch 4 22.2 7 38.9 1 5.6 12 66.7
Used to train ANNs

Grill 4 25.0 4 25.0 0 0.0 8 50.0
Maglite 4 44.4 4 44.4 0 0.0 8 88.9
Solar yard light 12 48.0 8 32.0 0 0.0 20 80.0
Vise 11 84.6 1 7.7 0 0.0 12 92.3
Stapler 8 25.8 12 38.7 0 0.0 20 64.5

Average 8.8 38.4 8.2 35.2 0.2 1.0 17.1 74.6
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Namouz & Summers, 2013, 2014), for assembly quality defect
prediction (Patel et al., 2016), and for using requirements to
predict life cycle costs (Visotsky et al., 2017). As per the clas-
sification framework developed in Summers and Shah (2004),
a design representation can be classified as being distinct on the
basis of these five characteristics: vocabulary, structure (gram-
mar), expression, purpose, and abstraction of the representa-
tion. The application of pruning rules makes a change to
some of these characteristics of the function structures on
which the rules are applied. In Table 4, each of the pruned
function structure scheme’s five characteristics has been com-
pared to those of the unpruned function structure. If the char-
acteristics of the pruned function structures were found to be
different than those of the unpruned function structures, this
was indicated by an X. This section will focus on elaborating
why each of the pruned function structures qualifies as an in-
dependent design representation. It can be seen that verbal
pruned function structures differ from the unpruned function
structures in terms of vocabulary and abstraction. The vo-
cabulary pruning rules shown in Table 1 restrict the function
blocks having specific vocabulary. For example, CR1 requires
the removal of all function blocks that have the term import or
export in them. Hence, the functional basis (Stone & Wood,
2000) available for the vocabulary pruned function structures
is limited as compared to the one available for unpruned func-
tion structures. As a result, the type and size of vocabulary ele-
ments differ in the two representations. The two representa-
tions also differ in terms of abstraction. To indicate this in a
condensed manner, the two blocks, corresponding to vo-
cabulary and abstraction for the vocabulary pruned function
structures, have been blacked out in Table 4.

Similarly, the grammar pruned function structures differ in
structure and abstraction from the unpruned function struc-
tures and have thus been colored as black. Structure refers
to the allowable configurations between entities and relations
(Summers & Shah, 2004). Grammar pruning rules remove the
function blocks in which the functional verb refers to any type
of material, signal, or energy. This changes the structural
characteristics of the grammar pruned function structures.
The change in abstraction is attributed to the change in accu-
racy of the predicted market values that in turn is a manifes-
tation of the change in the information content, as has been
discussed in the case of verbal pruned structures. These dif-

ferences lead to the grammar pruned function structures being
classified as a different design representation.

The topology pruning also leads to a change in the structure
of the function structure. This change in structure is global in
nature, in that it impacts how adjacent function blocks will be
put together under certain conditions (Summers & Shah,
2004). The difference in abstraction follows the same line
of reasoning as has been discussed in the case of verbal and
grammar pruned function structures.

By extension, the last type of function structure scheme,
which is a combination all of the previous pruned schemes,
differs from the unpruned function structures in a combina-
tion of all the ways that each of the previously discussed
representations differs from the unpruned function structures.
Hence, the combined verbalþ grammarþ topology function
scheme is a unique and distinct design representation. More-
over, it must be noted that all of these pruned function
schemes are not only distinct from the unpruned function
structure scheme but also distinct from one another.

7. GRAPH COMPLEXITY CONNECTIVITY
METHOD

In order to determine the ability of a representation to predict
information or answer questions, a previous approach is used:
the graph connectivity complexity method (Mathieson et al.,
2011; Namouz & Summers, 2013, 2014; Mohinder et al.,
2014; Owensby & Summers, 2014; Sridhar et al., 2016b;
Summers et al., 2014). This method has been used to predict
assembly times from assembly models (Namouz & Sum-
mers, 2014; Owensby & Summers, 2014; Summers et al.,
2014) and market price from function structures (Mathieson
et al., 2011). Recent work compared the ability of the differ-
ent representations (assembly models and function structures)
to predict information about market price and assembly time
(Mohinder et al., 2014; Sridhar et al., 2016b).

The procedure is executed in multiple steps (Fig. 6). Ini-
tially, the information used for prediction (function struc-
tures) and the performance metric (market price) being pre-
dicted is collected. Graph complexity metrics are applied
against the function graphs using a complexity analysis tool
(Mathieson & Summers, 2010). The complexity metrics
and the known targets are used to train ANNs. The 29 com-

Table 4. Comparison of characteristics of the unpruned and pruned function structures

Pruned

Unpruned Vocabulary Grammar Topology

Vocabulary+
Grammar +
Topology

Vocabulary X X
Structure X X X
Expression
Purpose
Abstraction X X X X
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plexity metrics for each of the 15 training products serves as
the input to the ANNs.

7.1. Structural-complexity metrics

To extract meaningful information from the function struc-
tures, their complexity must be quantified. The complexity
is quantified in terms of 29 complexity metrics (Fig. 7) that
are classified into four classes: size, interconnection, central-
ity, and decomposition (Mathieson & Summers, 2010).
These complexity metrics have been successfully used to
model the assembly time and market values using the pro-
duct’s function structure and assembly models (Mathieson
et al., 2011; Namouz & Summers, 2013, 2014; Owensby &
Summers, 2014).

By compressing graphs into a vector of the structural com-
plexity metrics, graphs of different sizes and topologies can
be encoded in the same manner. Where other researchers
seek to create a single integrated complexity metric (Bashir
& Thomson, 2001; Shah & Runger, 2011; Singh et al.,
2012; Sinha & de Weck, 2013a, 2013b), the approach taken
here is to use many metrics and to let the surrogate modeling
approach determine which are relevant for predicting the
sought information. Further, previous research efforts in de-
sign complexity have focused on the final end product (Braha
& Maimon, 1998; Bashir & Thomson, 2004; Shah & Runger,
2011; Singh et al., 2012), rather than early-stage design repre-
sentations. This limits the potential usefulness of the metrics
as predictors and guiding tools in the development process, as
the complexity of the final product is only known after the
design of the product is complete.

In previous studies that explored the sensitivity of the
metrics to predict information, it was found that there is no
global set of metrics that were most critical, except for the first
size metric: dimensional elements (number of nodes in the
graph). What has been found is that in every representation
and prediction pair, at least one metric from each of the

Fig. 6. Artificial neural network prediction function structures.

Fig. 7. List of the 29 complexity metrics (Mathieson & Summers, 2010).
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four classes has been found to be significant (Namouz &
Summers, 2013; Mohinder et al., 2014; Sridhar et al., 2016a).

7.2. ANNs

ANNs are used to generate the nonlinear prediction models.
The complexity metrics developed for 20 electromechanical
products are fed in to an ANN code. Fifteen products are
used to train the ANN and the rest are used to test it. The
ANN uses this information to relate the target values with
the inputs, and therefore can predict market values. The
ANNs used in this work are supervised backpropagation net-
works (Mathieson et al., 2013). In this work, multiple ANNs
are used in the prediction modeling. Multiple architectures of
the ANNs are used. The architecture is defined by the number
of neurons in each layer and the number of hidden layers. A
total of 189 different ANN architectures are used. This ap-
proach removes the “art” of ANN modeling where research-
ers try to construct a single ANN to be used. Moreover,
each architecture is repeated 100 times with different initial
weights on the links between neurons. These weights are ran-
domly defined. Thus, a total of 18,900 ANNs are used for the
prediction model. A histogram of the results from each ANN
is used to find the average prediction.

ANNs are used due to their ability to perform nonlinear sta-
tistical modeling (Tu, 1996). Other machine learning ap-
proaches, such as support vector machines and decision trees,
are ill suited to this problem as they primarily perform a clas-
sification or clustering function and provide no continuous

differentiable output. The advantages of ANNs include re-
quiring less formal statistical training, the ability to detect
complex nonlinear relationships between independent and
dependent variables, the ability to discover possible interac-
tions between predictor variables, and the ability to use multi-
ple training algorithms (Tu, 1996). ANN analysis has the
characteristics of a black-box nature, greater computational
expense, the tendency to “overfit,” and the empirical nature
of the development of the model (Tu, 1996; Zhang et al.,
1998). Because the purpose of this research is to develop pre-
dictive models that reliably generalize between the input
graph properties (complexity vectors) and performance pre-
dictors without requiring explicit meanings between each, the
black-box nature is most appropriate. Further, overfitting in
training is addressed by instituting an early stopping algo-
rithm as well as withholding samples from training to test
the generalization on nontrained data. Table 5 summarizes
the results of several studies regarding the applicability and
performance of ANNs as compared to other methods.

8. EXPERIMENTAL PROCEDURE

In this study, the function structures were pruned in four dif-
ferent sets, resulting in different representations based on
their refined local structure (Summers & Shah, 2004): vo-
cabulary, grammar, topology, and a combination of all three
of these. As has been mentioned before, these function struc-
tures consist of consumer electromechanical products. The
function structures for each of these have been developed

Table 5. ANN versus other inductive learning according to Miller, Mathieson, Summers, and Mocko (2012)

Application of ANN ANN Compared to Conclusions Reference

Dynamic nonlinear systems Statistical models ANNs provide satisfactory forecasts Zhang et al., 1998
Forecasting Box–Jenkins automatic

forecasting expert system
Similar results Sharda & Patil, 1992

Outcomes (nonlinear statistical) Logistic regression ANN for outcome prediction Tu, 1996
Cost of pipe bending Linear regression ANN effective Shtub & Versano, 1999
Commodity prices Logistic regression ANN better and find more turning points Kohzadi, Boyd, Kermanshahi,

Kaastra, & Khozadi, 1996
Process modeling Naive Bayesian classifiers Similar results Perzyk, Biernacki, & Kochański, 2005

Table 6. Correlation analysis for the four pruned prediction models and the unpruned prediction model

Error Correlation Analysis

Pruned

Correlation of Errors Unpruned Vocabulary Grammar Topology

Vocabulary +
Grammar +
Topology

Residual with standard 0.868 0.819 0.764 0.865 20.091
Standard with normalized 0.993 0.995 0.991 0.916 0.999
Normalized with residual 0.837 0.860 0.828 0.860 20.105
Mean error correlation 0.899 0.891 0.861 0.880 0.268
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by reverse engineering these products and are available in the
Design Repository.

The graphs of these function structures are used to calcu-
late the 29 complexity metrics. The market values for each
of the 20 electromechanical products were calculated using
averages from five different values from Amazon.com. These
average market values for the test products used in this re-
search are listed in Table 6.

This information was used to train each set of the 18,900
ANNs. Fifteen products were used to train the ANNs, and 5
randomly selected products were reserved used to externally
test the surrogate model. The same products were used for
training for each of the different representation sets. The
test products have been highlighted in Table 3. Based on
this output, descriptive statistics including mean and standard
deviation of market value were calculated for the market of
each test product. These values average and have been listed
alongside each other in Table 7. To clarify, each product was
modeled in each representation: unpruned, vocabulary
pruned, grammar pruned, topology pruned, and complete
pruned. These models were then used to train 18,900
ANNs in five sets (one for each representation). The test mod-
els were only used for validation using the ANN set trained
for that same representation. Thus, the grill model in the
grammar pruned representation was tested with the ANN
set that was trained on all the grammar pruned models.

To understand the accuracy from each of the four predic-
tion models, it is important to understand the amount of error
in each of these models. To calculate the amount of error,
three different types of error analysis formulae, listed in this
section, were used based on those found in Patel et al.
(2016). To handle the wide range of values calculated by the
ANNs, it is important to have a specialized error calculation
formula. This is why the normalized error has been chosen
to be used as one of the error calculation formula alongside
the residual and standardized error. Residual error loses its
sensitivity when one of the values, target or predicted, is
very much larger than the other. The percent error has the
ability to contextualize the extent of the error in a more accu-
rate manner, because the error is expressed as the percentage
of the difference between the predicted and the target value as

a proportion of the target value. The percent error has a lim-
itation in that the results can tend to be counterintuitive in sit-
uations where there is a large difference in the target and
predicted values. Consider, for example, that the target value
of a product is $600 and the predicted value is $5, then the
standard error yields an output of 99.16%. In the next case,
if the target and predicted values were switched to be $5
and $600, respectively, the standard error would yield an out-
put of 11,900%. Hence, in such cases, the percent error can-
not accurately describe the error.

These disadvantages can be overcome easily by using the
normalized error, as the denominator of the normalized error
is a product of both the predicted and target values. Hence, for
the case discussed above, even if the values are switched, the
error in both cases remains the same, that is, 11,801%. Hence,
this stability of the normalized error makes it the preferred
choice in the error calculations. This was done in order to en-
sure the robustness of the error calculation methodology. The
three error calculation formulae are the following:

Residual Error ¼ Target Value� Predicted Value; (1)

Percentage Error ¼ Target Value� Predicted Value
Target Value

100; (2)

Normalized Error ¼ jTarget Value� Predicted Valuej2

jTarget Value� Predicted Valuej 100: (3)

The results from these error calculations for all five predic-
tion models have been compiled in Figure 8. In this manner,
the prediction error can be greater than 100% for the percent
error and the normalized error. It is fully recognized that im-
provements to the predictive power of the approach can be
made based on larger training sets, more similar training sam-
ples, and including information beyond the graph connectiv-
ity of the models (see Patel et al., 2016, for a comparison on
factors influencing the inferencing power). However, improv-
ing the predictive capabilities of the approach is not the focus
of this paper; rather, comparing the representations using the
same prediction framework is.

Table 7. True and predicted market values for the four pruned prediction models and the unpruned prediction model

Pruned

True Value ($) Unpruned ($) Vocabulary ($) Grammar ($) Topology ($)

Vocabulary +
Grammar +
Topology ($)

Product Avg Avg Dev Avg Dev Avg Dev Avg Dev Avg Dev

Grill 65.16 49.42 515.03 108.21 748.18 145.78 158.62 40.36 509.17 628.30 536.10
Maglite 20.32 68.91 171.41 97.98 285.85 140.92 130.26 73.46 168.36 131.86 164.49
Solar yard light 2.89 3.26 2823.54 8.68 369.57 162.34 315.58 3.24 2848.04 162.41 364.50
Vise 40.46 78.81 409.91 17.96 750.13 124.68 212.66 74.68 419.73 213.96 218.07
Stapler 18.04 40.12 425.74 153.92 958.54 74.31 216.97 42.63 2907.47 70.66 301.78
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9. ANALYSIS OF RESULTS

The predicted market values of the five test products for all
four prediction models were calculated in Table 7. These pre-
dicted market values are an average of 18,900 predicted ANN
results. All of the values are in US dollars. The standard de-
viations for these market values are also listed in the table. It
lists the actual market prices of all five test products in the first
column. This is followed by the average (mean) market prices
as predicted by the prediction models. In addition to the aver-
age market prices, the standard deviation for all test products
across all five prediction models has also been listed in Ta-
ble 7.

To analyze the results of the calculations, the accuracy of
the results was computed using the three error calculation for-
mulas (residual, standard, and normalized). These were ap-
plied to all test products used across all five prediction mod-
els. This was done in Figure 8. Under each prediction model,
the column labeled R lists the residual error values. Similarly,
the values in the columns labeled P and N are computed using
the percent and normalized error formulae, respectively.

To better understand the relative accuracy of the prediction
models, the mean error for each error type, the error percent-
age values of �100 were highlighted green, values in the
range of .100 and �300 were highlighted yellow, values
in the range of .300 and �400 were highlighted red, and
all values �400 were highlighted brown in the bottom row
of Figure 8. A key has been provided underneath the figure
to indicate these values visually. This nomenclature was ap-
plied at two levels. The first level is the error type level and
the second is the model type. In the error type level, each of
the three error types (P, N, and R) for each prediction model
is evaluated separately. In the second level, the nomenclature

is applied to the average error across each prediction model.
This average error is the average of these three different error
types (P, N, and R).

Based on this analysis, it was found that the prediction
model with the lowest total mean error was the unpruned
function representation, followed by topology pruned repre-
sentation, vocabulary pruned representation, grammar pruned
representation, and finally complete pruned representation. It
is important to note that this trend is followed by not only the
total mean error but also all the mean of each of three individ-
ual error types used (residual, percent, and normalized). This
trend, however, does not hold true for each of the five individ-
ual test products across the representations and errors as is
shown by the error rank analysis shown in Figure 9.

The only exception to this trend is the mean normalized error
for the topology pruned function representation, which is
slightly lower than the mean normalized error for the unpruned
function structures. Three out of the five test products in topol-
ogy pruned representation showing lower normalized error val-
ues as compared to unpruned function representation.

Because three different error calculation formulae were
used, it is important to analyze their consistency within
each prediction model and across all four prediction models.
To accomplish this, an error rank analysis was done. As
shown in Figure 9, the error values in each column were
ranked from 1 to 5, 1 being the smallest error value and 5
being the largest. Color coding in the table is used to illustrate
the rankings: white for rank 1, blue for rank 2, green for rank
3, yellow for rank 4, and red for rank 5. There are a few excep-
tions to this rank ordering. Seven product-representation pairs
had rank ordering of the three error types that were more than
one step difference. For example, the solar yard light vo-
cabulary pruned representation had a rank 1 for the residual

Fig. 8. Calculated error values for the four pruned prediction models and the unpruned prediction model; R, residual error; P, percentage error;
N, normalized error.
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error but rank 3 for the standard and normalized errors. Fur-
ther, the stapler-fully pruned model had a rank of 1 for the re-
sidual, a rank of 2 for the standard, and a rank of 3 for the nor-
malized. In addition, a correlation analysis was conducted in
Table 7 to evaluate whether the variations in error are corre-
lated with the different models to estimate how consistent
the variations are between the different error metrics. Correla-
tions approaching 1 indicate that the error variations are con-
sistent between the metrics, while correlations near 0 indicate
no relationship. Negative values indicate an inverse relation-
ship may be present. This analysis is summarized in Figure 9.
The correlation analysis shows significant agreement in be-
havior between the different error metrics for every case ex-
cept when all pruning rules are applied. When all pruning
rules are applied, the residual error exhibits little if any agree-
ment with the behavior of the standard and normalized errors.

When a consistency check was done for each type of error
calculation across the four prediction models, limited consis-
tency was observed. This was expected, because the type and
amount information differs for each representation.

10. INTERPRETATION OF ERROR
CALCULATIONS

Now that the four prediction models have been analyzed for
accuracy, it is important to understand and interpret these re-
sults and relate them back to pruning. As has been discussed
previously, the rules used to prune the function structures are
meant to compose it. The functional basis used in these func-
tion structures is at the same level of hierarchy, which in this
case is the secondary level. This means that the difference be-
tween the accuracy of the prediction models is the result of
change (reduction) in information content.

One way to measure the change in information content is
the number of function blocks removed as a result of applica-
tion of a group of pruning rules. Table 3 shows the absolute
number and percentage of function blocks removed as a result
of pruning rules for each prediction model applied to each one
of the 20 consumer products. As can be seen from the table,
the maximum number of function blocks are removed in the
vocabularyþ grammarþ topology pruned prediction model.

This model also corresponds to the maximum mean model
error as reported in Figure 8. The topology pruned prediction
model had the minimum number of function blocks removed.
This model also showed the least amount of error. The vo-
cabulary and grammar pruned prediction models are similar
in terms of mean model error reported and the number of
function blocks removed. The relationship between the
mean model error and the number of function blocks removed
in the case of these two blocks is, however, inverted. In the
case of grammar and vocabulary pruned prediction models,
there does not seem to be a clear relationship between the
number of function blocks removed and the error value for in-
dividual test products.

This can be explained by the fact that not all function
blocks have one flow entering or exiting them. The amount
of information removed from the function structure increases
if the removal of one function block also results in removal of
multiple flows instead of just one flow. There is also a differ-
ence due to the location of the function block in the function
structure. For example, the vocabulary pruning rules contain
the remove all import and export functions. Both of these
functions, almost without exception, are located on the pe-
riphery of the function structures. In contrast, grammar prun-
ing rules deal with functions that are almost always located
away from the periphery of the function structure. All of these
are reflected in the complexity metrics that form the basis of
data being fed into the ANNs. There is evidence to suggest
that a significant change in the number of function blocks,
and by default the information content, is reflected intuitively
in the mean model error values. This corroborates well to the
information theoretic approach (Sen, Summers, et al., 2010)
discussed in the motivation section.

11. CONCLUDING REMARKS AND FUTURE
WORK

The aim of this study was to understand the value contained in
a representation and use this value to compare different de-
sign representations. The design representation used in this
case is function structures. The value of representation is de-
fined as the representation’s ability to accurately predict
market values of the products. The study also addresses the

Fig. 9. Calculated error rank analysis for the four pruned prediction models and the unpruned prediction model.
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question of whether applying a different set of pruning rules
to the original set of function structures yields pruned func-
tion structures that could be considered as independent repre-
sentations.

To accomplish this, the functional pruning rules were ap-
plied to the function structures obtained from the Design Re-
pository. Four different sets of function structures were ob-
tained by applying different sets of pruning rules to the
original function structures. Hence, a total of five different
functional representations, including the original set of func-
tion structures, were available for analysis.

In order to assess the value present in each of these five
function models, the functional models were then evaluated
for their ability to accurately predict the market values of
the products that they were being modeled after. ANNs
were used for these predictions. The predicted market values
were different for each of the five prediction models. The un-
pruned function structures had the lowest total mean error at
49%, followed by topology pruned at 61.8%, vocabulary
pruned at 195.8%, grammar pruned at 251.1%, and the vo-
cabularyþ grammarþ topology pruned at 1139.4%. A direct
relationship was also found between the number of function
blocks removed from the function model corresponding to
reasoning ability of the representation. Because the accuracy
of prediction of each of these function models is different, it
can be concluded that these representations differ in their abil-
ity to support reasoning activities. Therefore, it is valid to
conclude that the five different function models differ in their
value content. It can also be concluded that the application of
different pruning rules to the original function models gives
rise to pruned models that differ in the amount of value con-
tained in them. This is evident from the fact that each of the
pruned models predicts the market values with a different ac-
curacy.

The error values serve as a benchmark for the designer
when making a choice of choosing a function modeling
scheme. An important area of future work would be to quan-
tify the effort that goes into creating models in each represen-
tation. This would further help in improving the benchmark-
ing and enabling the designers to choose a functional
modeling scheme on not only the basis of accuracy but also
the amount of effort that goes into ensuring the said accuracy.

Furthermore, an empirical examination scheme developed
in Summers and Shah (2004) was applied to all the pruned
function models in order to compare each of the pruned repre-
sentations to the unpruned representation. This comparison
was based on five characteristics of each design representa-
tion: vocabulary, structure (grammar), expression, purpose,
and abstraction. It was found that the application of pruning
rules resulted in a change in one or more of these features
for all pruned models. The only characteristics that remained
unaffected by the application of pruning rules were expres-
sion and purpose. It was found that the vocabulary pruning
rules impacted the vocabulary characteristics and the gram-
mar and topology pruning rules impacted the structure (gram-
mar) dimension. It was therefore concluded that all of these

function models are distinct design representations, as their
characteristics differ from one another and from the original
unpruned function representation.

With this initial step in the benchmarking study, it is
important to extend this research to other design representa-
tions that have their basis as functions, for example, struc-
ture–behavior–function models, and develop a holistic set
of guidelines that will help the designer pick from the de-
sign representations, the most appropriate one for the stage
of the design process the user is at. The basis of this selec-
tion would be the value of information that is contained in
the representation per a unit amount of effort required to cre-
ate the representation.
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