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ABSTRACT. Ice sheets and glaciers flow through basal sliding and internal

deformation, each governed by physical laws commonly expressed as power-

law relations. These formulations include coefficients – the sliding coefficient

and rate factor – whose values and units depend on the respective exponents.

This dependency complicates the systematic exploration of parameter space,

especially in ensemble simulations. To address this, we propose dimensionless

formulations of both sliding and flow laws, in which the coefficients are of order

unity and decoupled from the exponents. This separation simplifies sensitivity

studies and parameter variations. The dimensionless laws are straightforward

to implement in existing models; we demonstrate this with the SICOPOLIS

ice-sheet model using three test simulations in an idealized set-up. These

simulations illustrate that independent variation of exponents and coefficients

is feasible and practical, supporting the use of dimensionless laws in efforts to

better constrain ice dynamics in past and future climate scenarios.

1 INTRODUCTION

Ice sheets and glaciers flow due to two different processes, namely basal sliding and internal deformation.

Basal sliding describes the sliding of glacier ice on the underlying substrate, which can be either hard

bedrock or a deformable sediment layer between ice and bedrock. Internal deformation is governed by the
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non-linear viscous properties of “hot” polycrystalline ice (that is, with a homologous temperature T {Tm

near unity, where T is the absolute temperature and Tm the pressure melting point).

In a dynamic/thermodynamic ice sheet or glacier model, both processes must be included. Basal sliding,

which in reality is a complex process that depends on a multitude of factors such as the basal temperature,

roughness of the bedrock, softness of the subglacial sediment layer (if existing) and hydrological conditions,

is usually parameterized by a sliding law that relates the sliding velocity to the basal stresses. Internal

deformation can be modelled by a non-linear viscous flow law that describes the relation between the

macroscopic deformation (strain rate) and internal stresses (e.g., Hooke, 2005; Greve and Blatter, 2009;

Cuffey and Paterson, 2010).

Popular forms for such relations are the Weertman–Budd sliding law and the Nye–Glen flow law (see

below for references). They have in common that they are expressed as power laws with some exponents,

of which the optimal values are debated, and contain a factor to close the respective equation. This

factor, the “sliding coefficient” in case of the sliding law and the “rate factor” in case of the flow law,

may contain remaining dependencies, such as on the temperature. In a dimensional formulation, the units

and numerical values of these factors depend strongly on the choice of the exponents, which makes it

cumbersome to vary the exponents over their potential range of values, for instance, within an ensemble

of simulations for a given scenario. To overcome this obstacle, we propose fully or partly dimensionless

versions of the sliding and flow laws, which have in common that the respective factor is dimensionless

and generally of order unity. These formulations decouple the value of the exponents from the value of the

factor, so that the factors and exponents can be varied independently. We demonstrate this useful feature

by some simple simulations with the ice-sheet model SICOPOLIS (SImulation COde for POLythermal Ice

Sheets; SICOPOLIS Authors, 2025).

2 BASAL SLIDING LAWS

Basal sliding laws (aka basal friction laws) relate the shear stress (drag) at the base of an ice sheet or

glacier, τb, to the basal normal stress, Nb and the basal sliding velocity, vb. In a general, implicit form, a

basal sliding law can be expressed as

fpvb, τb, Nbq “ 0 , (1)

where f is a function unspecified at this stage. The list of variables is not necessarily exhaustive as further

dependencies, for instance on basal temperature or the presence of basal water, may be included. Note
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that, in the presence of subglacial water, the basal normal stress is often understood as the difference

between the ice overburden stress, Nb,i, and the basal water pressure, pb,w,

Nb “ Nb,i ´ pb,w , (2)

and then called the reduced normal stress or, alternatively, the effective pressure.

A popular form of a basal sliding law is the Weertman–Budd sliding law, which results when assuming

an explicit form of Eq. (1) solved for vb, with power-law dependencies on τb and Nb:

vb “ Cb
τp

b
N q

b
, (3)

where Cb is the sliding coefficient and pp, qq are the non-negative sliding exponents (Weertman, 1957; Budd

and others, 1979, 1984; Budd and Jenssen, 1987). Alternatively, Eq. (3) can be solved for the shear stress,

τb “ C‹
b v

1{p
b N

q{p
b , with C‹

b “ C
´1{p
b , (4)

where C‹
b is the basal friction coefficient. For the case q “ 0, that is, ignoring the dependence on the

normal stress Nb, the above forms are often referred to as the Weertman sliding law.

In principle, vb and τb are vector quantities. For simplicity, we formulate the sliding laws only with the

respective magnitudes. However, to interpret the results correctly, it must be kept in mind that vb and τb

are anti-parallel to each other due to the nature of friction.

Let us now non-dimensionalize the sliding law (3) by introducing scales (typical values) for the relevant

quantities (e.g., Hutter and Jöhnk, 2004). We consider a situation near the edge of an ice sheet where

basal sliding is most relevant:

rHs “ 1 km ptypical thicknessq , (5a)

ε “ 10´2 ptypical surface slopeq , (5b)

rNbs “ ρgrHs “ 107 Pa ptypical normal stressq , (5c)

rτbs “ εrNbs “ 105 Pa ptypical shear stressq , (5d)

rvbs “ 100 m a´1 ptypical sliding velocityq , (5e)
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where we have used approximate values ρ « 103 kg m´3 for the ice density and g « 10 m s´2 for the

acceleration due to gravity, which is sufficiently accurate for the sake of a scaling analysis. This scaling is

consistent with the linear sliding law [Cb “ 10´3 m a´1 Pa´1, pp, qq “ p1, 0q] used for the EISMINT Phase 2

Simplified Geometry Experiments (Payne and others, 2000):

100 m a´1
loooomoooon

vb

“ 10´3 m a´1 Pa´1
looooooooomooooooooon

Cb

ˆ 105 Pa
loomoon

τb

. (6)

An appropriate choice for the scale of the sliding coefficient results from Eq. (3) as

rCbs “
rvbsrNbsq

rτbsp
. (7)

We now use the above scales to introduce dimensionless quantities as follows:

vb “ rvbs ṽb , (8a)

τb “ rτbs τ̃b , (8b)

Nb “ rNbs Ñb , (8c)

Cb “ rCbs C̃b , (8d)

where the quantities marked by the tilde symbol are the non-dimensional basal sliding velocity, shear stress,

normal stress and sliding coefficient, respectively. Inserting Eqs. (8) in the sliding law (3) yields its fully

non-dimensional form,

ṽb “ C̃b
τ̃p

b
Ñ q

b
, (9)

in which all quantities are supposed to be of order unity.

A dimensional form of Eq. (3) can be kept by only making use of the scaling (8d) of the sliding coefficient,

vb “ rCbs C̃b
τp

b
N q

b
, (10)

which has the advantage that its implementation in an existing model based on dimensional quantities

requires only minimal adaptations.

In order to obtain the fully or partly dimensionless counterparts of Eq. (4), we note the scaling and

https://doi.org/10.1017/jog.2025.10100 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10100


Greve: Non-dimensional sliding and flow laws 5

non-dimensionalization of the friction coefficient C‹
b:

C‹
b “ rC‹

bs C̃‹
b , with rC‹

bs “ rCbs´1{p “
rτbs

rvbs1{prNbsq{p
. (11)

The fully non-dimensional form of Eq. (4) results then as

τ̃b “ C̃‹
b ṽ

1{p
b Ñ

q{p
b , (12)

and the dimensional form in which only the scaling (11) of the friction coefficient is used reads

τb “ rC‹
bs C̃‹

b v
1{p
b N

q{p
b . (13)

Why do we promote using Eqs. (10) or (13) instead of Eqs. (3) or (4) in an ice sheet or glacier

model? In Table 1 we have compiled some parameter combinations that were used along with Weertman

or Weertman–Budd sliding laws in the literature. The impossibility of comparing the various dimensional

sliding coefficients Cb for different exponents pp, qq becomes immediately evident. They do not even have

a common unit, and the respective numerical value tells nothing about the actual strength of basal sliding.

In the second case, pp, qq “ p1, 2q, the numerical value of Cb is greater than 109; however, the small

dimensionless value means that it produces only very little basal sliding (C̃b « 0.04). By contrast, in the

third case, pp, qq “ p3, 0q, the numerical value of Cb is merely 10´12; however, it corresponds to pronounced

basal sliding (C̃b “ 10). The dimensionless sliding coefficients C̃b give a much better idea about what the

respective value means physically, and allow comparing values across different sliding laws.

To further strengthen our point, suppose that we wish to test a sliding law with a new set of exponents,

for instance pp, qq “ p3, 1.5q. Working with the dimensional sliding coefficient Cb, we would not have any

idea which order of magnitude may be suited for its numerical value, and which range of values mean

strong or weak sliding. However, if the dimensionless sliding coefficient C̃b is used, we can immediately

start with an initial guess C̃b “ 1 and, from there on, refine the sliding law by, e.g., tuning to observed flow

speeds. According to the scaling (7), (8d), the dimensional equivalent of C̃b “ 1 would be Cb “ rCbs “

10´2.5 m a´1 Pa´1.5 “ 3.162 ˆ 10´3 m a´1 Pa´1.5.

We have only discussed cases with a constant sliding parameter; however, the non-dimensionalization

method is of course not limited to this. It can also be applied to a spatially variable sliding coefficient, which

may arise from an inversion procedure (e.g., Morlighem and others, 2013). Alternative sliding laws, such as
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pp, qq Cb rCbs C̃b Reference

p1, 0q 10´3 m a´1 Pa´1 10´3 m a´1 Pa´1 1 Payne and others (2000)

p1, 2q 3.985 ˆ 109 m a´1 Pa 1011 m a´1 Pa 0.03985 Budd and others (1984):

p3, 0q 10´12 m a´1 Pa´3 10´13 m a´1 Pa´3 10 Cornford and others (2020)

p3, 1q 1.607 ˆ 10´6 m a´1 Pa´2 10´6 m a´1 Pa´2 1.607 Saito and others (2016):

p3, 2q 6.72 m a´1 Pa´1 10 m a´1 Pa´1 0.672 Rückamp and others (2019)

Table 1. Sliding exponents pp, qq, dimensional sliding coefficients Cb, scales rCbs and dimensionless sliding coeffi-

cients C̃b for several Weertman (q “ 0) or Weertman–Budd (q ą 0) sliding laws used in the literature.
:: Rather than using the normal stress Nb, these sliding laws were formulated with the pressure head Z “ Nb{pρgq.

We converted the sliding coefficients given in these studies accordingly, using ρ “ 910 kg m´3 and g “ 9.81 m s´2.

the Coulomb-limited rules discussed by Cornford and others (2020), allow similar non-dimensionalization,

although we refrain from working out the details here.

3 FLOW LAWS

A similar problem of units and hugely varying numerical values arises for the flow law of polycrystalline

ice. It is a viscous flow law that relates the strain-rate (stretching) tensor dij to the stress deviator tD
ij .

The strain-rate tensor is defined as

dij “
1
2

ˆ

Bvi

Bxj
`

Bvj

Bxi

˙

pi, j “ 1, 2, 3q , (14)

where xi denotes the Cartesian coordinates (x1 “ x, x2 “ y, x3 “ z), and vi is the velocity vector. The

stress deviator is the traceless part of the full stress tensor tij ,

tij “ ´p δij ` tD
ij , (15)

where p “ ´tii{3 is the pressure (we assume the Einstein summation convention: summation over the

twice-appearing index i implied, thus tii is the trace of the stress tensor), and δij is the Kronecker delta

symbol, in other words, the unit tensor in index notation.

For the flow law, usually collinearity between the symmetric tensors dij and tD
ij is assumed. We note
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the form given by Greve and Blatter (2009),

dij “ Afpτeq tD
ij , (16)

where A is the rate factor, τe “ rptD
ijtD

ijq{2s1{2 the effective stress (summation over both i and j implied),

and fpτeq is the creep function. The rate factor depends on the temperature relative to the pressure melting

point, T 1, via an Arrhenius law (e.g., Cuffey and Paterson, 2010), but it is sometimes chosen as a constant

parameter for simplicity. In the Nye–Glen flow law (Glen, 1955; Nye, 1957), the creep function is expressed

as a power law,

fpτeq “ τn´1
e , (17)

so that

dij “ Aτn´1
e tD

ij , (18)

where n is the stress exponent. A value of n “ 1 would correspond to a Newtonian fluid; however, the

deformability of ice differs markedly from that behaviour, and the value is frequently chosen as n “ 3,

or within the range from 1.5 to 4.2 (Cuffey and Paterson, 2010) (while recent evidence from laboratory

experiments actually supports n “ 1 for temperate ice; Schohn and others, 2025).

The Nye–Glen flow law (18) can also be inverted for the stress deviator,

tD
ij “ A‹d´p1´1{nq

e dij , with A‹ “ A´1{n , (19)

where A‹ is the associated rate factor and de “ rpdijdijq{2s1{2 the effective strain rate (e.g., Greve and

Blatter, 2009).

Similar to the procedure in Sect. 2, we now introduce scales (typical values) for the relevant quantities,

considered suitable for areas where rather large deformations take place:

rτ s “ 105 Pa ptypical deviatoric stressq , (20a)

rds “ 2.5 ˆ 10´2 a´1 ptypical strain rateq , (20b)

where the scale rτ s is deemed appropriate for both tD
ij and τe. Using Eq. (18) entails the choice for the
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scale of the rate factor:

rAs “
rds

rτ sn
. (21)

We introduce the dimensionless quantities

tD
ij “ rτ s t̃D

ij , (22a)

τe “ rτ s τ̃e , (22b)

dij “ rds d̃ij , (22c)

A “ rAs Ã , (22d)

where the quantities marked by the tilde symbol are the non-dimensional components of the stress deviator,

effective stress, components of the strain-rate tensor and rate factor, respectively.

For n “ 3, this yields rAs “ 2.5 ˆ 10´17 a´1 Pa´3 “ 7.922 ˆ 10´25 s´1 Pa´3. This value is close to the

recommendation by Cuffey and Paterson (2010) for T 1 “ ´6˝C, which demonstrates the validity of our

scaling.

We obtain the fully non-dimensional form of the flow law (18) as

d̃ij “ Ã τ̃n´1
e t̃D

ij , (23)

(all quantities supposed to be of order unity). A form with only A scaled results if we only apply the

scaling (22d):

dij “ rAsÃ τn´1
e tD

ij . (24)

Analogous to the sliding law (10), this form can be implemented in a model based on dimensional quantities

with only minimal changes.

To obtain the fully or partly dimensionless versions of Eq. (19), we note the scaling and non-dimensio-

nalization of the associated rate factor A‹,

A‹ “ rA‹s Ã‹ , with rA‹s “ rAs´1{n “
rτ s

rds1{n
, (25)
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Fig. 1. Dimensionless rate factor Ã as a function of the temperature relative to pressure melting T 1, following

the recommendation by Cuffey and Paterson (2010): Arrhenius law with activation energies Q “ 60 kJ mol´1 for

T 1 ď ´10˝C, Q “ 115 kJ mol´1 for T 1 ě ´10˝C, A “ 3.5 ˆ 10´25 s´1 Pa´3 for T 1 “ ´10˝C and n “ 3.

and for the effective strain rate, the scale (20b) is used,

de “ rds d̃e . (26)

The fully non-dimensional form of Eq. (19) is then

t̃D
ij “ Ã‹ d̃´p1´1{nq

e d̃ij , (27)

and the form with only A‹ scaled reads

tD
ij “ rA‹sÃ‹ d´p1´1{nq

e dij , (28)

Figure 1 shows the temperature-dependent rate factor following the recommendation by Cuffey and

Paterson (2010), non-dimensionalized with the scaling (21), (22d). However, while the original recommen-

dation in dimensional form is valid only for n “ 3, this dimensionless form can be used for any value of the

stress exponent n. It is therefore much more flexible.

Consider the case n “ 4, which has recently been discussed by, e.g., Bons and others (2018); Millstein

and others (2022); Getraer and Morlighem (2025). The unit of the rate factor A must then be a´1 Pa´4,

but what about suitable numerical values? When using the dimensionless formulation promoted here, there

is no problem; Op1q values will be suitable for the high-temperature regime (i.e., temperatures close to

pressure melting) just like for any other value of n, and we can use the function shown in Figure 1 as a

starting point. According to Eq. (21), the scale for A changes to rAs “ 2.5 ˆ 10´22 a´1 Pa´4 (compared to

rAs “ 2.5 ˆ 10´17 a´1 Pa´3 for n “ 3), so that Ã “ 1 corresponds to A “ 2.5 ˆ 10´22 a´1 Pa´4.

The non-dimensionalization method is not limited to the Nye-Glen flow law discussed above. A straight-

forward extension is for its regularized version with the creep function fpτeq “ τn´1
e ` τn´1

0 , where τ0 is

the residual stress, a small constant introduced to avoid the infinite-viscosity limit for vanishing stresses

or strain rates (Greve and Blatter, 2009). For this flow law, Eqs. (20)–(22) remain applicable. However,
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it cannot be analytically inverted for the stress deviator; this is only possible by numerically solving an

implicit equation. Further flow laws shall not be considered here.

4 TESTS WITH THE ICE-SHEET MODEL SICOPOLIS

Replacing the previously implemented, dimensional versions, the Weertman–Budd basal sliding law for-

mulated with the dimensionless sliding coefficient, Eqs. (10) and (13), and the Nye–Glen flow law for-

mulated with the dimensionless rate factor, Eqs. (24) and (28), have both been introduced in the ice-

sheet model SICOPOLIS v25 (SICOPOLIS Authors, 2025), revision 3e7e6c939 of 17 June 2025. Details

of the implementation can be found in Sect. 6 (“Modelling choices”) of the ReadTheDocs manual at

https://sicopolis.readthedocs.io/ (last access: 26 June 2025).

We briefly demonstrate the benefit of the new formulation by considering experiment H of the EISMINT

Phase 2 Simplified Geometry Experiments (Payne and others, 2000). The original set-up of this experiment

uses the Weertman sliding law with pp, qq “ p1, 0q and Cb “ 10´3 m a´1 Pa´1, only applied for a temperate

base, while no-slip conditions are assumed for a cold base. The value of the sliding coefficient corresponds

to C̃b “ 1 (Table 1). The applied flow law is Nye–Glen with n “ 3.

We define three versions of the experiment. For all cases, to avoid the singularity associated with

the binary switch between fully developed sliding and no-slip conditions, we allow for some exponentially

decaying sub-melt sliding (e.g., Hindmarsh and Le Meur, 2001; Greve, 2005; Dunse and others, 2011) by

setting C̃b Ñ C̃b exppT 1
b{γsmsq, where T 1

b is the basal temperature relative to the pressure melting point

(in ˝C, hence T 1
b is non-positive), and γsms “ 3˝C is the sub-melt-sliding parameter. Further, for all cases,

we apply the dimensionless rate factor shown in Figure 1, which differs slightly from the original set-up.

Experiment H1 employs linear Weertman sliding and the Nye–Glen flow law with n “ 3 as in the original

set-up. For experiment H2, sliding has been changed to a Weertman–Budd law with pp, qq “ p3, 2q [no

basal water pressure considered, pb,w “ 0, cf. Eq. (2)], and for experiment H3, the stress exponent has been

changed to n “ 4 (Table 2).

All experiments are carried out with SICOPOLIS v25. Ice dynamics is modelled by the depth-integrated

viscosity approximation (DIVA) (Goldberg, 2011; Lipscomb and others, 2019; Grandadam, 2024), and for

ice thermodynamics we employ the melting-CTS enthalpy method (CTS: cold-temperate transition surface)

(Greve and Blatter, 2016). For the horizontal resolution, we use 10 km (rather than the 25 km from the

original set-up), and we integrate over a model time of 100 ka starting from ice-free initial conditions, which
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Experiment pp, qq C̃b n Ã

H1 p1, 0q 1 3 ÃCP10

H2 p3, 2q 1 3 ÃCP10

H3 p1, 0q 1 4 ÃCP10

Table 2. Set-up of the experiments H1, H2 and H3: Sliding exponents pp, qq, dimensionless sliding coefficient C̃b,

stress exponent n, dimensionless rate factor Ã (ÃCP10 denotes the non-dimensionalized rate factor by Cuffey and

Paterson (2010) as shown in Figure 1). Note that C̃b and Ã are the same for all experiments.

is sufficient to reach a steady state for all three experiments.

Selected results (ice thickness, surface velocity, slip ratio = ratio of basal to surface velocity) are shown

in Figure 2. Our main message is that all three experiments produce reasonable, consistent results for the

same dimensionless sliding coefficient and rate factor, even though the exponents in the sliding law and the

flow law have been varied. As explained above, in a dimensional formulation, this would require changes

in the numerical values of the sliding coefficient and the rate factor by several orders of magnitude. The

results of experiments H1 and H3 (flow-law exponent n changed) are very similar to each other and show a

fingering instability that results from the thermomechanical coupling, which was already discussed in the

original EISMINT publication by Payne and others (2000). By contrast, this instability does not occur in

experiment H2 (sliding-law exponents p and q changed), where the solution maintains an almost perfect

circular symmetry. While an interesting topic, we refrain from a deeper discussion of these instabilities

here, yet point the interested reader to the EISMINT paper and further studies by, e.g., Fowler and Johnson

(1996), Payne and Dongelmans (1997), Sayag and Tziperman (2008) and Hindmarsh (2009).

5 SUMMARY

We presented non-dimensionalized forms of basal sliding laws and flow laws for use in dimensional ice-

sheet and glacier models. Compared to their dimensional counterparts, these forms have the advantage

that the coefficients (sliding coefficient, rate factor) become independent of the respective exponents. All of

these parameters are to some extent uncertain and therefore candidates for systematic variation in ensemble

simulations of ice sheets and glaciers, which becomes much easier with the dimensionless formulations as the

parameters can be varied independently. This is particularly relevant for efforts to reproduce observations

of the recent history of ice sheets and glaciers as a starting point for predictions of their future changes.

As claimed, implementation in an existing dimensional ice-sheet model (SICOPOLIS v25) could be done
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Fig. 2. Simulated ice thickness, surface velocity and slip ratio (ratio of basal to surface velocity) for the three

experiments (H1, H2, H3) described in the main text (Sect. 4) after 100 ka model time.

https://doi.org/10.1017/jog.2025.10100 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2025.10100


Greve: Non-dimensional sliding and flow laws 13

with minimal adaptations. We demonstrated the practicability of the method by three test simulations

for a simple, idealized geometry, in which we varied the sliding-law exponents and the flow-law exponent

while keeping the dimensionless sliding coefficient and rate factor constant.

CODE AND DATA AVAILABILITY

SICOPOLIS (SICOPOLIS Authors, 2025) is free and open-source software, published on a persistent Git

repository hosted by GitHub (https://github.com/sicopolis/sicopolis/). The run-specs headers and output

data produced for this study are available at Zenodo, https://doi.org/10.5281/zenodo.17373818.
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