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1. Introduction. In this note we consider transcendental entire functions

(1)
B = 0

whose power series contain gaps, i.e.

an = 0 N A ) , (2)

where A = {\} is a suitable set of positive integers. We denote the set of all such functions
/(z) by E(A). As usual M(r) = M(r,f) denotes the maximum modulus of/(z) on the circle
| z | = r. The order p and the lower order A of/(z) are defined by

log log M(r)
p = Iim sup — ,

logr

respectively.
The following theorem is due to Macintyre [4].

THEOREM A. Suppose thatf(z)eE(A), where

£ 4T1 < oo. (3)

Thenfiz) is unbounded on z > 0.
Edrei [2] has shown that, if the order of/(z) is taken into account, then the gap condition

(3) may be relaxed. He proves

THEOREM B. Suppose thatf(z)eE(A) and is of finite order p, and that

l iminfJ- £ 4T1*:* (4)
l o g s ^ , 2p

Thenfiz) is unbounded on z > 0.

From both theorems we may draw the further conclusion that/(z) has no finite radial
asymptotic values. Both Macintyre and Edrei use an idea of P61ya [6] to show that, even for
this weaker conclusion, their gap conditions are best possible. More precisely, Macintyre
shows that, if A is any set of positive integers for which (3) does not hold, then there exists an
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f(z)eE(A) such that/(x)-»0 as x-+ +00. Similarly, Edrei shows that, if A is any set of
positive integers for which (4) does not hold, then there exists an/(z)e£(A) of finite order p
such that/(;c) -»0 as x -> + 00.

In this note we prove a result which contains those of Macintyre and Edrei quoted above.
We define

</.(S) = ^ ) / ) = logM(e
5). (5)

It is well-known that <j)(s) is a convex function of s. We shall suppose that \j/(s) is also a convex
function of s which satisfies

(s^+00) (6)
s

and define

The functions \j/(s) and x^,(s) display a certain duality in so far as T^(J) is a convex function of
5 which satisfies a relation corresponding to (6) and, moreover,

= max { s i - T , ( Q } ; (8)

see [5, p. 7]. We then have

THEOREM 1. Let Abe a set of positive integers. Then a necessary and sufficient condition
that everyf(z)eE(A) which satisfies

(9)

be unbounded on z > 0 is that

lirainf ( 2 X Kl ~Xj^\ = - 00. (10)

We define the i/r-order p (0 ^ p ^ 00) of an entire function/(z) by

The i/f-order reduces to the usual notion of order in the case when ^ is the exponential function.
We can also define the lower i/f-order of/(z) in a similar way. We then have

COROLLARY 1. Let Abe a set of positive integers. Then a sufficient condition that every
/(z)e£(A) which is of finite \j/-order at most p be unbounded on z > 0 is that

liminfl X A ; ^ ! . (12)
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Iflog^s) is a convex function ofs, the gap condition is also necessary.

COROLLARY 2. Let A be a set of positive integers. A sufficient condition that every
/(z)eis(A) which is of finite lower ^i-order at most X be unbounded on z > 0 is that

l imsup- £ k-l< — .

Iflog<J/(s) is a convex function ofs, the gap condition is also necessary.

In the case when i//(s) = exp s, Corollary 1 reduces to Edrei's Theorem B and Corollary 2
to a companion theorem. In [2], Edrei noted that his results, although best possible, contain
an imprecision with regard to the type of entire function considered. Such an imprecision is
inevitable in the case of Theorem B, since/(z) is bounded on z > 0 if and only i(f(Rz) (R > 0)
is bounded on z > 0. However, Edrei's result can still be sharpened somewhat by taking into
account the type of/(z). As usual, if/(z) is of finite order p, its type T is defined by

,. log M(r)
T = limsup — — — .

r-»oo '

COROLLARY 3. Let Abe a set of positive integers. A necessary and sufficient condition that
everyf(z)eE(A) which is of finite order at most p and finite type be unbounded on z > 0 is that

liminf] £ A"1-—logsl = -oo.
»-00 UnSs *P )

We remark that in all the above results the conclusion that/(z) is unbounded on z > 0
may be replaced by the assertion that there is no polynomial which majorises/(z) on z > 0.

2. Proofs of sufficiency. In this section we show that the gap conditions given are
sufficient that/(z) be unbounded on z > 0.

For an entire function F(z) which satisfies F(0) = 0 we introduce the notation

We require three lemmas, the first of which is a variant of Lemma 1 of [1].

LEMMA 1. Let 0 < nr < \i2 < ... < /*„. Then, for each v = 1, 2 , . . . n, there exists a real-
valued function

such that
dxf1

Jo x a + /iv / = 1 a+fij

(ii) I Bl(x)- = (2nri.
(*i Ax

(ii) # ( * ) - =
Jo x
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LEMMA 2. Let A = {A,-} be a set of positive integers and define

where fij = A,—•£(./ = 1» • • • «)• ^Aen 7//ere exist constants C(A) (Ae A) wA/c/i are independent
ofx and such that the coefficients of each polynomial P (t) of the form

p(0=

satisfy the inequality

Proof of Lemma 2. We write <r for CT(^) and let P(t) = /*Q(0- Then, by Lemma l(i),

- V wf1 fj (\dt

j=i Jo '

1 „ H^ — Hi lily

On employing the inequality e^l —y) < (1 + y) (0 < y < 1), we deduce that

The convergence of the infinite product follows from that of the infinite series £ \ii
 2. The

conclusion of Lemma 2 may now be deduced by means of Schwarz's inequality and Lemma
l(ii).

LEMMA 3. Suppose that /(z)e£(A) and has a power series expansion of the form (1).
Suppose also that (9) and (10) hold. Then, for each fixed R>0,

liminf max | £ akt
k\ = 0,

x->oo OgfgRffOO k>x

where o(x) is defined as in Lemma 2.

Proof of Lemma 3. For each r > 0 ,
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where A is an appropriate constant and r = e3. On minimising the right hand side with respect
to s, we obtain

where
for 0 ^

is defined by (7). Since
Ro(x),

is a convex function of s, s 1?lj,(s) increases. Hence,

k>x

k>x

It follows from (10) that, for each fixed R > 0, the expression inside the braces is smaller than
any pre-assigned positive constant for a set of values of x which is unbounded above. This
completes the proof of Lemma 3.

Proof of sufficiency in Theorem 1. We fix AeA and apply Lemma 2 to the function

where X <, x. We obtain that

Thus

H i

£C(X)
Ra(x)

!/|k<*) 2><*
k>x Ra(x),

Allowing x -» + oo through a suitable sequence of values and employing Lemma 3, we obtain
that

But, if f(x) is bounded on x > 0, the right hand side is finite. A contradiction then follows
on letting R -> oo, unless ax = 0. But this cannot be true for every value of ke A because/(z)
is transcendental. Thus/(;c) is unbounded on x > 0 and we have proved that the gap condition
of Theorem 1 is sufficient.

Proof of sufficiency in Corollary 1. The inequality

•fy(s) ^ s\j/~1(s)-s (13)
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is obtained from (7) on taking / = il/~1(s). The gap condition (10) is therefore implied by

liminf\2 £ Kl-ij/-\s)}= -oo, (14)

which, in turn, is implied by

Suppose now that

liminf- £ An-»<i. (15)
s-»oo s

liminf-

as in Corollary 1. Then, for a suitable T > p,

liminf- X A ; 1 ^ ,

which is inequality (15) with ij/(s) replaced by ^(w). Moreover, since/(z) has i/̂ -order p,

<Ks,f) = OWTS)) (S^+OO) ,

which is equation (9) with ij/(s) replaced by \p(xs). It then follows from Theorem 1 with i/r(s)
replaced by ip(ts) that/(z) is unbounded on z > 0.

Proof of sufficiency in Corollary 2. Suppose that

limsup- £ ^ . T 1 ^

as in Corollary 2. Then, for an appropriate T > p,

limsup- £ Ky <\-

But, since/(z) has lower i/f-order p, the inequality </>(s) < \l/(xs) holds for a set of values of s
which is unbounded above. It follows that

liminf- £ ̂ " ^ i -
s-»co s Xn£(j>(s)

Since/(z) has </>-order 1, it follows from Corollary 1 that/(z) is unbounded on z > 0.

Proof of sufficiency in Corollary 3. We take ij/(s) = e*" in Theorem 1. The equality (10)
holds in this case, as can be seen by writing \]/(s) = e9" in (14). Moreover, since/(z) has finite
order p and finite type,

<Ks,f) = 0 ( 0

and so condition (9) holds. Theorem 1 then yields that/(z) is unbounded on z > 0.
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3. Proofs of necessity. In this section we use a construction discussed at length in [2] and
[4]. If A is a given set of positive integers we define the function F(z) by

where G(z) is defined by

11 = 1

This is the notation used by Edrei in [2]. The function F(z)eE(A) and

F(x)-»0 (x->+oo).

The proof is precisely as in Section 7 of [2].
Fuchs [3] has given an estimate for the coefficients in (16). He shows that they are

majorised by

where A is a constant depending only on A. WeletF0(z) = F(yz)wherey = exp{—(a+A + l)},
a being a real constant to be chosen later. Then F0(z)eE(A) and is bounded on z > 0.
Moreover

<t>(s, Fo) = O (max {(s - a)x - xX(x)}), (17)
X

where

Proof of necessity in Theorem 1. Suppose that (10) does not hold. Then, for an appro-
priate constant b,

foral lx>0. Thus

max {(s - a)x—xA(x)} ^ max {(s - a + b)x—T^,(X)} = \j/(s-
X X

by (8). Thus, if a = b, the function F0(z)e-E(A), is bounded on z > 0 and satisfies (9). Thus
(10) is a necessary condition.

Proof of necessity in Corollaries 1 and 2. We take a = 0 in (17). Now

max{sx-xA(x)} = max{x(s-A(x))} ^ r\s)s, (18)
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because the maximum is evidently attained for a value of x which satisfies X(x) < s. Since
X(s) is a step function, the notation X~1(s) needs some explanation. We define

Suppose that

liminf-

as in Corollary 1. Then, given any T > p,

for all large values of s. Hence,

for all large s. Also, by (6), given any e > 0,

for all large s. Since log ip(s) is a convex function of s

for all large s. It now follows, from (18), that F0(z) defined above has i/r-order p. Since,
moreover, F0(x) -> 0 (JC -+ oo) this proves that the gap condition in Corollary 1 is necessary.

A similar argument suffices to prove the necessity of the gap condition in Corollary 2.

Proof of necessity in Corollary 3. It is not difficult to show that, if log \l/(s) is convex, then
condition (10) is equivalent to the condition

liminf<2 Y X~1 — \l/~i(s)>= — oo.
5->00

If we take 1/̂ (5) = eps, the necessity of the gap condition in Corollary 3 follows from that of the
gap condition in Theorem 1.

The function/(z) = z"psinzp (with 2p a positive integer) is an example of an entire
function for which f(x) -* 0 (x -» 00) and such that

2 £ A;1-flog5 = O(l) (s-+oo).

A suitable modification yields a simpler proof of the necessity of the gap condition in Corollary
3 in the case kn = 2np (n = 1, 2 , . . . ) .

In conclusion, it is a pleasure to thank the referee for his very helpful comments.

https://doi.org/10.1017/S0017089500001191 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001191


ON ENTIRE FUNCTIONS WITH GAP POWER SERIES 97

REFERENCES
1. J. M. Anderson and K. G. Binmore, Coefficient estimates for lacunary power series and

Dirichlet series I, Proc. London Math. Soc. (3) 18 (1968), 36-48.
2. A. Edrei, Gap and density theorems for entire functions, Scripta Math. 23 (1957), 1-25.
3. W. H. J. Fuchs, On the closure of {e-'t°»}, Proc. Cambridge Philos. Soc. 42 (1946), 91-105.
4. A. J. Macintyre, Asymptotic paths of integral functions with gap power series, Proc. London

Math. Soc. (3) 2 (1952), 286-296.
5. S. Mandelbrojt, Series adherentes, Regularisation des suites, Applications (Paris 1955).
6. G. P61ya, Untersuchungen iiber Liicken und Singularitaten von Potenzreihen, Math. Z. 29

(1929), 549-640.

UNIVERSITY COLLEGE LONDON SCHOOL OF ECONOMICS

LONDON

https://doi.org/10.1017/S0017089500001191 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001191

