AUTOMORPHISMS OF THE UHF ALGEBRA THAT DO NOT EXTEND TO THE CUNTZ ALGEBRA

ROBERTO CONTI

(Received 23 March 2010; accepted 15 December 2010)

Communicated by G. A. Willis

Abstract

The automorphisms of the canonical core UHF subalgebra \mathcal{F}_n of the Cuntz algebra \mathcal{O}_n do not necessarily extend to automorphisms of \mathcal{O}_n . Simple examples are discussed within the family of infinite tensor products of (inner) automorphisms of the matrix algebras M_n . In that case, necessary and sufficient conditions for the extension property are presented. Also addressed is the problem of extending to \mathcal{O}_n the automorphisms of the diagonal \mathcal{D}_n , which is a regular maximal abelian subalgebra with Cantor spectrum. In particular, it is shown that there exist product-type automorphisms of \mathcal{D}_n that do not extend to (possibly proper) endomorphisms of \mathcal{O}_n .

2010 Mathematics subject classification: primary 46L40; secondary 46L05, 37B10.

Keywords and phrases: Cuntz algebra, endomorphism, automorphism, core UHF subalgebra, regular maximal abelian subalgebra.

1. Introduction

Among C^* algebras, the class of uniformly hyperfinite (UHF) algebras is perhaps one of the first nontrivial (that is, infinite-dimensional) examples that comes to mind and it was investigated in depth in the outstanding work by Glimm in the early 1960s [9]. Since that time, many more types of C^* algebras have been studied in depth, and our knowledge of the general theory of C^* algebras has increased greatly. Some time later, the Cuntz algebras \mathcal{O}_n made their appearance [5]. These C^* algebras are quite different from UHF algebras as, for instance, they are traceless and purely infinite. However, it is well known that \mathcal{O}_n contains canonically a copy of the UHF algebra of type n^∞ (that is, the C^* -algebraic tensor product of countably infinitely many copies of M_n , the $n \times n$ matrix algebra over \mathbb{C}) as the canonical core UHF subalgebra \mathcal{F}_n .

In contrast to the case of \mathcal{F}_n , the study of automorphisms of \mathcal{O}_n is quite challenging. Typical problems range from the construction of explicit examples to global properties of the automorphism group $\operatorname{Aut}(\mathcal{O}_n)$ and some notable subgroups and quotients.

^{© 2011} Australian Mathematical Publishing Association Inc. 1446-7887/2011 \$16.00

310 R. Conti [2]

The group $\operatorname{Aut}(\mathcal{O}_n, \mathcal{F}_n)$ of all automorphisms of \mathcal{O}_n leaving \mathcal{F}_n globally invariant has sporadically appeared in the literature [3, 4, 6]. In particular, it turns out that $\operatorname{Aut}(\mathcal{O}_n, \mathcal{F}_n) = \operatorname{Aut}(\mathcal{O}_n) \cap \{\lambda_u \mid u \in \mathcal{U}(\mathcal{F}_n)\}$ and so the examples of permutation automorphisms of \mathcal{O}_n exhibited in [4] restrict to automorphisms of \mathcal{F}_n that are also easily seen to be outer. In this short note, we will add another piece of information by showing that the canonical restriction map

$$r: \operatorname{Aut}(\mathcal{O}_n, \mathcal{F}_n) \to \operatorname{Aut}(\mathcal{F}_n)$$
 (1.1)

is not surjective. The kernel of this group homomorphism consists of the gauge automorphism, by [3, Corollary 4.10]. A few remarks are in order. First, it is plain that all inner automorphisms of \mathcal{F}_n extend to inner automorphisms of \mathcal{O}_n . Second, it is well known (see, for example, [7, Corollary IV.5.8]) that every automorphism of \mathcal{F}_n is approximately inner in the sense that it is the limit of inner automorphisms of \mathcal{F}_n in the topology of pointwise norm-convergence, that is, $\operatorname{Aut}(\mathcal{F}_n) = \overline{\operatorname{Inn}}(\mathcal{F}_n)$. Therefore our result, in particular, shows the existence of sequences of inner automorphisms of \mathcal{O}_n that converge pointwise in norm on \mathcal{F}_n but not on \mathcal{O}_n . Moreover, it makes it clear that there are strict inclusions (see [1])

$$\operatorname{Inn}(\mathcal{F}_n) \subset r(\operatorname{Aut}(\mathcal{O}_n, \mathcal{F}_n)) \subset \operatorname{Aut}(\mathcal{F}_n). \tag{1.2}$$

Finally, we deduce that there are automorphisms of \mathcal{F}_n that do not extend to \mathcal{O}_n even as proper endomorphisms, as the latter possibility was ruled out in [3, Corollary 4.9]. In contrast, this last fact is not true for the canonical Cartan subalgebra \mathcal{D}_n of \mathcal{O}_n for there are proper endomorphisms of \mathcal{O}_n that restrict to automorphisms of \mathcal{D}_n (see [4]). Still, one can show the existence of automorphisms of \mathcal{D}_n that do not extend to endomorphisms of \mathcal{O}_n .

We conclude this introductory section with a few words on notation (see [4]). For each integer $n \geq 2$, the Cuntz algebra \mathcal{O}_n is the universal C^* algebra generated by n isometries S_1, \ldots, S_n whose ranges sum to 1. There is a one-to-one correspondence $v \mapsto \lambda_v$ between unitaries in \mathcal{O}_n and unital *-endomorphisms of \mathcal{O}_n that associates to $v \in \mathcal{U}(\mathcal{O}_n)$ the endomorphism λ_v defined by $\lambda_v(S_i) = vS_i$ (where $i = 1, \ldots, n$). The canonical core UHF subalgebra \mathcal{F}_n is the norm-closure of the union of the matrix subalgebras $\mathcal{F}_n^k \simeq M_n \otimes \cdots \otimes M_n$ (k factors), where

$$\mathcal{F}_n^k = \operatorname{span}\{S_{\alpha_1} \cdots S_{\alpha_k} S_{\beta_k}^* \cdots S_{\beta_1}^*, 1 \leq \alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_k \leq n\}.$$

The UHF subalgebra \mathcal{F}_n admits a unique normalized trace, denoted τ . We also consider \mathcal{D}_n , the diagonal subalgebra of \mathcal{F}_n , which is equal to the norm-closure of the union of the commutative subalgebras $\mathcal{D}_n^k = \mathcal{D}_n \cap \mathcal{F}_n^k \simeq \mathbb{C}^{n^k}$. We define the canonical endomorphism φ of \mathcal{O}_n by $\varphi(x) = \sum_{i=1}^n S_i x S_i^*$ for all $x \in \mathcal{O}_n$. This shift endomorphism satisfies $S_i x = \varphi(x) S_i$ when $x \in \mathcal{O}_n$ and $i = 1, \ldots, n$. For a unital C^* algebra B, $\operatorname{Aut}(B)$ and $\operatorname{Inn}(B)$ are the groups of automorphisms and inner automorphisms of B, respectively. For unital C^* algebras $A \subseteq B$, $\operatorname{Aut}(B, A)$ and $\operatorname{Aut}_A(B)$ are the groups of automorphisms of B leaving A globally and pointwise invariant, respectively.

2. Main result

We refer to [8, Ch. VI] for generalities about UHF algebras and their automorphisms. To simplify the notation we will often represent elements of \mathcal{F}_n by tensor products of matrices, through the canonical identification of \mathcal{F}_n with $\bigotimes_{i=1}^{\infty} M_n$.

Given a sequence of unitaries $\underline{u} = (u_i)$ with $u_i \in \mathcal{U}(\mathcal{F}_n^1) \simeq U(n)$, we consider the associated automorphism α_u of \mathcal{F}_n such that

$$\alpha_{\underline{u}}(S_{\alpha}S_{\beta}^{*}) = u_{1}S_{\alpha_{1}}u_{2}S_{\alpha_{2}}\cdots u_{k}S_{\alpha_{k}}S_{\beta_{k}}^{*}u_{k}^{*}\cdots S_{\beta_{2}}^{*}u_{2}^{*}S_{\beta_{1}}^{*}u_{1}^{*}, \tag{2.1}$$

for all multi-indices $\alpha = (\alpha_1, \dots, \alpha_k)$ and $\beta = (\beta_1, \dots, \beta_k)$ of the same length k and for all $k \ge 1$. In the tensor product picture, $\alpha_{\underline{u}}$ is nothing more than the infinite tensor product automorphism $\bigotimes_{i=1}^{\infty} \operatorname{Ad}(u_i)$. It is also clear that if

$$\lim_{k\to\infty} u_1\otimes u_2\otimes\cdots\otimes u_k\otimes 1\otimes 1\otimes\cdots=:u$$

exists in $\bigotimes_{i=1}^{\infty} M_n$ then $\bigotimes_{i=1}^{\infty} \operatorname{Ad}(u_i) = \operatorname{Ad}(u)$ is inner, while the converse holds true whenever $1 \in \sigma(u_i)$ for all i (the latter assumption can always be satisfied by rotating the u_i if necessary); see [8, Theorem 6.3].

Of course, if $\alpha_{\underline{u}} = \operatorname{Ad}(u)$ is inner then it extends to an inner automorphism $\lambda_{u\varphi(u^*)}$ of \mathcal{O}_n . It is quite possible that even though $\alpha_{\underline{u}}$ is outer, it still extends to an automorphism of \mathcal{O}_n . A simple example of this situation arises when \underline{u} is a nonscalar constant sequence: $u_1 = u_2 = u_3 = \cdots$. Then $\alpha_{\underline{u}} = \bigotimes_{i=1}^{\infty} \operatorname{Ad}(u_1)$ is an outer automorphism of \mathcal{F}_n and extends to the (still outer) Bogolubov automorphism λ_{u_1} of \mathcal{O}_n . At this point one could suspect that the possibility of extending $\alpha_{\underline{u}}$ to \mathcal{O}_n depends on whether

$$\lim_{k \to \infty} u_1 \otimes u_2 u_1^* \otimes u_3 u_2^* \otimes \dots \otimes u_{k+1} u_k^* \otimes 1 \otimes 1 \dots$$
 (2.2)

exists in $\bigotimes_{i=1}^{\infty} M_n$. This is indeed the case, as we see from the following result.

THEOREM 2.1. Let u_1, u_2, u_3, \ldots be an infinite sequence of unitaries in $\mathcal{U}(\mathcal{F}_n^1)$. If the limit in Equation (2.2) exists and thus defines a unitary element $v \in \mathcal{F}_n$, then λ_v is an automorphism of \mathcal{O}_n that, in restriction to \mathcal{F}_n , coincides with $\alpha_{\underline{u}} = \bigotimes_{i=1}^{\infty} \operatorname{Ad}(u_i)$. Conversely, suppose that $\alpha_{\underline{u}}$ extends to an endomorphism of \mathcal{O}_n . Then there are phases $(e^{i\theta_k})_k$ such that the limit in Equation (2.2) exists for the sequence (u'_k) , where $u'_k = e^{i\theta_k}u_k$.

PROOF. If v is defined by the limit as above, then one can easily check that λ_v coincides with $\alpha_{\underline{u}}$ in restriction to \mathcal{F}_n , and thus $\lambda_v \in \operatorname{Aut}(\mathcal{O}_n)$ by [3, Corollary 4.9].

Conversely, let λ_w be an endomorphism of \mathcal{O}_n such that $\lambda_w(x) = \alpha_{\underline{u}}(x)$ for all $x \in \mathcal{F}_n$. Then $\lambda_w \in \operatorname{Aut}(\mathcal{O}_n)$ and $w \in \mathcal{F}_n$. Now,

$$wS_iS_j^*w^* = u_1S_iS_j^*u_1^*$$

for all i, j = 1, ..., n and thus $w^*u_1 \in (\mathcal{F}_n^1)' \cap \mathcal{F}_n = \varphi(\mathcal{F}_n)$, that is, $w = u_1\varphi(z_1)$ for some $z_1 \in \mathcal{U}(\mathcal{F}_n)$. But then

$$w\varphi(w)S_iS_jS_k^*S_h^*\varphi(w^*)w^* = u_1\varphi(u_2)S_iS_jS_k^*S_h^*\varphi(u_2^*)u_1^*$$

for all $i, j, h, k = 1, \ldots, n$, that is,

$$\varphi(w^*)w^*u_1\varphi(u_2) \in (\mathcal{F}_n^2)' \cap \mathcal{F}_n = \varphi^2(\mathcal{F}_n).$$

As argued above, this means that $w^*z_1^*u_2 = \varphi(z_1^*)u_1^*z_1^*u_2 \in \varphi(\mathcal{F}_n)$. Thus $u_1^*z_1^*u_2 = \varphi(z_2^*) \in \varphi(\mathcal{F}_n)$ for some unitary $z_2 \in \mathcal{U}(\mathcal{F}_n)$ from which $z_1^* = u_1\varphi(z_2^*)u_2^* = \varphi(z_2^*)u_1u_2^*$ and consequently

$$w = u_1 \varphi(u_2 u_1^*) \varphi^2(z_2).$$

Repeating this argument, one obtains that, for any positive integer k,

$$w = u_1 \varphi(u_2 u_1^*) \varphi^2(u_3 u_2^*) \cdots \varphi^k(u_{k+1} u_k^*) \varphi^{k+1}(z_{k+1})$$

for a suitable unitary $z_k \in \mathcal{F}_n$. Moreover, there is a sequence of phases $(e^{i\theta_k})_k$ such that, after replacing u_k with $e^{i\theta_k}u_k$, one can always assume that $\tau(z_k) \in \mathbb{R}_+$.

Consider now the τ -invariant conditional expectation $E_k : \mathcal{F}_n \to \mathcal{F}_n^k$ defined by $E_k = \mathrm{id}_k \otimes \tau$, where id_k is the identity on \mathcal{F}_n^k . For this, $x = \lim_k (E_k(x))$ for all $x \in \mathcal{F}_n$. As argued above, it is clear that $E_k(w) = u_1 \otimes \cdots \otimes u_{k+1} u_k^* \tau(z_{k+1})$ for all $k \geq 1$ and thus

$$1 = ||w|| = \lim_{k \to \infty} ||u_1 \otimes \cdots \otimes u_{k+1} u_k^*||\tau(z_{k+1})| = \lim_{k \to \infty} \tau(z_{k+1}).$$

That is,

$$\lim_{k\to\infty} \|w-u_1\otimes\cdots\otimes u_{k+1}u_k^*\| = \lim_{k\to\infty} \|w-u_1\otimes\cdots\otimes u_{k+1}u_k^*\tau(z_{k+1})\| = 0,$$

The automorphisms of \mathcal{F}_n of the form $\alpha_{\underline{u}}$ satisfy $\alpha_{\underline{u}}(\mathcal{F}_n^k) = \mathcal{F}_n^k$ for all k. An endomorphism of the Cuntz algebra is said to be *localized* if it is induced by a unitary element of some finite matrix algebra, that is, it is in $\bigcup_{k=1}^{\infty} \mathcal{F}_n^k$, [2].

COROLLARY 2.2. Suppose that $\alpha_{\underline{u}}$ extends to an automorphism of the Cuntz algebra. Then the following conditions are equivalent:

- (a) one extension of α_u is localized;
- (b) all extensions of α_u are localized;
- (c) eventually $u_{k+1}u_k^* \in \mathbb{T}1$.

PROOF. This result follows from the fact that any two such extensions must differ by a gauge automorphism. Moreover, a unitary map implementing any of them is obtained through Equation (2.2) up to phases, as explained above.

3. Outlook

We would like to mention a few related problems. On the one hand, one should investigate the detailed structure of $\operatorname{Aut}(\mathcal{O}_n, \mathcal{F}_n)$ and find an intrinsic characterization of automorphisms of \mathcal{F}_n that extend to \mathcal{O}_n . On the other hand, one should study the analogous problems for the extension of automorphisms from the diagonal \mathcal{D}_n to \mathcal{F}_n and from \mathcal{D}_n to \mathcal{O}_n .

In this respect, we can say something more about the extension of automorphisms from \mathcal{D}_n to \mathcal{O}_n . In particular, we are now ready to show the existence of automorphisms of \mathcal{D}_n that do not extend to (possibly proper) endomorphisms of \mathcal{O}_n . This will easily follow also from Theorem 3.3 below, but the following observation is more in line with the criterion given in Theorem 2.1.

PROPOSITION 3.1. Let α be a product type automorphism of the diagonal, that is, $\alpha(\varphi^k(\mathcal{D}_n^1)) = \varphi^k(\mathcal{D}_n^1)$ for all $k \geq 0$. Then α extends to a (possibly proper) endomorphism of \mathcal{O}_n if and only if the action on each $\varphi^k(\mathcal{D}_n^1)$ is eventually identical. In that case, α extends to a permutation automorphism of \mathcal{O}_n .

PROOF. Suppose that α extends to an endomorphism λ_u of \mathcal{O}_n . Then it follows that $\lambda_u(\varphi^k(\mathcal{D}_n^1)) = \varphi^k(\mathcal{D}_n^1)$ for all k and an easy induction shows that $\mathrm{Ad}(u)$ preserves each $\varphi^k(\mathcal{D}_n^1)$. Thus, in particular, u is in the normalizer of \mathcal{D}_n . Consequently (see [10]), we may write u = wv where $w \in \mathcal{S}_n$ and $v \in \mathcal{U}(\mathcal{D}_n)$, where \mathcal{S}_n is the subgroup of $\mathcal{U}(\mathcal{O}_n)$ of unitaries that can be written as finite sums of words in S_i and S_i^* .

It now follows that the restriction α of λ_u to \mathcal{D}_n coincides with the restriction of λ_w to \mathcal{D}_n . Thus $\mathrm{Ad}(w)$ preserves each $\varphi^k(\mathcal{D}_n^1)$ and so we may deduce that the restriction to \mathcal{D}_n of the trace τ is $\mathrm{Ad}(w)$ -invariant. However, this is only possible if w belongs to \mathcal{F}_n , that is, if w is a permutation matrix.

Since Ad(w) preserves each $\varphi^k(\mathcal{D}_n^1)$, it follows that

$$w = w_1 \varphi(w_2) \varphi^2(w_3) \cdots \varphi^r(w_{r+1})$$

for some positive integer r and permutation matrices w_j in \mathcal{F}_n^1 (where $j=1,\ldots,r$). This implies that the restriction of λ_w to $\varphi^k(\mathcal{F}_n^1)$ coincides with the restriction of $\mathrm{Ad}(\varphi^k(w_{k+1}w_k\cdots w_2w_1))$. This means that λ_w , in restriction to \mathcal{F}_n , is a product type automorphism of \mathcal{F}_n for which the limit in Equation (2.2) is equal to 1 (actually the terms of the sequence eventually stabilize). Therefore, by Theorem 2.1, λ_w is (and thus α extends to) an automorphism of \mathcal{O}_n .

We denote by $\operatorname{EndAut}(\mathcal{O}_n, \mathcal{D}_n)$ the subsemigroup of $\operatorname{End}(\mathcal{O}_n)$ of those endomorphisms that restrict to automorphisms of \mathcal{D}_n and by $\operatorname{End}_{\mathcal{D}_n}(\mathcal{O}_n)$ the subsemigroup of $\operatorname{EndAut}(\mathcal{O}_n, \mathcal{D}_n)$ of those endomorphisms acting trivially on \mathcal{D}_n . Then

$$\operatorname{Aut}(\mathcal{O}_n, \mathcal{D}_n) \subset \operatorname{EndAut}(\mathcal{O}_n, \mathcal{D}_n),$$

by the analysis in [4]. However, the following result is already implicit in [6].

PROPOSITION 3.2. With the notation above,

$$\operatorname{Aut}_{\mathcal{D}_n}(\mathcal{O}_n) = \operatorname{End}_{\mathcal{D}_n}(\mathcal{O}_n).$$

PROOF. Let u be a unitary element of \mathcal{O}_n . If $\lambda_u(x) = x$ for all $x \in \mathcal{D}_n$ then it is easy to see by induction on k that u commutes with $\varphi^k(\mathcal{D}_n^1)$ for all $k \ge 1$, and therefore

$$u \in \left(\bigcup_{k>0} \varphi^k(\mathcal{D}_n^1)\right)' \cap \mathcal{O}_n = \mathcal{D}_n' \cap \mathcal{O}_n.$$

Since the diagonal \mathcal{D}_n is a maximal abelian subalgebra of \mathcal{O}_n , it follows that $u \in \mathcal{D}_n$ and therefore $\lambda_u \in \operatorname{Aut}_{\mathcal{D}_n}(\mathcal{O}_n)$ by [6].

THEOREM 3.3. The restriction map

$$r: \operatorname{EndAut}(\mathcal{O}_n, \mathcal{D}_n) \to \operatorname{Aut}(\mathcal{D}_n)$$
 (3.1)

is not surjective. Furthermore, $r(\operatorname{EndAut}(\mathcal{O}_n, \mathcal{D}_n))$ is not a subgroup of $\operatorname{Aut}(\mathcal{D}_n)$. Indeed, it is the disjoint union of the subgroup of those automorphisms that extend to automorphisms of \mathcal{O}_n , and the subsemigroup of those automorphisms that extend to proper endomorphisms of \mathcal{O}_n .

PROOF. The first statement follows from Proposition 3.1.

Let u be a unitary element of \mathcal{O}_n such that λ_u is a proper endomorphism of \mathcal{O}_n and $\lambda_u(\mathcal{D}_n) = \mathcal{D}_n$ (see [4]). We claim that $(\lambda_u|_{\mathcal{D}_n})^{-1} \in \operatorname{Aut}(\mathcal{D}_n)$ does not extend to an endomorphism of \mathcal{O}_n . For otherwise, let λ_v be such an extension. Then $\lambda_v\lambda_u(x) = x$ for all $x \in \mathcal{D}_n$ and thus $\lambda_v\lambda_u$ is an automorphism of \mathcal{O}_n , by Proposition 3.2, which is a contradiction. A similar argument shows that if two endomorphisms λ_{u_1} and λ_{u_2} of \mathcal{O}_n restrict to the same automorphism of \mathcal{D}_n then they are either both automorphisms or both proper endomorphisms.

From this discussion, the automorphisms of \mathcal{D}_n obtained by restriction of proper endomorphisms of \mathcal{O}_n are necessarily not of product type.

Finally, we observe that the subgroup $r(\operatorname{Aut}(\mathcal{O}_n, \mathcal{D}_n))$ is not normal in $\operatorname{Aut}(\mathcal{D}_n)$. Indeed, by Gelfand duality, $\operatorname{Aut}(\mathcal{D}_n) \simeq \operatorname{Homeo}(\mathcal{C})$, where \mathcal{C} is the Cantor set, and the latter group is known to be simple.

References

- [1] R. J. Archbold, 'On the "flip-flop" automorphism of $C^*(S_1, S_2)$ ', Q. J. Math. 30 (1979), 129–132.
- [2] R. Conti and C. Pinzari, 'Remarks on endomorphisms of Cuntz algebras', J. Funct. Anal. 142 (1996), 369–405.
- [3] R. Conti, M. Rørdam and W. Szymański, 'Endomorphisms of O_n which preserve the canonical UHF-subalgebra', J. Funct. Anal. 259 (2010), 602–617.
- [4] R. Conti and W. Szymański, 'Labeled trees and localized automorphisms of the Cuntz algebras', Trans. Amer. Math. Soc., arXiv:0805.4654, to appear.
- [5] J. Cuntz, 'Simple C^* -algebras generated by isometries', Comm. Math. Phys. **57** (1977), 173–185.

- [6] J. Cuntz, 'Automorphisms of certain simple C*-algebras', in: Quantum Fields—Algebras, Processes (ed. L. Streit) (Springer, Vienna–New York, 1980).
- [7] K. R. Davidson, *C*-Algebras by Example*, Fields Institute Monographs, 6 (American Mathematical Society, Providence, RI, 1996).
- [8] D. E. Evans and Y. Kawahigashi, Quantum Symmetries on Operator Algebras, Oxford Mathematical Monographs (Oxford University Press, Oxford, 1998).
- [9] J. G. Glimm, 'On a certain class of operator algebras', Trans. Amer. Math. Soc. 95 (1960), 318–340.
- [10] S. C. Power, 'Homology for operator algebras, III. Partial isometry homotopy and triangular algebras', New York J. Math. 4 (1998), 35–56.

ROBERTO CONTI, Dipartimento di Scienze, Università di Chieti-Pescara 'G. D'Annunzio', Viale Pindaro 42, I-65127 Pescara, Italy

e-mail: conti@sci.unich.it