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Determining the behavior of functional materials under irradiation is important for fundamental 

understanding of order-disorder phenomena as well as control of performance in extreme conditions for 

applications such as nuclear reactors or spacecraft. Prior studies of model oxide interfaces have found 

that certain interface configurations may be more robust to amorphization under irradiation [1]. These 

findings raise the question of how initial defect distributions with a thin film may affect the evolution of 

disorder and how such populations can be tuned to guide the radiation response. Here we study the 

progression of disorder in oxide thin films using analytical scanning transmission electron microscopy, 

revealing how intrinsic defect populations guide disordering pathways. 

 

To determine how different initial states affect the accumulation of disorder due to ion irradiation, we 

have examined the material system La1-xSrxFeO3 (LSFO) grown on SrTiO3 (001). Thin films are 

epitaxially grown by pulsed laser deposition and molecular beam epitaxy, producing largely single 

crystal films, with some additional LFO films grown containing columnar defect domains. To 

investigate the different stages of disorder leading to amorphization, films were masked and irradiated to 

progressively higher doses in quadrants to 0.1, 0.5, and 1 dpa with a 2.8 MeV Au
2+

 ion beam at 3
o
 off 

the normal to reduce channeling effects. Samples were examined by scanning transmission electron 

microscopy (STEM) imaging and energy dispersive X-ray spectroscopy (EDS) prior to irradiation to 

determine film quality and after irradiation to evaluate the effects. Finally, the distribution of crystalline 

and amorphous phases was measured using few-shot machine learning (ML). 

 

The schematic in Figure 1 portrays the process of the study: samples representing different initial defect 

configurations are irradiated with ions and are analyzed at intermediate irradiation steps to examine the 

amount of disorder introduced until full amorphization occurs. The top of the graphic shows STEM 

high-angle annular dark field (STEM-HAADF) micrographs for single crystal LFO (pristine single 

crystal film), La0.75Sr0.25FeO3 (alloyed film), and LFO with defect domains (containing defect domains) 

prior to irradiation. We observe highly non-uniform pathways for disorder, tied to local compositional 

fluctuations and intrinsic oxygen vacancy content. We evaluate the observed behavior and propose 

methods to tune the radiation response of these materials [2]. 
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Figure 1. Schematic overview highlighting different initial defect configurations and quantification of 

defect-mediated pathways for radiation-induced disorder. 
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