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HARMONICITY OF A FOLIATION AND OF AN ASSOCIATED MAP

PHILIPPE TONDEUR AND LIEVEN VANHECKE

A foliation on a Riemannian manifold (M,g) is harmonic if all the leaves are
minimal submanifolds. We give a new characterisation of the harmonicity of a
foliation on (M, g) by the harmonicity of an associated bundle map of (TM, gc) ,

where g€ is the complete lift metric of g to the tangent bundle as introduced by
Yano and Ishihara.

1. INTRODUCTION AND STATEMENT OF THE RESULT

A foliation F on a Riemannian manifold is harmonic if all the leaves of F are
minimal submanifolds of (M,g). The reason for this terminology (introduced in [7])
is that the local submersions defining F in distinguished charts are harmonic maps
{2, 3, 4] precisely when F is a harmonic foliation [7, Theorem 2.28 and Theorem
3.3, (i), (ii)]. A foliation F on a manifold M is (geometrically) taut if a metric g
exists on M which turns F into a harmonic foliation. There is a simple topological
(cohomological) criterion characterising the tautness of a foliation F. For simplicity,
we assume throughout this note that the tangent bundle I and the normal bundle
@ =TM/L of F are oriented (and hence also M is oriented). The dimension of the
leaves is denoted p, 0 <p < n=dim M.

RUMMLER — SULLIVAN CRITERION FOR TAUTNESS. [12, 13]. Let g; be a Riemannian
(fiber) metric on L with volume form wj, along the leaves. Then F is harmonic for a
metric ¢ on M restricting to gz, on L if and only if wy, is the restriction of a p-form
x on M satisfying

dx(X1, - ,Xp41) =0

if p of the vector fields Xi,--- ,Xp4; are tangent to F.
For p = n—1 this condition simply states that x is a closed form. For Riemannian
foliations [11, 14, 15], this criterion takes a particularly simple form (see 8, 9, 16]).
Many examples of harmonic foliations were given in [7]. They include totally
geodesic foliations, foliations of Kéhler manifolds by complex submanifolds, codimension
one foliations orthogonal to a divergence free unit vector field [7, Proposition 3.9],
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or equivalently, defined by the vanishing of a co-closed one-form of unit length, and
Roussarie’s foliation of T' \ SL(2,R) with I' C SL(2,R) discrete and cocompact |7,
Proposition 3.34]. The last example is certainly not Riemannian since its Godbillon-
Vey class is non-trivial.

In this note we give a new characterisation of the harmonicity of a foliation F
on (M,g). We shall recall the definition of the Gray-O’'Neill tensor T' and the mean
curvature form & of F in Section 2. Define a (0,2)-tensor field by

(1.1) ®(E,F) = x(TeF).
Let ¢ : TM — TM be the associated endomorphism field given by
(1'2) @(E,F)=g((p(E),F).

Consider the complete lift metric g¢ on TM of Yano and Ishihara [17)]. This is the
semi-Riemannian metric of signature (n,n) defined by

{ gC(XH,YH) - gC(XV’YV) =0,

(1.3) C(yH vV c(yV yvH v
g°(XH YY) = ¢°(XV,YH) =4(X,Y)".

Here the horizontal and vertical lifts of tangent vector fields X,Y on M refer to the
decomposition of the tangent space of TM at every point in horizontal vectors with
respect to the Levi Civita connection V associated to g and canonical vertical vectors.
For vector fields X,Y on M the function g(X, Y)V on TM is the pull-back of g(X,Y)
under the projection TM — M.

With these definitions out of the way, we can state our main result as follows.

THEOREM. Let F be a foliation on the Riemannian manifold (M,g). Then F
is harmonic if and only if the map ¢ : (TM,gC) — (TM,gC) , viewed as a map of
semi-Riemannian manifolds, is a harmonic map.

In fact, we shall prove moreover that if this map is harmonic, it necessarily reduces
to the 0-map on each fiber, that is, ¢ = m, the projection TM — M.

2. PRELIMINARIES

Let (M, g) be an n-dimensional (oriented) Riemannian manifold, and g€ the com-
plete lift of the metric g to TM as defined by (1.3). This metric can also be considered
as the horizontal lift g of g when this is considered with respect to the Levi Civita
connection V associated to g [17]. Note that by definition (1.3) horizontal and vertical
lifts of vector fields on M are null vectors for g©.

Now, consider a (1,1)-tensor field on M as a map ¢ : (TM,gc) — (TM,gc).

The following characterisation of its harmonicity was given in [5].

https://doi.org/10.1017/5000497270001769X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270001769X

(3] Harmonicity 243

PROPOSITION. ¢ is harmonic if and only if V*¢ = 0, where V* denotes the
formal adjoint of V.

V*¢ is the vector field defined as follows. In local coordinates with local compo-
nents ¥ and where (g*/) denotes the inverse matrix of (gi;), we have

(21) (Vo) = - Y g7Vipk.
1,5

Next, we recall the definition of the Gray-O’Neill tensor T' of a foliation F on
(M,g) [6, 10]. Let # : TM — L be the orthogonal projection to L+ = @ with
respect to g, and w1 : TM — L the orthogonal projection to L. Then

(2.2) TgF = W(V,,J_EW‘LF) +xt(V LgnF)

for vector fields E,F on M. The conventions adapted below are U,V,W € I'L and
X,Y,Z e TL*. Clearly Tg = T, .. Moreover, we have [6]

(2.3a) TxU =0, TxY =0

(2.3b) TyV = n(VyV), TuX = (VuX),

(2.3¢) TyV =TvU;

(2.3d) Ty  is alternating, in particular g(TyV,X) = —g(V,Tv X).

The mean curvature vector field or tension field T of F on (M, g) is given by (14,
6.16]

P P

(2.4) T = ZTU{U‘ = ZW(VU,-Ui)

=1 i=1

for a (local) orthonormal frame Uy, - ,U, of L. Note that we have suppressed the

1

usual factor p~!. The mean curvature one-form & is defined by

k(E) = g(1,E)

and satisfies K(U) = 0 for U € T'L. The harmonicity of F is characterised by 7 =0
or £ =0.
3. PROOF OF THE THEOREM

We return now to the (0,2)-tensor field & on (M, g) defined by (1.1) and its asso-
ciated endomorphism field ¢. Instead of evaluating the vector field V*y, we calculate
the divergence of ®. Note that by (2.3) & is a symmetric tensor and thus div® a
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one-form given as follows (see [1, p.34]). Let Uy,--- ,Up and X,,--- , X, be (local) or-
thonormal frames of L and L*. Then (up to a for our purpose irrelevant conventional

sign)
(3.1) (div ®)(E) = Z (Vu;®)(Ui, B) + ) (Vxa®)(Xa, E).
But

Q(-E’-FI) = K'(TEF) = g(TE'FaT)a
so that
(3.2) (Vo:8) (Ui B) = 9((VoiT)y, E7) + 9(To, B, Vurr),
(3'3) (VXQQ)(XOH E) = g((VXa T)X‘,Eﬂ-) + g(TXa E; vXc,["')'

Next, we use the formulas of Gray [6] for T' and the integrability tensor A (O in
Gray’s notation) given by

(3.4) ApF = 7 (VagnF) + 7(VapntF).

(O’Neill’s formula apparatus for the tensors T and A is developed in [10] for the
special context of Riemannian submersions only, while we need here Gray’s more general

context.) Then for E =Y € I'L* we have by (2.3) that Tx,Y = 0, and by [6, (2.5)]
(VxaT)x,Y = ~Tay, xa¥ = ~Tos(vy xa)Y
which by (2.3b) is a vertical vector field. It follows that
(3.5) 9(VxaT)x,Y,7) =0.
Moreover, by [6, (2.4)]
o((Vu: 1)y Yor) = —9((Vu 1)y, Y) = =g (n (V) 7) Y).

But by {6, (2.9)] we have
m((VuT)y,) =0,

so that

(3.6) o((VuT),Y.7) =0.
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It follows that for ¥ € TL+

P

(3.7) (div®)(¥) = ¢(Tu,Y, Vy,7).

=1
Note that Ty,Y is vertical by (2.3b), so that

(dive)(Y) = Y g(Tu, Y, m Vur) = 3 o(Tv,Y, Tur).

i=1 i=1
Applied to the horizontal mean curvature vector field 7 itself, we find the expression

P

(3-8) (div@)(r) = ZQ(TU.'T’ Ty,r) = Z |t (VU:'T)P'

=1 i=1

From this, the result in the theorem is now clear. Obviously 7 = 0 implies the
vanishing of div® and hence V*¢ = 0. Conversely, the vanishing of div® implies
Ty,r=0fori=1,---,p. It follows that

g(TU,'T, Ul) = —g(T, TU,'Ui) =0.

Then we see by means of (2.4) that div® = 0 implies g(v,7) = 0 and hence 7 =0.

Note that this calculation also shows that in the case of vanishing 7 the tensor ®
itself vanishes according to definition (1.1). Thus div® = ( implies ® = 0, and then
the associated endomorphism ¢ reduces to the canonical projection TM — M.

REMARK. For the case p = 1 the harmonicity of F means that all leaves are totally
geodesic. For the case of codimension ¢ =1 it is of interest to compare (3.8) with the
divergence formulas in {14, p.92]. Thus, let Z be the unit normal vector field to the
(oriented and transversally oriented) foliation F. Then by [14, (7.34) and (7.36))

divZ = —g(r,2)

and the vanishing of this expression characterises the harmonicity of 7. The divergence
formula (3.8), valid in arbitrary codimension, and whose vanishing again characterises
harmonicity, in contrast involves covariant derivatives of r along the leaves.
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