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Abstract

Let S denote the class of analytic and univalent functions in D := {z ∈ C : |z| < 1} which are of the form
f (z) = z +

∑∞
n=2 anzn. We determine sharp estimates for the Toeplitz determinants whose elements are the

Taylor coefficients of functions in S and certain of its subclasses. We also discuss similar problems for
typically real functions.
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1. Introduction and preliminaries

LetH denote the space of analytic functions in the unit disk D := {z ∈ C : |z| < 1} and
A denote the class of functions f inH with Taylor series

f (z) = z +

∞∑
n=2

anzn. (1.1)

The subclassS ofA consisting of univalent (that is, one-to-one) functions has attracted
much interest for over a century and is a central area of research in complex analysis.
A function f ∈ A is called starlike if f (D) is starlike with respect to the origin, that is,
t f (z) ∈ f (D) for every t with 0 ≤ t ≤ 1. Let S∗ denote the class of starlike functions in
S. It is well known that a function f ∈ A is starlike if and only if

Re
(z f ′(z)

f (z)

)
> 0 for z ∈ D.

An important member of the class S∗ as well as of the class S is the Koebe function k
defined by k(z) = z/(1 − z)2. This function plays the role of extremal function in most
of the problems for the classes S∗ and S.

A function f ∈ A is called convex if f (D) is a convex domain. Let C denote the
class of convex functions in S. It is well known that a function f ∈ A is in C if and
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only if

Re
(
1 +

z f ′′(z)
f ′(z)

)
> 0 for z ∈ D.

From the above it is easy to see that f ∈ C if and only if z f ′ ∈ S∗.
A function f ∈ A is said to be close-to-convex if there exists a starlike function

g ∈ S∗ and a real number α ∈ (−π/2, π/2) such that

Re
(
eiα z f ′(z)

g(z)

)
> 0 for z ∈ D. (1.2)

Let K denote the class of all close-to-convex functions. It is well known that every
close-to-convex function is univalent in D (see [3]). Geometrically, f ∈ K means that
the complement of the image-domain f (D) is the union of rays that are disjoint (except
that the origin of one ray may lie on another one of the rays).

Let R denote the class of functions f in A satisfying Re f ′(z) > 0 in D. It is well
known that functions in R are close-to-convex and hence univalent. Functions in R are
sometimes called functions of bounded rotation.

A function f satisfying the condition (Im z)(Im f (z)) ≥ 0 for z ∈ D is called typically
real. Let T denote the class of all typically real functions. Robertson [9] proved that
f ∈ T if and only if there exists a probability measure µ on [−1, 1] such that

f (z) =

∫ 1

−1
k(z, t) dµ(t),

where
k(z, t) =

z
1 − 2tz + z2 for z ∈ D and t ∈ [−1, 1].

Recently, Aleman and Constantin [1] provided a nice connection between univalent
function theory and fluid dynamics. They seek explicit solutions to the incompressible
two-dimensional Euler equations by means of a univalent harmonic map. More
precisely, the problem of finding all solutions describing the particle paths of the flow
in Lagrangian variables is reduced to finding harmonic functions satisfying an explicit
nonlinear differential system in Cn with n = 3 or n = 4 (see also [2]).

Hankel matrices and determinants play an important role in several branches of
mathematics and have many applications [12]. Toeplitz determinants are closely
related to Hankel determinants. Hankel matrices have constant entries along the
reverse diagonal, whereas Toeplitz matrices have constant entries along the diagonal.
For a summary of applications of Toeplitz matrices to a wide range of areas of pure and
applied mathematics, we refer to [12]. Recently, Thomas and Halim [11] introduced
the symmetric Toeplitz determinant Tq(n) for analytic functions f of the form (1.1),
defined by

Tq(n) :=

∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an · · · an+q−2
...

...
...

...
an+q−1 an+q−2 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣
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where n, q = 1, 2, 3, . . ., and a1 = 1. In particular,

T2(2) =

∣∣∣∣∣∣a2 a3
a3 a2

∣∣∣∣∣∣ , T2(3) =

∣∣∣∣∣∣a3 a4
a4 a3

∣∣∣∣∣∣ , T3(1) =

∣∣∣∣∣∣∣∣
1 a2 a3
a2 1 a2
a3 a2 1

∣∣∣∣∣∣∣∣ , T3(2) =

∣∣∣∣∣∣∣∣
a2 a3 a4
a3 a2 a3
a4 a3 a2

∣∣∣∣∣∣∣∣ .
For small values of n and q, estimates of the Toeplitz determinant |Tq(n)| for

functions in S∗ and K have been studied in [11]. Similarly, estimates of the Toeplitz
determinant |Tq(n)| for functions in R have been studied in [8], when n and q are small.
Apart from [8] and [11], there appears to be little in the literature concerning estimates
of Toeplitz determinants. In [8, 11], we observe an invalid assumption in the proofs.
It is the purpose of this paper to give estimates for Toeplitz determinants Tq(n) for
functions in S, S∗, C, K , R and T , when n and q are small.

Let P denote the class of analytic functions p in D of the form

p(z) = 1 +

∞∑
n=1

cnzn (1.3)

such that Re p(z) > 0 in D. Functions in P are sometimes called Carathéodory
functions. To prove our main results, we need some preliminary results for functions
in P.

Lemma 1.1 [3, page 41]. For a function p ∈ P of the form (1.3), the sharp inequality
|cn| ≤ 2 holds for each n ≥ 1. Equality holds for the function p(z) = (1 + z)/(1 − z).

Lemma 1.2 [4, Theorem 1]. Let p ∈ P be of the form (1.3) and µ ∈ C. Then

|cn − µckcn−k| ≤ 2 max{1, |2µ − 1|} for 1 ≤ k ≤ n − 1.

If |2µ − 1| ≥ 1 then the inequality is sharp for the function p(z) = (1 + z)/(1 − z) or its
rotations. If |2µ − 1| < 1 then the inequality is sharp for p(z) = (1 + zn)/(1 − zn) or its
rotations.

2. Main results

Theorem 2.1. Let f ∈ S be of the form (1.1). Then

(i) |T2(n)| = |a2
n − a2

n+1| ≤ 2n2 + 2n + 1 for n ≥ 2;
(ii) |T3(1)| ≤ 24.

Both inequalities are sharp.

Proof. Let f ∈ S be of the form (1.1). Then clearly

|T2(n)| = |a2
n − a2

n+1| ≤ |a
2
n| + |a

2
n+1| ≤ n2 + (n + 1)2 = 2n2 + 2n + 1. (2.1)

Equality holds in (2.1) for the function f defined by

f (z) :=
z

(1 − iz)2 = z + 2iz2 − 3z3 − 4iz4 + 5z5 + · · · . (2.2)
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Again, if f ∈ S is of the form (1.1) then by the Fekete–Szegö inequality for
functions in S,

|T3(1)|= |1 − 2a2
2 + 2a2

2a3 − a2
3|

≤ 1 + 2|a2
2| + |a3| |a3 − 2a2

2| ≤ 1 + 8 + (3)(5) = 24. (2.3)

Equality holds in (2.3) for the function f defined by (2.2). �

Remark 2.2. Since the function f defined by (2.2) belongs to S∗ and S∗ ⊂ K ⊂ S, the
sharp inequalities in Theorem 2.1 also hold for functions in S∗ and K . In particular,
the sharp inequalities |T2(2)| ≤ 13 and |T2(3)| ≤ 25 hold for functions in S∗, K and S.

Theorem 2.3. Let f ∈ S∗ be of the form (1.1). Then |T3(2)| ≤ 84. The inequality is
sharp.

Proof. Let f ∈ S∗ be of the form (1.1). Then there exists a function p ∈ P of the form
(1.3) such that z f ′(z) = f (z)p(z). Equating coefficients,

a2 = c1, a3 = 1
2 (c2 + c2

1) and a4 = 1
6 c3

1 + 1
2 c1c2 + 1

3 c3. (2.4)

By a simple computation T3(2) can be written as T3(2) = (a2 − a4)(a2
2 − 2a2

3 + a2a4).
If f ∈ S∗ then clearly, |a2 − a4| ≤ |a2| + |a4| ≤ 6. Therefore, we only need to maximise
|a2

2 − 2a2
3 + a2a4| for functions in S∗. Writing a2, a3 and a4 in terms of c1, c2 and c3

with the help of (2.4),

|a2
2 − 2a2

3 + a2a4| = |c2
1 −

1
3 c4

1 −
1
2 c2

1c2 −
1
2 c2

2 + 1
3 c1c3|

≤ |c1|
2 + 1

3 |c1|
4 + 1

2 |c2|
2 + 1

3 |c1| |c3 −
3
2 c1c2|.

From Lemmas 1.1 and 1.2, it easily follows that

|a2
2 − 2a2

3 + a2a4| ≤ 4 + 16
3 + 4

2 + 2
3 (4) = 14.

Therefore, |T3(2)| ≤ 84 and the inequality is sharp for the function f defined by
(2.2). �

Remark 2.4. In [11], it was claimed that |T2(2)| ≤ 5, |T2(3)| ≤ 7, |T3(1)| ≤ 8 and
|T3(2)| ≤ 12 hold for functions in S∗ and these estimates are sharp. Similar results were
also obtained for certain close-to-convex functions. For the function f defined by (2.2),
a simple computation gives |T2(2)| = 13, |T2(3)| = 25, |T3(1)| = 24 and |T3(2)| = 84,
which shows that these estimates are not correct. In proving these estimates the authors
assumed that c1 > 0 which is not justified, since the functional |Tq(n)| (n ≥ 1, q ≥ 2) is
not rotationally invariant.

To prove our next result we need the following results for functions in S∗.

Lemma 2.5 [5, Theorem 3.1]. Let g ∈ S∗ be of the form g(z) = z +
∑∞

n=2 bnzn. Then
|b2b4 − b2

3| ≤ 1, and the inequality is sharp for the Koebe function k(z) = z/(1 − z)2 and
its rotations.
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Lemma 2.6 [6, Theorem 1]. Let g ∈ S∗ be of the form g(z) = z +
∑∞

n=2 bnzn. Then, for
any λ ∈ C,

|b3 − λb2
2| ≤ max{1, |3 − 4λ|}.

The inequality is sharp for k(z) = z/(1 − z)2 and its rotations if |3 − 4λ| ≥ 1, and for
(k(z2))1/2 and its rotations if |3 − 4λ| < 1.

Lemma 2.7 [7, Theorem 2.2]. Let g ∈ S∗ be of the form g(z) = z +
∑∞

n=2 bnzn. Then

|λbnbm − bn+m−1| ≤ λnm − (n + m − 1) for λ ≥
2(n + m − 1)

nm
,

where n,m = 2, 3, . . . . The inequality is sharp for the Koebe function k(z) = z/(1 − z)2

and its rotations.

Lemma 2.8. Let f ∈ K be of the form (1.1). Then |a2a4 − 2a2
3| ≤ 21/2.

Proof. Let f ∈ K be of the form (1.1). Then there exists a starlike function g of the
form g(z) = z +

∑∞
n=2 bnzn and a real number α ∈ (−π/2, π/2) such that (1.2) holds. This

implies that there exists a Carathéodory function p ∈ P of the form (1.3) such that

eiα z f ′(z)
g′(z)

= p(z) cosα + i sinα.

Comparing coefficients,

2a2 = b2 + c1e−iα cosα

3a3 = b3 + b2c1e−iα cosα + c2e−iα cosα

4a4 = b4 + b3c1e−iα cosα + b2c2e−iα cosα + c3e−iα cosα,

and a simple computation gives

72(a2a4 − 2a2
3) = (9b2b4 − 16b2

3) + (9b4 − 23b2b3)c1e−iα cosα

+ (9b3 − 16b2
2)c2

1e−2iα cos2 α + (9b2
2 − 32b3)c2e−iα cosα

+ (9c3 − 23c1c2e−iα cosα)b2e−iα cosα

+ (9c1c3 − 16c2
2)e−2iα cos2 α.

Consequently, by the triangle inequality,

72|a2a4 − 2a2
3| ≤ |9b2b4 − 16b2

3| + |9b4 − 23b2b3| |c1| + |9b3 − 16b2
2| |c

2
1|

+ |9b2
2 − 32b3| |c2| + |9c3 − 23c1c2e−iα cosα| |b2| + |9c1c3 − 16c2

2|.

(2.5)

By Lemmas 2.5, 2.6 and 2.7, it easily follows that

|9b2b4 − 16b2
3| ≤ 9|b2b4 − b2

3| + 7|b3|
2 ≤ 9 + 63 = 72, (2.6)

|9b4 − 23b2b3| = 9|b4 −
23
9 b2b3| ≤ 9( 46

3 − 4) = 102, (2.7)

|9b3 − 16b2
2| = 9|b3 −

16
9 b2

2| ≤ 9( 64
9 − 3) = 37, (2.8)

|9b2
2 − 32b3| = 32|b3 −

9
32 b2

2| ≤ 32(3 − 9
8 ) = 60. (2.9)
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Again by Lemma 1.2,

|9c3 − 23c1c2e−iα cosα| = 9|c3 − µc1c2| ≤ 18 max{1, |2µ − 1|}

where µ = (23/9)e−iα cosα. Now note that

|2µ − 1|2 = ( 23
9 cos 2α + 14

9 )2 + ( 23
9 sin 2α)2

= ( 23
9 )2 + ( 14

9 )2 + 2( 23
9 )( 14

9 ) cos 2α,

and so
1 ≤ |2µ − 1| ≤ 37

9 .

Therefore,
|9c3 − 23c1c2e−iα cosα| ≤ 74. (2.10)

Again by Lemma 1.2,

|9c1c3 − 16c2
2| ≤ 9|c1c3 − c4| + 9|c4 −

16
9 c2

2| ≤ 18 + 46 = 64. (2.11)

By Lemma 1.1, and using inequalities (2.6)–(2.11) in (2.5),

|a2a4 − 2a2
3| ≤

1
72 (72 + 204 + 148 + 120 + 148 + 64) = 21

2 .

This concludes the proof. �

Theorem 2.9. Let f ∈ K be of the form (1.1). Then |T3(2)| ≤ 86.

Proof. Let f ∈ K be of the form (1.1). Then by Lemma 2.8,

|T3(2)| = |a3
2 − 2a2a2

3 − a2a2
4 + 2a2

3a4|

≤ |a2|
3 + 2|a2||a2

3| + |a4||a2a4 − 2a2
3| ≤ 8 + 36 + 42 = 86.

This concludes the proof. �

Remark 2.10. In Theorem 2.3, we have proved that |T3(2)| ≤ 84 for functions in S∗,
and the inequality is sharp for the function f defined by (2.2). It is natural to conjecture
that |T3(2)| ≤ 84 holds for functions in K and that equality holds for the function f
defined by (2.2).

Theorem 2.11. Let f ∈ C be of the form (1.1). Then

(i) |T2(n)| ≤ 2 for n ≥ 2.
(ii) |T3(1)| ≤ 4.
(iii) |T3(2)| ≤ 4.

All inequalities are sharp.
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Proof. Let f ∈ C be of the form (1.1). Then there exists a function p ∈ P of the form
(1.3) such that f ′(z) + z f ′′(z) = f ′(z)p(z). Equating coefficients,

2a2 = c1, 3a3 = 1
2 (c2 + c2

1) and 4a4 = 1
6 c3

1 + 1
2 c1c2 + 1

3 c3. (2.12)

Clearly,
|T2(n)| = |a2

n − a2
n+1| ≤ |a

2
n| + |a

2
n+1| ≤ 1 + 1 = 2. (2.13)

Equality holds in (2.13) for the function f defined by

f (z) :=
z

1 − iz
= z + iz2 − z3 − iz4 + z5 + · · · . (2.14)

Again if f ∈ C is of the form (1.1) then from Lemma 1.2 and (2.12),

|T3(1)| = |1 − 2a2
2 + 2a2

2a3 − a2
3|

≤ 1 + 2|a2
2| + |a3| |a3 − 2a2

2| ≤ 1 + 2 + 1
6 |c2 − 2c2

1| ≤ 4. (2.15)

It is easy to see that equality holds in (2.15) for the function f defined by (2.14).
For the third part, note that T3(2) = (a2 − a4)(a2

2 − 2a2
3 + a2a4). If f ∈ C then clearly

|a2 − a4| ≤ |a2| + |a4| ≤ 2. Thus, we need to maximise |a2
2 − 2a2

3 + a2a4| for functions in
C. Writing a2, a3 and a4 in terms of c1, c2 and c3 with the help of (2.12),

|a2
2 − 2a2

3 + a2a4| =
1

144 |5c4
1 − 36c2

1 + 7c2
1c2 + 8c2

2 − 6c1c3|

≤ 1
144 (5|c1|

4 + 36|c1|
2 + 8|c2|

2 + 6|c1| |c3 −
7
6 c1c2|).

From Lemmas 1.1 and 1.2, it easily follows that

|a2
2 − 2a2

3 + a2a4| ≤
1

144 (80 + 144 + 32 + 32) = 2.

Therefore, |T3(2)| ≤ 4, and the inequality is sharp for the function f defined by
(2.14). �

Theorem 2.12. Let f ∈ R be of the form (1.1). Then

(i) |T2(n)| ≤ 4/n2 + 4/(n + 1)2 for n ≥ 2.
(ii) |T3(1)| ≤ 35

9 .
(iii) |T3(2)| ≤ 7

3 .

The inequalities in (i) and (ii) are sharp.

Proof. Let f ∈ R be of the form (1.1). Then there exists a function p ∈ P of the form
(1.3) such that f ′(z) = p(z). Equating coefficients gives nan = cn−1 and so

|an| =
1
n
|cn−1| ≤

2
n
, n ≥ 2.

The inequality is sharp for the function f defined by f ′(z) = (1 + z)/(1 − z) and its
rotations. Thus,

|T2(n)| = |a2
n − a2

n+1| ≤ |a
2
n| + |a

2
n+1| ≤

4
n2 +

4
(n + 1)2 . (2.16)
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Equality holds in (2.16) for the function f defined by

f ′(z) :=
1 + iz
1 − iz

. (2.17)

Next, if f ∈ R is of the form (1.1), then

|T3(1)| = |1 − 2a2
2 + 2a2

2a3 − a2
3| ≤ 1 + 2|a2

2| + |a3| |a3 − 2a2
2|

≤ 1 + 2 + 2
3 |

1
3 c2 −

1
2 c2

1| ≤ 3 + 2
9 |c2 −

3
2 c2

1| ≤ 3 + 8
9 = 35

9 . (2.18)

It is easy to see that equality in (2.18) holds for the function f defined by (2.17).
Again, if f ∈ R is of the form (1.1) then

|T3(2)| = |a3
2 − 2a2a2

3 − a2a2
4 + 2a2

3a4| ≤ |a2|
3 + 2|a2| |a2

3| + |a4| |a2a4 − 2a2
3|

≤ 1 + 8
9 + 1

2 |a2a4 − 2a2
3| ≤

17
9 + 1

2 |a2a4 − 2a2
3|.

Thus, we need to find the maximum value of |a2a4 − 2a2
3| for functions in R. By (2.11),

it easily follows that

|a2a4 − 2a2
3| =

1
72 |9c1c3 − 16c2

2| ≤
64
72 = 8

9 .

Therefore,
|T3(2)| ≤ 17

9 + 4
9 = 7

3 .

This concludes the proof. �

Remark 2.13. Theorem 2.12 shows that for f ∈ R, the sharp inequalities |T2(2)| ≤ 13/9
and |T2(3)| ≤ 17/36 hold. In [8], it was claimed that |T2(2)| ≤ 5/9, |T2(3)| ≤ 4/9,
|T3(1)| ≤ 13/9 and |T3(2)| ≤ 4/9 hold for functions in R and these estimates are sharp.
For the function f defined by (2.17), a simple computation gives |T2(2)| = 13/9,
|T2(3)| = 17/36, |T3(1)| = 35/9 and |T3(2)| ≤ 25/12, showing that these estimates are
not correct. As explained above, the authors assumed that c1 > 0, which is not justified,
since the functional |Tq(n)| (n ≥ 1, q ≥ 2) is not rotationally invariant.

If f ∈ T is given by (1.1), then the coefficients of f can be expressed by

an =

∫ 1

−1

sin(n arccos t)
sin(arccos t)

dµ(t) =

∫ 1

−1
Un−1(t) dµ(t), n ≥ 1,

where Un(t) are Chebyshev polynomials of degree n of the second kind.
Let An,m denote the region of variability of the point (an, am), where an and am

are coefficients of a given function f ∈ T with the series expansion (1.1), that is,
An,m := {(an( f ), am( f )) : f ∈ T }. Thus, An,m is the closed convex hull of the curve

γn,m : [−1, 1] 3 t→ (Un−1(t),Um−1(t)).

By the Carathéodory theorem we conclude that it is sufficient to discuss only functions

F(z, α, t1, t2) := αk(z, t1) + (1 − α)k(z, t2), (2.19)

where 0 ≤ α ≤ 1 and −1 ≤ t1 ≤ t2 ≤ 1.
Let X be a compact Hausdorff space and Jµ =

∫
X J(t) dµ(t). Szapiel [10, Theorem

1.49, page 37] proved the following theorem.
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Theorem 2.14. Let J : [α, β]→ Rn be continuous. Suppose that there exists a positive
integer k, such that for each nonzero −→p in Rn the number of solutions of any equation
〈
−−→
J(t),−→p 〉 = constant, α ≤ t ≤ β, is not greater than k. Then, for every µ ∈ P[α, β] such

that Jµ belongs to the boundary of the convex hull of J([α, β]), the following statements
are true:

(1) if k = 2m, then

(a) |supp(µ)| ≤ m, or
(b) |supp(µ)| = m + 1 and {α, β} ⊂ supp(µ);

(2) if k = 2m + 1, then

(a) |supp(µ)| ≤ m, or
(b) |supp(µ)| = m + 1 and one of the points α and β belongs to supp(µ).

In the above, the symbol 〈−→u ,−→v 〉 means the scalar product of vectors −→u and −→v ,
whereas the symbols PX and |supp(µ)| describe the set of probability measures on X,
and the cardinality of the support of µ, respectively.

Putting J(t) = (U1(t),U2(t)), t ∈ [−1, 1] and −→p = (p1, p2), we can see that any
equation of the form p1U1(t) + p2U2(t) = constant, t ∈ [−1, 1], has at most two
solutions. According to Theorem 2.14, the boundary of the convex hull of J([−1, 1]) is
determined by atomic measures µ whose support consists of at most two points. Thus,
we have the following result.

Lemma 2.15. The boundary of A2,3 consists of points (a2, a3) that correspond to the
functions F(z, 1, t, 0) = k(z, t), or F(z, α, 1,−1) with 0 ≤ α ≤ 1 and −1 ≤ t ≤ 1, where
F(z, α, t1, t2) is defined by (2.19).

In a similar way, one can also obtain the following result.

Lemma 2.16. The boundary of A3,4 consists of points (a3, a4) that correspond to
the functions F(z, α, t, −1), or F(z, α, t, 1) with 0 ≤ α ≤ 1 and −1 ≤ t ≤ 1, where
F(z, α, t1, t2) is defined by (2.19).

Before we proceed further, we give some examples of typically real functions.

Example 2.17. For each t ∈ [−1, 1], the function k(z, t) = z/(1 − 2tz + z2) is a typically
real function. For k(z, 1) = z/(1 − z)2, we have T2(n) = n2 − (n + 1)2 = −(2n + 1) and
T3(n) = a3

n − 2a2
n+1an − a2

n+2an + 2a2
n+1an+2 = 4(n + 1).

Example 2.18. The function f (z) = − log(1 − z) = z +
∑∞

n=2(1/n)zn is typically real. For
this function,

T2(n) =
1
n2 −

1
(n + 1)2 and T3(n) =

4(n2 + 3n + 1)
n3(n + 1)2(n + 2)2 .

Lemma 2.19. If f ∈ T then T2(n) attains its extreme values on the boundary of An,n+1.
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Proof. Let φ(x, y) = x2 − y2, where x = an and y = an+1. The only critical point of φ
is (0, 0) and φ(0, 0) = 0. Since φ may be positive as well as negative for (x, y) ∈ An,n+1

(see Examples 2.17 and 2.18), the extreme values of φ are attained on the boundary of
An,n+1. �

In a similar way, we can prove the following result.

Lemma 2.20. If f ∈ T then T3(1) attains its extreme values on the boundary of A2,3.

Since all coefficients of f ∈ T are real, we look for the lower and the upper bounds
of Tq(n) instead of the bound of |Tq(n)|. The proof of the following theorem is obvious.

Theorem 2.21. For f ∈ T of the form (1.1), we have −(n + 1)2 ≤ T2(n) ≤ n2. Moreover,

(i) If n is odd then max{T2(n) : f ∈ T } = n2 and equality is attained for the function
F(z, 1/2, 1,−1).

(ii) If n is even then min{T2(n) : f ∈ T } = −(n + 1)2 and equality is attained for the
function F(z, 1/2, 1,−1).

Theorem 2.22. For f ∈ T , max{T2(2) : f ∈ T } = 5/4.

Proof. By Lemma 2.15, it is enough to consider the functions F(z, 1, t, 0) = k(z, t) and
F(z, α, 1,−1) with 0 ≤ α ≤ 1 and −1 ≤ t ≤ 1.

Case 1. For F(z, 1, t, 0) = k(z, t) = z + 2tz2 + (4t2 − 1)z3 + (8t3 − 4t)z4 + · · · ,

a2
2 − a2

3 = −16t4 + 12t2 − 1 ≤ 5
4 .

Case 2. For F(z, α, 1,−1) = z + (4α − 2)z2 + 3z3 + (8α − 4)z4 + · · · ,

a2
2 − a2

3 = (2 − 4α)2 − 9 ≤ −5.

The conclusion follows from Cases 1 and 2, with the maximum attained for
F(z, 1, t, 0) = k(z, t) with t =

√
3/(2

√
2). �

Corollary 2.23. For f ∈ T , the sharp inequality −9 ≤ T2(2) ≤ 5/4 holds.

Theorem 2.24. For f ∈ T , we have min{T2(3) : f ∈ T } = −7.

Proof. By Lemma 2.16, it is enough to consider the functions F(z, α, t, −1) and
F(z, α, t,−1) with 0 ≤ α ≤ 1 and −1 ≤ t ≤ 1.

Case 1. For the function

F(z, α, t,−1) = z + 2(α + αt − 1)z2 + (4αt2 − 4α + 3)z3 + (4α + 8αt3 − 4αt − 4)z4 + · · · ,

we have T2(3) = a2
3 − a2

4 = (4αt2 − 4α + 3)2 − (4α + 8αt3 − 4αt − 4)2 := φ(α, t). By
elementary calculus, one can verify that

min
0≤α≤1,−1≤t≤1

φ(α, t) = φ(0, 0) = −7.
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Case 2. For the function

F(z, α, t, 1) = z + 2(1 − α + αt)z2 + (3 − 4α + 4αt2)z3 + (4 − 4α − 4αt + 8αt3)z4 + · · · ,

we have a2
2 − a2

3 = φ(α,−t), and so

min
0≤α≤1,−1≤t≤1

φ(α,−t) = φ(0, 0) = −7.

The conclusion follows from Cases 1 and 2 and the maximum is attained for the
function F(z, 0, 0, 1) or F(z, 0, 0,−1). �

Corollary 2.25. For f ∈ T , the sharp inequality −7 ≤ T2(3) ≤ 9 holds.

Theorem 2.26. For f ∈ T , we have max{T3(1) : f ∈ T } = 8 and min{T3(1) : f ∈ T } =
−8.

Proof. By Lemma 2.15, it is enough to consider the functions F(z, 1, t, 0) = k(z, t) and
F(z, α, 1,−1) with 0 ≤ α ≤ 1 and −1 ≤ t ≤ 1.

Case 1. For F(z, 1, t, 0) = k(z, t) = z + 2tz2 + (4t2 − 1)z3 + (8t3 − 4t)z4 + · · · , we have
T3(1) = 1 − 2a2

2 + 2a2
2a3 − a2

3 = 8t2(2t2 − 1) := φ1(t) and it is easy to verify that

max
−1≤t≤1

φ1(t) = φ1(−1) = 8 and min
−1≤t≤1

φ1(t) = φ1(−1/2) = −1.

Case 2. For the function F(z, α, 1,−1) = z + (4α − 2)z2 + 3z3 + (8α − 4)z4 + · · · , we
have T3(1) = 8(8α2 − 8α + 1) := ψ1(α) and it is again easy to verify that

max
0≤α≤1

ψ1(α) = ψ1(0) = 8 and min
0≤α≤1

ψ1(α) = ψ1(1/2) = −8.

The conclusion follows from Cases 1 and 2; the maximum is attained for the
function F(z, 1, −1, 0) = k(z, −1) and the minimum is attained for the function
F(z, 1/2, 1,−1). �
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