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ON ISOMORPHISMS OF LOCALLY CONVEX SPACES 
WITH SIMILAR BIORTHOGONAL SYSTEMS 

BY 

F. BOZEL AND T. HUSAIN(1> 

Introduction. The relationship between bases and isomorphisms (i.e. linear 
homeomorphisms) between complete metrizable linear spaces has been studied 
with great interest by Arsove and Edwards (see [1] and [2]). We prove (Theorem 
1) that in the case of i?-complete barrelled spaces, similar generalized bases imply 
existence of an isomorphism. This result was also proved by Dyer and Johnson [4], 
so we do not give a proof. We show (Theorem 6) that if one assumes that the bases 
are Schauder and similar, then Theorem 1 holds for countably barrelled spaces. 
We use Theorem 1 to advantage (Theorems 2-5) to show that one can improve 
some results due to Davis [3]. 

Let E be a real Hausdorff topological vector space (TVS), and (x,) / G J a family 
of elements in E. Let E' denote the topological dual of E. A family (xi9f) / G / , 
Xi G E9f G E' is said to be biorthogonal if/i(*j)=#tf (Kronecker delta). A general
ized basis (GB) in E is a biorthogonal system (xi9f) iel, feE', such that 

f.(x) = 0 for all i implies x=0. If a biorthogonal system is such that the closed 
linear span of (x j i e lis E9 i.e. [x{]=^E, then the system is called a dual generalized 
basis (DGB). A biorthogonal system which is a DGB and a GB is called an M-basis 
(M for Markuschevitch). Let O denote the coefficient map associated with (xi9f) 
i G / , i.e. O is given by 0(x)=(fi(x)), i G /. Two systems (xi9f) in E and (yi9 g{) in F 
are similar if 0(2£)==T(F)> Y the coefficient map associated with (yi9 gj i e L The 
underlying indexing set will be / unless otherwise indicated. 

Isomorphism theorems 

THEOREM 1. Let E9 F be B-complete barrelled spaces with topologies u and v 
respectively. Let (x^fy be a GB in E. IfTis an isomorphism of E onto F and Txt=yi9 

i G / , then (yi9 g{) is a GB in F similar to (xi9f^. Here gt is given by gi=fi ° 3T"1, 
/ G / . Conversely if(yi9 gi) is a GB in F similar to (xi9fy, then there exists an iso
morphism T of E onto F such that Tx~ytfor all i e I. 

Proof. Same as e.g. in [4]. 

REMARK. The above theorem holds for the class of (C)-barrelled spaces studied 
by Mcintosh [8], since it has been shown that they are precisely the class of 
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incomplete barrelled spaces. Jones and Retherford have observed [7] that this 
theorem does not hold in complete barrelled spaces. 

As applications of Theorem 1 we have the following: 

THEOREM 2. Let E, F be B-cornplete barrelled spaces with (xi9f) and (yi9 g j as 
M-bases in E9 F respectively. Let V ç; I such that I-V is finite. Consider [xi]=E1 and 
[ j t]=F1 ? i e If with the induced topologies. IfTis an isomorphism ofE1 onto Fl9 such 
that TXi=yi iel', then T can be extended to an isomorphism E onto F such that 
TXi—yiforieL 

Proof. If follows from the definition of Af-bases that (xi9f) and (yi9 g{)9 ieF9 are 
M-bases in E± and Fx respectively. Since T is an isomorphism and 7 X = j ^ for 
i e / ' , one gets similarity of the bases. Since the cardinality of I-V is finite, [xa]oL G 
/ - / ' is isomorphic to [ja]a e I-V and xa goes to ya. By hypothesis Ex is isomorphic to 
F1 and xa goes to ya. Clearly E=E1®[xa]aLeI-r and F=F1®[ya]aLeI-f. Hence 
(xi>fi) is similar to (yi9 gt)9 i G /. Now Theorem 1 gives the desired isomorphism. 

THEOREM 3. Let E, F be B-complete barrelled spaces and (xi9fy9 (yi9 g{), i e I, 
similar biorthogonal systems for E, F respectively. Then there exists an isomorphism 
TofE/Kcx O onto F/Ker T such that T{(f>{xl))=^(yt)for all i e I, where </>, </>' are 
the quotient or canonical maps and O, *P the respective coefficient maps. 

Proof. It follows from ([4, Lemma 2]) that (<j>(xt)jt) and {<j>'{yt)9 |<), i e / are GB's 
in E/KQT <D and F/Kcr ip respectively where fi9 gt are defined by./J(0(jc))==/J(^) and 
gid&'iyft^giiy)- Similarity of these bases follows since (xi9f) is similar to (yi9 gt). 
Now we topologize 0(ls) and tp(F) with the topologies induced from is/Ker O and 
F/Ker T by O, Y respectively. Hence $ = $ o ^ V P = T o <£' are continuous, so 
Ker <D and Ker ip are closed subspaces of E and F respectively. Since the quotient 
of ^-complete barrelled subspaces with a closed subspace is also Incomplete and 
barrelled, the desired isomorphism between J£/Ker <b and F/Kerip follows by 
Theorem 1. 

DEFINITION Biorthogonal systems (xi9f) in E and (yi9 g{) in F are ^-similar if 
$(E'fi)=$(F'p)9 where ô , $ are the coefficient maps associated with (fi9 Jxz) and 
(gi9 Jyt) respectively, / being the appropriate canonical embedding of E into E" or 
of F into F\ 

REMARK. It is well known (see [3, Lemma 3]) that if (xi9f) is a DGB for a 
TVS E9 then (fi9 Jx{) is a GB for E'p (strong dual), where J is the canonical em
bedding of E into E'p,p. 
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LEMMA 1. Let E, F be TVS's where E'fi, F'p are B-complete barrelled spaces. If 
(Xi>fi) and (yi9 g{) are *-similar DGB's in E and F respectively, then there exists an 
isomorphism S from E'fi onto F'p such that S(fi)=gi, iel. 

Proof. Since (x^f) and (yi9 g{) are *-similar DGB's, it follows from the previous 
remark that (fi9 Jx{) and (gi9 Jy4) are GB's in E'p and F'fi respectively. The definition 
of *-similarity immediately gives similarity of these bases. Since the strong duals 
are Incomplete and barrelled, Theorem 1 gives the desired isomorphism. 

COROLLARY. Let E, F be Banach spaces. Let (xi9f), (yi9 g^) be ^-similar DGB's 
in E, F. Then there exists an isomorphism S from E,p onto F'fi. 

DEFINITION. A locally convex space E is quasi-barrelled if every strongly bounded 
subset of the dual E' is equicontinuous. 

THEOREM 4. Let E, F be quasi-barrelled spaces with *-similar DGB's (xi9f) and 
(yi9 gi). Assume E,fi, F are B-complete barrelled spaces. Then there exists an iso
morphism T ofE onto F such that Tx~yi9 i e L 

Proof. Let JE, JF be the canonical embeddings of E and F into E" and F" 
respectively. ThatJ^ a n d / F are isomorphisms into follows by ([5, p. 229 Proposi
tion 5]) since E and F are quasibarrelled. By Lemma 1 there exists an isomorphism 
S:E,p-*F,p such that S(f^=gi9 iel. S is given by yH o O, where 0 and y are the 
coefficient maps associated with (JEx{) i e I and (JFy{) i e I respectively. Consider 
the conjugate map (5 -1)*. Then for g e F' and / e J, 

[(S-i)*(JExt)-JFyi](g) = [(Ô-1 o rpY{JExt)-JFy%] (g) 

= (JEXùtfr1 ° ®(g)-(Jiryù(g) = o 

because of ^-similarity of (x^f) and (yi9gi). Thus (^~1)*(/£ ;x,)=/F j i , iel. 
Hence, (5"1)* | [JExt]= [JFyt]. Define T by T=JF

X o (£-i)* o JE. Clearly T is an 
isomorphism. Also Tx^Çfa1 o (£ -1)* ° Jr

£;)(x i)=(/^1 oj^y.^y. for all iel. 
Hence T is the desired isomorphism. 

REMARK. Theorem 4 was known previously only for Banach spaces. In locally 
convex spaces quasi-barrelledness insures that the canonical maps are isomorphism 
into. 

The following is a particular case of Theorem 4. 

COROLLARY. Let E, F be reflexive spaces with ^-similar DGB's (xi9f) and (yi9 g{) 
respectively. Assume E'fi and F'fi are B-complete spaces. Then there exists an iso
morphism TofE onto F such that Tx{=yi9 i e I. 
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THEOREM 5. Let E, F be B-complete barrelled spaces where E'p and F,p are also 
B-complete and barrelled. If (xi9f) is a GB in E *-similar and similar to a DGB 
(yi9 gi) in F9 then there exists an isomorphism TofE onto F such that Tx~yifor all 
ie I and both are M-bases. 

Proof. Theorem 3 and similarity of the systems gives an isomorphism S of 
£/Ker O and F/Ker y such that S(0(xj)=<£'(j.), i e /. It follows from ([3, Lemma 
2(b)]) that ( f (y*)) * E / i s a n ^"-basisforF/Ker y>. NowS~Hf O O W ^ O f y O O ) ^ 
<f>(Xi) for all i e I. Hence, (<j>(xj) i e I is an M-basis for £/Ker O. But (xi9f) i e / 
being a GB gives Ker ® = {0}, hence E/Ker O is isomorphic to E. Hence, (X,/z) 
/ e / is an M-basis for E. By ^-similarity of (xi9fi) and (yi9 g{) and Theorem 4, we 
get the isomorphism T: E->F such that Txi—yi for / e I. 

COROLLARY. Theorem 5 holds true for the following pairs of locally convex spaces 
under the same hypotheses on the bases. 

(a) E, F reflexive Fréchet {in particular reflexive Banach) spaces. 
(b) E, F Monte! Fréchet spaces. 

REMARK. Countably barrelled spaces have been introduced and studied by 
Husain [6], and he has established a Banach-Steinhaus theorem for these spaces. 
This result allows one to prove Theorem 1 for Schauder bases under weaker 
assumptions. 

THEOREM 6. Let E and F be countably barrelled spaces and (xn,fn)9 (yn9gn)neN 
Schauder bases in E and F respectively. Then (xn9fn) is similar to (yn, gn) if and only 
if there exists an isomorphism TofE onto F such that Txn=yn9 neN. 

Proof. If such a T exists then similarity follows directly. For the converse, one 
defines a sequence of continuous linear maps as follows : For xeE x=^fn(x)xn. 
Define Tm(x)=2Tfn(x)yn9 meN, and T(x)=2?fn(x)yn. Clearly T is one-one 
and onto and Tm converges pointwise to T. By applying the Banach-Steinhaus 
theorem for countably barrelled spaces ([6, Theorem 4, Corollary 7]), one gets T 
continuous. Similarly T~x is continuous, and Tis the desired isomorphism. 

REMARK. Theorem 4 of [6] can also be used to show that every weak Schauder 
basis in a countably barrelled TVS is a Schauder basis in the initial topology, 
which extends a result known for barrelled spaces (see [2, Theorem 11]). 
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