AMENABILITY FOR REAL C*-ALGEBRAS

NHAN BAO HO

(Received 26 November 2007)

Abstract

It is shown that the complexification of a positive linear map on a real C^* -algebra need not be positive whereas the complexification of a completely positive linear map is completely positive. It is further shown that a real C^* -algebra is amenable if and only if its complexification is amenable and that a completely positive linear map is amenable if and only if its complexification is. Finally, a real version of the Choi–Effros lifting theorem is established.

2000 *Mathematics subject classification*: 46L05. *Keywords and phrases*: real *C**-algebra, amenability, completely positive map.

1. Positive and completely positive maps

Let *A* be a complex C^* -algebra and let Φ be an involutory *-antiautomorphism of *A*. Then $A_{\Phi} = \{a \in A \mid \Phi(a) = a^*\}$ is a real C^* -algebra for which $A_{\Phi} \cap iA_{\Phi} = \{0\}$ and $A = A_{\Phi} + iA_{\Phi}$; that is, *A* is the complexification of A_{Φ} . By [1, Corollary 15.4] every real C^* -algebra arises in this way. If ϕ is a real-linear map between real C^* -algebras A_{Φ} and B_{Ψ} , then ϕ extends uniquely to a complex-linear map ϕ^C between *A* and *B*, called the complexification of ϕ . In the first results in this paper we obtain relations between positivity conditions for these two maps.

Recall that an element *a* in a complex C^* -algebra is said to be *positive* if it can be written in the form b^*b for some $b \in A$ and that a linear map is positive if it maps positive elements to positive elements. The same definition is given for real C^* -algebras in [1, Chapter 14], but the extra condition $\phi(x) = \phi(x^*)$ is imposed for real states (which are real maps from A to \mathbb{R}), thus excluding examples such as $\phi(a + ib) = a + b$ from \mathbb{C} to \mathbb{R} . It therefore seems natural to demand, as is automatic for complex C^* -algebras, that a positive map ϕ between real C^* -algebras satisfies $\phi(x)^* = \phi(x^*)$ and this will be done here. Even with this extra condition, it is not true that the complexification of a positive map is positive, as the following example shows. On the other hand, if ϕ^C is positive then, for each positive $a \in A_{\Phi}$, $\phi(a)$ is in B_{Ψ} and is positive in *B*. It is therefore of the form $(b + ib')(b + ib')^* = bb^* + b'b'^*$, showing that ϕ is positive.

^{© 2008} Australian Mathematical Society 0004-9727/08 \$A2.00 + 0.00

EXAMPLE 1. Let A be the algebra of 2×2 complex matrices and let

$$\Phi\begin{pmatrix}a&b\\c&d\end{pmatrix} = \begin{pmatrix}d&-b\\-c&a\end{pmatrix}$$

Then the real algebra

$$A_{\Phi} = \left\{ \begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} : a, b, c, d \in \mathbb{R} \right\}$$

is isomorphic to the algebra \mathbb{H} of quaternions, for which the positive elements are the positive reals. Let the positive map $\phi : A_{\Phi} \to \mathbb{C}$ be defined by

$$\phi \begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} = a+2ib.$$

The complexification of \mathbb{C} is \mathbb{C}^2 with involutory *-antiautomorphism $\Psi(a, b) = (b, a)$ and corresponding real algebra { $(a, \overline{a}) : a \in \mathbb{C}$ }. Therefore,

$$\phi^{C} \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} = \phi \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + i\phi \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = (1, 1) + i(2i, -2i) = (-1, 3),$$

so ϕ^C is not positive.

Despite the negative result above, it will now be shown that the complexification of a completely positive linear map between real C^* -algebras is completely positive. As with complex algebras, a completely positive map ϕ from A_{Φ} to B_{Ψ} is one for which the natural element-wise defined maps $\phi^{(n)}$ from $M_n(A_{\Phi})$ to $M_n(B_{\Psi})$ are all positive. As for positive maps, when ϕ^C is completely positive, then so is ϕ . The key to proving the converse is to use the *-isomorphism ψ from \mathbb{C} into $M_2(\mathbb{R})$ defined by

$$\psi(a+ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

This gives rise to *-isomorphisms ψ_A from A into $M_2(A_{\Phi})$ and ψ_B from B into $M_2(B_{\Psi})$.

PROPOSITION 2. Let A, B be C^* -algebras, let Φ, Ψ be involutory *-antiautomorphisms on A, B and let $\phi : A_{\Phi} \longrightarrow B_{\Psi}$ be a completely positive linear map. Then ϕ^C is also a completely positive linear map.

PROOF. Let *n* be a positive integer and let $[a_{jk} + ib_{jk}] \in M_n(A)$ where, for each $1 \le j, k \le n, a_{jk}, b_{jk} \in A_{\Phi}$. Then

$$\psi_A^{(n)}([a_{jk} + ib_{jk}]) = [\psi_A(a_{jk} + ib_{jk})] = \left[\begin{bmatrix} a_{jk} & b_{jk} \\ -b_{jk} & a_{jk} \end{bmatrix} \right] \in M_{2n}(A_{\Phi})$$

and so

$$\phi^{(2n)} \circ \psi_A^{(n)}([a_{jk} + ib_{jk}]) = \begin{bmatrix} \phi(a_{jk}) & \phi(b_{jk}) \\ -\phi(b_{jk}) & \phi(a_{jk}) \end{bmatrix} \in M_{2n}(B_{\Psi}).$$

Then

$$\begin{split} \psi_{B}^{(n)^{-1}} \circ \phi^{(2n)} \circ \psi_{A}^{(n)}([a_{jk} + ib_{jk}]) &= \begin{bmatrix} \psi_{B}^{-1} \left(\begin{bmatrix} \phi(a_{jk}) & \phi(b_{jk}) \\ -\phi(b_{jk}) & \phi(a_{jk}) \end{bmatrix} \right) \end{bmatrix} \\ &= [\phi(a_{jk}) + i\phi(b_{jk})] \\ &= [\phi^{c}(a_{jk} + ib_{jk})] \\ &= \phi^{c(n)}([a_{jk} + ib_{jk}]). \end{split}$$

Therefore, $\phi^{c(n)} = \psi_B^{(n)-1} \circ \phi^{(2n)} \circ \psi_A^{(n)}$, which is positive.

2. Amenable algebras

A real or complex C^* -algebra A is said to be amenable if for all $\varepsilon > 0$ and for all finite subsets $\mathfrak{A} \subset A$ there exist a finite-dimensional real or complex C^* -algebra B and contractive completely positive linear maps $\varphi : A \longrightarrow B$ and $\psi : B \longrightarrow A$ such that, for all $a \in \mathfrak{A}$,

$$\|a - \psi \circ \varphi(a)\| < \varepsilon.$$

If A_{Φ} is amenable and $\{a_1 + ib_1, \ldots, a_n + ib_n\} \subset A$ then, by applying the definition of amenability to $\mathfrak{A} = \{a_1, \ldots, a_n, b_1, \ldots, b_n\} \subset A_{\Phi}$ and complexifying the resulting finite-dimensional algebra *B* and completely positive maps φ, ψ , it follows that *A* is also amenable. The following proposition establishes the converse.

PROPOSITION 3. Let A be a complex C^* -algebra and let Φ be an involutory *-antiautomorphism in A. Then $A_{\Phi} = \{a \in A \mid \Phi(a) = a^*\}$ is amenable.

PROOF. Let $\varepsilon > 0$ and let $\mathfrak{A} \subset A_{\Phi}$ be a finite subset. Since *A* is amenable, there exist a complex finite-dimensional *C*^{*}-algebra *B* and contractive completely positive maps $\varphi : A \longrightarrow B$ and $\psi : B \longrightarrow A$ such that, for all $a \in \mathfrak{A}$, $||a - \psi \circ \varphi(a)|| < \varepsilon$. Define $\psi' = (1/2) (\psi + \Phi \circ * \circ \psi)$.

Note that $\Phi \circ *$ is a real-linear automorphism and therefore ψ' is a real contractive completely positive linear map from the finite-dimensional real C^* -algebra B to A_{Φ} . Furthermore, for $a \in \mathfrak{A}$,

$$\begin{split} \|a - \psi' \circ \varphi(a)\| &= \|a - \frac{1}{2}(\psi + \Phi \circ \ast \circ \psi) (\varphi(a))\| \\ &\leq \frac{1}{2} \|a - \psi(\varphi(a))\| + \frac{1}{2} \|a - \Phi \circ \ast \circ \psi(\varphi(a))\| \\ &= \frac{1}{2} \|a - \psi(\varphi(a))\| + \frac{1}{2} \|\Phi \circ \ast(a) - \Phi \circ \ast \circ \psi(\varphi(a))\| \\ &= \|a - \psi \circ \varphi(a)\| < \varepsilon, \end{split}$$

so A_{Φ} is amenable.

https://doi.org/10.1017/S0004972708000634 Published online by Cambridge University Press

N. B. Ho

As in [2, Definition 5.4.1], a contractive completely positive linear map ϕ between two complex C^* -algebras A and B is said to be amenable if for any $\varepsilon > 0$ and any finite subset $\mathfrak{A} \subset A$, there are contractive completely positive linear maps $\varphi : A \longrightarrow M_n(\mathbb{C})$ and $\psi : M_n(\mathbb{C}) \longrightarrow B$, for some n > 0, such that $\|\phi(a) - \psi \circ \varphi(a)\| < \varepsilon$ for all $a \in \mathfrak{A}$. A similar definition applies in the real case, with $M_n(\mathbb{C})$ replaced by $M_n(\mathbb{R})$. If $\phi : A_{\Phi} \to B_{\Psi}$ is amenable and $\{a_1 + ib_1, \ldots, a_n + ib_n\} \subset A$, it then follows by applying the definition of amenability to $\mathfrak{A} = \{a_1, \ldots, a_n, b_1, \ldots, b_n\} \subset A_{\Phi}$ that ϕ^C is also amenable. The next main result establishes the converse.

LEMMA 4. Let $\sigma : \mathbb{C} \to M_2(\mathbb{R})$ be defined by

$$\sigma(a+ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

and let $P: M_2(\mathbb{R}) \to \mathbb{C}$ be defined by

$$P\begin{pmatrix}a&b\\c&d\end{pmatrix} = \frac{1}{2}(a+d) + \frac{1}{2}i(b-c).$$

Then σ , P are completely positive maps with $P \circ \sigma$ equal to the identity map.

PROOF. It is immediate that the *-isomorphism σ is completely positive and that $P \circ \sigma$ is equal to the identity map. The complexification of *P* maps

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 to $\frac{1}{2}((a+d)+i(b-c), (a+d)-i(b-c))$

and therefore maps

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} |a|^2 + |c|^2 & \overline{a}b + \overline{c}d \\ a\overline{b} + c\overline{d} & |b|^2 + |d|^2 \end{bmatrix}$$

to (r_1, r_2) , where

$$2r_1 = (|a|^2 + |c|^2 + |b|^2 + |d|^2) + i(\overline{a}b + \overline{c}d - \overline{b}a - \overline{d}c),$$

$$2r_2 = (|a|^2 + |c|^2 + |b|^2 + |d|^2) + i(\overline{b}a + \overline{d}c - \overline{a}b - \overline{c}d).$$

Note that $i(\overline{a}b - \overline{b}a) = 2 \operatorname{Im}(\overline{b}a)$ and $|a||b| \ge \operatorname{Im}(\overline{b}a)$ and so

$$(|a|^{2} + |b|^{2}) + i(\overline{a}b - \overline{b}a) = |a|^{2} + |b|^{2} + 2\operatorname{Im}(\overline{b}a)$$
$$\geq |a|^{2} + |b|^{2} - 2|a||b| \geq 0.$$

Similarly, $(|c|^2 + |d|^2) + i(\overline{c}d - \overline{d}c) \ge 0$. Therefore P^C is positive. Since \mathbb{C}^2 is commutative, then [2, Theorem 2.2.5] implies that P^C is completely positive and therefore so is P.

PROPOSITION 5. Let A, B be complex C^* -algebras and let Φ, Ψ be involutory *-antiautomorphisms on A, B respectively. If $\phi : A_{\Phi} \longrightarrow B_{\Psi}$ is a completely positive linear map such that ϕ^C is amenable, then ϕ is amenable.

PROOF. Let $\varepsilon > 0$ and let $\mathfrak{A} \subset A_{\Phi}$ be a finite subset. Since ϕ is amenable, there exist n > 0 and contractive completely positive linear maps $\varphi : A \longrightarrow M_n(\mathbb{C})$ and $\psi : M_n(\mathbb{C}) \longrightarrow B$ such that $\|\phi(a) - \psi \circ \varphi(a)\| < \varepsilon$ for each $a \in \mathfrak{A}$.

Define the contractive completely positive linear map $\varphi' : A \longrightarrow M_{2n}(\mathbb{R})$ by $\varphi' = \sigma^{(n)} \circ \varphi$ and the contractive completely positive linear map $\psi' : M_{2n}(\mathbb{R}) \to B_{\Psi}$ by $\psi' = (1/2) \ (\psi \circ P^{(n)} + \Psi \circ * \circ \psi \circ P^{(n)})$. By the lemma, $P^{(n)} \circ \sigma^{(n)}$ is the identity map on $M_n(\mathbb{C})$. Therefore,

$$\begin{split} \psi' \circ \varphi' &= \frac{1}{2} (\psi \circ P^{(n)} + \Psi \circ * \circ \psi \circ P^{(n)}) \circ (\sigma^{(n)} \circ \varphi) \\ &= \frac{1}{2} (\psi \circ \varphi + \Psi \circ * \circ \psi \circ \varphi). \end{split}$$

For $a \in \mathfrak{A}$, we then have

$$\begin{aligned} \|\phi(a) - \psi' \circ \varphi'(a)\| &= \|\phi(a) - \frac{1}{2}(\psi \circ \varphi(a) + \Psi \circ \ast \circ \psi \circ \varphi(a))\| \\ &\leq \frac{1}{2} \|\phi(a) - \psi \circ \varphi(a)\| + \frac{1}{2} \|\phi(a) - \Psi \circ \ast \circ \psi \circ \varphi(a)\|. \end{aligned}$$

Since $\phi(a) \in B_{\Psi}$, $\phi(a) = \Psi \circ *(\phi(a))$ and so

$$\begin{aligned} \|\phi(a) - \Psi \circ * \circ \psi \circ \varphi(a)\| &= \|\Psi \circ *(\phi(a)) - \Psi \circ * \circ \psi \circ \varphi(a)\| \\ &= \|\phi(a) - \psi \circ \varphi(a)\|. \end{aligned}$$

Therefore,

$$\|\phi(a) - \psi' \circ \varphi'(a)\| \le \|\phi(a) - \psi \circ \varphi(a)\| < \varepsilon,$$

establishing that ϕ is amenable.

The final result gives a real version of the Choi–Effros theorem, described in [2, Theorem 5.4.4].

THEOREM 6. Let A, B be C^{*}-algebras with A separable, let Φ , Ψ be involutory *-antiautomorphisms of A, B and let I be an ideal of B_{Ψ} . If $\phi : A_{\Phi} \to B_{\Psi}/I$ is an amenable contractive completely positive linear map, then there exists a contractive completely positive linear map $\psi : A_{\Phi} \to B_{\Psi}$ such that $\pi \circ \psi = \phi$, where $\pi : B_{\Psi} \to B_{\Psi}/I$ is the quotient map.

PROOF. If I^C is the complexification of I, let Ψ_I be the involutory *-antiautomorphism of B/I^C defined by $\Psi_I(b+I^C) = \Psi(b) + I^C$, for which $\pi^C \circ \Psi = \Psi_I \circ \pi^C$, where π^C is the quotient map associated with I^C . Note that the associated real algebra is the image of B_{Ψ}/I under the injection $\iota: b + I \mapsto b + I^C$. By the Choi–Effros theorem the complexification ϕ^C of ϕ lifts to a completely positive linear map $\alpha: A \to B$. Let $\psi = (1/2)(\alpha + \Psi \circ * \circ \alpha)$, which maps A, and hence A_{Φ} , into B_{Ψ} . Note that $\pi^C \circ \Psi \circ * \circ \alpha = \Psi_I \circ * \circ \phi^C$ and, hence, if

$$a \in A_{\Phi}, \quad \pi^{C}(\psi(a)) = \frac{1}{2}(\phi^{C}(a) + (\Psi_{I} \circ * \circ \phi^{C})(a)) = \iota(\phi(a))$$

and thus $\pi \circ \psi = \phi$.

N. B. Ho

Acknowledgement

This work is based on an honours thesis at La Trobe University supervised by Peter Stacey and contains many ideas suggested by him.

References

- [1] R. K. Goodearl, Notes on Real and Complex C*-algebras (Shiva, England, 1982).
- [2] H. Lin, *An Introduction to the Classification of Amenable C*-algebras* (World Scientific, River Edge, NJ, 2001).

NHAN BAO HO, Department of Mathematical and Statistical Sciences, La Trobe University, Victoria 3086, Australia e-mail: honhanbao@yahoo.com