80.3 A test for divisibility by seven

In this note, a bar is used to denote the digits of a number: e.g. \(\overline{abc} = 100a + 10b + c \). A three digit number \(A = \overline{abc} \) is divisible by 7 if and only if \(2a + bc \) is divisible by 7.

For example, let \(A = 245 \). Then \(2 \times 2 + 45 = 49 = 7 \times 7 \). If \(A \) has more than three digits and is divisible by 7, then the above test applies if we equate the remaining digits other than \(bc \) with \(a \). For example, let \(A = 7133 \) then \(71 \times 2 + 33 = 142 + 33 \), and applying the basic result to this gives \(142 + 33 \to 2 \times 1 + 42 + 33 = 77 = 7 \times 11 \).

Let \(A = 35133 \), then \(2 \times 351 + 33 = 702 + 33 = 735 \to 2 \times 7 + 35 = 49 = 7 \times 7 \). To prove this we note that \(100a + 10b + c \equiv 2a + 10b + c \) (mod 7).

I have given some other divisibility test for primes which were described in Notes 2548 [1], 2566 [2], 2762 [3] and 3179 [4].

References

J. KASHANGAKI
PO Box 43483, Nairobi, Kenya

Joseph Kashangaki attended Makerere University College, Uganda until 1956 and obtained his MA from Fordham University, New York in 1963. He worked for IBM in Nairobi before becoming an Income Tax Commissioner. He was Chief Inspector of Income Tax, East Africa Community Head Office, 1972–1975. His first Gazette contribution, via F. M. Arscott was in 1955. He enjoys gardening, chess and reading.

80.4 My favourite calculus problem

... is (currently) ...

What is the shortest distance (over the surface) between a given point on the ‘top’ rim of a solid right circular cylinder and a given point on the ‘bottom’ rim?

This is a particularly rich minimisation problem, well suited to exploration by any of the characteristically twentieth century aids to mathematics education – from graph paper to graphics calculator! Some cases of similar problems have cropped up in the literature from time to time, [1, 2], but the subtle aspects of this particular formulation do not seem to have been highlighted before. (The corresponding problem with a frustum of a cone is also worth investigating.)