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Abstract. We give an algebraic characterization of the class P of spectral radii of
aperiodic non-negative integral matrices, and describe a method of constructing all
such matrices with given spectral radius. The logarithms of the numbers in P are
the entropies of mixing topological Markov shifts. There is an arithmetic structure
to P, including factorization into irreducibles in only finitely many ways. This
arithmetic structure has dynamical consequences, such as the impossibility of factor-
ing the p-shift into a direct product of nontrivial homeomorphisms for prime p.

1. Introduction

Topological Markov shifts play a central role in ergodic theory and topological
dynamics. Their use in analysing the dynamics of geodesic flows goes back to
Hadamard, and was developed by Morse [15]). Shannon [17] used such shifts as
models for discrete communication systems, and proved a forerunner of the vari-
ational principle for topological entropy. Later Parry [16] independently established
the full variational principle for topological Markov shifts, ultimately leading to its
formulation and proof for general continuous mappings. The discovery by Adier
and Weiss [2] of Markov partitions, and hence Markov shift covers, for automorph-
isms of the two-dimensional torus led to their classification. This idea was developed
by Bowen [4] and Sinai [18] into a powerful general method for analysing Anosov
and Axiom A diffeomorphisms.

The most significant numerical invariant for a topological Markov shift is its
topological entropy. For aperiodic shifts this was first computed by Shanon, under
the name channel capacity, to be log A, where A is the positive dominant eigenvalue
of the non-negative integral matrix defining the shift. For aperiodic shifts such a
number A must have two properties: A must be an algebraic integer greater than or
equal to 1, and A must be strictly greater than the absolute value of its other
conjugates. Since the second property arises from the Perron—-Frobenius theory, call
the class P of such algebraic integers Perron numbers. ‘

Our principal result is that these two properties characterize the spectral radii of
aperiodic nonnegative integral matrices, hence also the entropies of aperiodic
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Markov shifts. By a result of Bowen [3], this characterizes the topological entropies
of Axiom A diffeomorphisms as well.

The proof of this theorem contains an effective algorithm for using the companion
matrix of the minimal polynomial of A € P to produce an aperiodic non-negative
integral matrix with spectral radius A. In § 3 we show that this technique in fact
produces every such matrix.

The Perron-Frobenius theory shows that a non-negative integral matrix that is
irreducible, but not necessarily aperiodic, has spectral radius some power of which
is a Perron number. In § 4 we show that if A" is Perron, then A is the spectral radius
of an irreducible non-negative integral matrix. Using the decomposition of a general
matrix into irreducible components, we deduce that the set of spectral radii of
non-negative integral matrices, irreducible or not, is exactly the set of all positive
roots of Perron numbers together with 0.

Perron numbers possess an arithmetic much like the natural numbers. Each can
be factored into a finite product of irreducible Perron numbers, each incapable of
further factorization in P. In § 5 we prove that the number of such factorizations
in finite, but non-uniqueness can occur. We also show that in every field extension
of the rationals that contains a non-rational Perron number there are examples of
non-unique factorization.

In § 6 we apply these results to factoring Markov shifts into direct products of
homeomorphisms. A result of Bowen shows that such direct factors must themselves
be Markov shifts. Since a rational prime p is irreducible in P, it will follow that the
full p-shift is not the direct product of non-trivial homeomorphisms. Also, using
the isomorphism theorem of Adler and Marcus [1] we show that up to almost
topological conjugacy there is a bijection between Perron factorizations of the
spectral radius of the defining matrix of a Markov shift and direct product
factorizations of the shift itself.

Non-uniqueness of Perron factorizations suggests looking for non-uniqueness at
the zeta function or Markov shift levels. In § 7 we give one example of this, two
pairs of Markov shifts whose products are shown to be shift equivalent by using a
theorem of Krieger on dimension groups. From this follows an example of non-
unique direct product factorization of Markov shifts.

This paper contains details and applications of work announced in [14]. It has
benefitted substantially throughout by numerous stimulating conversations with
Mike Boyle. His contributions are particularly important in § 5, where the discovery
of the crucial proposition 5 on Perron factorizations, a method for producing
non-unique factorizations used in the proof of theorem 5, and other ideas are due
to him. The author also gratefully acknowledges the support of NSF grant MCS
8201542.

2. Markov shift entropies

Let A be a non-negative integral matrix. A well-known extension [19] of the zero-one
matrix construction associates to A a homeomorphism o, of a Cantor set called a
topological Markov shift. If A" >0 for some positive integer n, then A is called
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aperiodic. This condition on A is equivalent to o4 being topologically mixing, in
which case we also say o, is aperiodic.

Throughout the rest of this paper, ‘Markov shift’ will mean a topological Markov
shift that is assumed to be aperiodic unless otherwise stated, and ‘matrix’ will mean
a non-negative integral matrix.

The Perron-Frobenius theory for non-negative matrices [10] implies that an
aperiodic matrix A has a largest positive eigenvalue A, which strictly exceeds the
absolute value for all other eigenvalues of A. Thus A, is also the spectral radius of
A. Furthermore A 4 satisfies the characteristic polynomial y,(¢) of A, which is monic
with integer coefficients, so A, is an algebraic integer. The minimal polynomial of
A4 over Q divides x4(t), so the other algebraic conjugates of A4 are eigenvalues of
A and hence have absolute value strictly less than A. Since the product of A4 with
its conjugates is an integer, it follows that A, = 1.

Let P denote the class of Perron numbers defined in § 1. This definition differs
slightly from that in [14] by allowing 1 to be Perron. The above shows that if A is
an aperiodic matrix, then A, €. The following proves that every Perron number
arises this way.

THEOREM 1. If A is a Perron number, then there is an aperiodic non-negative integral
matrix with spectral radius A.

Proof. The proof begins by using the d-dimensional companion matrix B of the
minimal polynomial of A over Q to decompose R? into invariant subspaces. These
spaces are used to construct an invariant convex region () for B. The basic idea is
to use the geometry of this region to find integral points z,,..., z, €€} such that

n

Bzj= Y ayz  witha;eZ".

i=1
The z; and a; are chosen so that every irreducible component of A =[a;] has positive
trace, implying that each component is aperiodic. Replacing A by such a component
if necessary, an application of the Perron—-Frobenius theory and the spectral radius
formula shows that A, = A.

Let A €P with degree d over Q. Let the minimal polynomial of A over Q@ be

fy=t*—ct* "= - . — ¢, where each ¢;e Z. Then
0 0 --- ¢
10 - ¢,
B=|lo 1 - ¢,

is the companion matrix of f(t), which of course can contain negative entries.
Since f(¢) is irreducible, it has no repeated roots. The real Jordan form [11] for
B shows that R? splits into the direct sum of three classes of B-invariant subspaces.
The first consists of the single 1-dimensional dominant eigenspace D for A. Fix a
non-zero we D. We sometimes identify D with R by identifying rw with r. The
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second class &€ contains eigenspaces E corresponding to conjugates of A strictly
outside the unit circle. Then dim E is 1 if the conjugate is real, and 2 otherwise.
The third class % contains those 1- or 2-dimensional eigenspaces F of conjugates
of A with absolute value <1.

There are norms on these subspaces so that

IBxllp=Alxlp,  xeD,
| Bx|| g = ¢ | x| e, x€E, 1<7g <A,
| Bx|| r = 7| x|| £, xeF,rg=1.
It is convenient from now on to norm R with the maximum of these norms.

If G represents one of the subspaces above, let mg:R? > G be the projection to
G along the complementary direct sum. Let wc =I—7p be projection to the
invariant complement C of D. The identification of D with R mentioned above
means we shall sometimes use 7, as mapping to R and speak of wp(x) as the
D-coordinate of x.

We next construct a B-invariant convex region. An element xe€@E will be
denoted by X pxg, where xz = wex. Let p(E) =log A/log 7 for E € €. Clearly p(E) >
1. Define ®:® €E >R by

o5 % ) =L I .
E E
For fixed & 7n >0, consider the region
Q=Q,,= {x eR?: max ||7ex|| < ¢ CI)(Z xE) = mer}.
F E

Since p(E)> 1 for every E, the region  is bowl-shaped, tangent to C at the origin,
and curved towards D.

We claim  is B-invariant. The basic reason for this is that ® has an invariant
graph. Let x€ (). Then

max || 7eBx| = max 7¢ || 7ex|| < (max 70)£< ¢
F F F
@(z wEBx) =T | meBx|PF =% (75 )" " || e x|
E E E

= N’(Z ﬂEX) = Anmp(x) = nmp(Bx),
E
verifying BQ < ().

We shall be concerned with representing integral points as non-negative integral
combinations of a fixed set of integral points. If S < R, let sg(S) denote the additive
semigroup generated by S.

For 6> 0, define the cone K, in R? about D by K, ={x: wpx = 0| mcx|[}. For r,
s> 0 define

Ky(r)={xeK;: mp=r}, Ky(r,s)={xe Ky: r=mpx=<s}.

The following lemma shows that the semigroup generated by the integral points in
a truncated cone contains all the integral points in a slimmer cone.
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LEmMMA 1. Fix 6> 0. For all sufficiently large r,
Ko NZ% csg(Ke(r)n2Z%).

Proof of the lemma. We first claim that if 8 =(20 +2)"' and x € K,, with 7px >4,
then [x — Ky (1,3)]n K, contains a ball of radius 8. For suppose 7px = s >4 and put

2 . 2
y=—(x+3mecX)=—mpX +—TcX.
s s s

We show the ball of radius & centred at x —y satisfies our claim. Suppose ||u]| <.
Then

20|me(x—y +u)| szo[<1 —%) | mex| +6]

<[1_§] x.i_[l_Z] [
ST e s ™ 2042

< mp(x—y+u),

proving x —y + u € K, Since
3 3
2007yl = @0) | mex| =% mpx =3,

we have

—u)||= +8)=3+
Ollme(y =)= 0(lmeyl +8) =3+

=2y u)
T 726+ TPV

so y —u e K, Also, since 8 <1, it follows that 1 =< 75(y —u)=3. These inequalities
establish our claim.

The lemma is proved inductively. First choose p such that any ball in R? of radius
p intersects Z%. Choose r so that 8> p. The first claim implies that if x € K,, with
mpXx > 4r, then [x — Ky(r, 3r)]n K,, contains a ball of radius ré > p, hence intersects
z°

Let I =sg(Ko(4r)nZ%). We show K,,nZ? <T. Clearly K,,(4r)nZ? <T. Sup-
pose K,,(1) nZ“ =T for some t = 4r; we show this forces K,,(t +r)nZ* =T, which
suffices by induction.

Let z € [K,p(t+ r)\ K,4(r)]n Z°. By the above, there is an element y € Z? contained
in [z—Ky(r,3r)]n K54(1). Hence y eI’ by hypothesis, and y =z —x for some xe
Ko(r,3r)nZ% <T. Therefore z=x +yel'+I'cT, concluding the proof of the
lemma. O

We now possess the pieces necessary to prove theorem 1. Begin by fixing 6 > 0. By
the lemma, there is an r> 0 so that K,, nZ? < sg(Ky(r)nZ?).

Next find ¢ 7> 0 so that Ky(r) = Q,, = Q. The following estimates show this is
possible. If x e Ky(r), then

rzmpx= 6| mex| = 0| mex|,  Fed
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Hence choose £=r/6. Since r= wpx= 0||wex| for Ec &,
1 p(E)-1

D Al ol (4 M

E 0 E 0 E (/]
so let n be the bracketed expression on the right. Note the role p(E)> 1 plays.

For s> 0 define
Q(s)={xeQ: mpx=s}, Q(s,0)={xecQ: s<mpx}.
We next show that if s is sufficiently large, then (B —I)Q(s, ©)< K,, Suppose
x € (s, ). Then 7p(Bx —x)=(A —1)7px while
| e (Bx — x)|| = (7 + )| 7wex].

Since

| rex|P®) < d)(z xE) < nwpX,
E

we have since p(E)> 1 that
= = 5
l7e(Bx=x)|| (75 +1)(nmpx)"/PE " L (75 +1)n /"
for large enough s. Similarly, ||7z(Bx —x)|| < (7 +1)||7ex| < (7 +1)£ so
mp(Bx—x) _(A=Dmpx_ [ A—1
lme(Bx—x)]~ (rr+D¢  Lirr +1)¢
for sufficiently large s, establishing the claim.
Now fix s>r so that (B—I)Q(s/A,©)< Ky Let T'=Q(s)nZ% and order the
elements of I as z,, ..., z,. The following procedure specifies a rule for writing each
Bz; as a non-negative integral combination

]sl—l/P(E)Z20,

]s220

Bz;= Y ayz; (1)
i=1

If mp(z)=s/A, then Bz;=z,. €T, and put a; = 8y If s/A <mp(z)=s, then
Bz;— z;€ Ky = sg[ Ko(r) N yAIS sg(l),

so choose the a; in (1) with a; = 1. This process yields a matrix A =[a;].

If A is reducible, it has an irreducible component [10]. This amounts to selecting
a minimal subset I', of I’ for which (1) holds with z, z;eT',. Replace A by this
component, so A is now irreducible and indexed by I';,. We claim tr A= 1 persists.
Let z; € I'y. There is a unique m so that s/ A < 7p(B™z;) = s. By the procedure above,
we must have z;, Bz;,..., B"z;eT, and if B™z;= z, then ax =1, proving tr A= 1.
Thus A is aperiodic since it is irreducible and has positive trace.

Finally, let A, = u. We show u = A. Let A be n-dimensional. If ¢; is the ith unit
vector in R", define P:R" >R’ by P(e;) = zi. Then (1) shows that PA = BP.

Since A is non-negative and aperiodic, the Perron—Frobenius theory shows it has
a positive eigenvector v for u. Now Py is a positive combination of the z;, and
mp(2;) >0, so wp(Pr) >0 and therefore Pv # 0. Also,

B(Pv) = P(Av) = u(Pv),

so w is an eigenvalue of B. Thus u =< A,
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To prove u = A, we first prove P is surjective. For this it suffices to show that a
B-invariant subspace of R? containing a non-zero integral point z must be all of
R If not, there is a polynomial g(t) € Q[¢] with deg g <d and g(B)z =0. Since the
characteristic polynomial f(t) of B is irreducible of degree d, it is relatively prime
to g(t). Thus there are a(t), b(t) e @[¢] with a(t)f(¢) +b(t)g(t)=1, so that

0=[a(B)f(B) +b(B)g(B)]z ="z
This contradiction establishes surjectivity of P. Now choose ueR" with Pu=w,
where w is an eigenvector for B corresponding to A. Then

A"|lw| =B "w| = || B"Pu|
= [ PA™u|| = || P|[|| A"]| |u].
The spectral radius formula for A shows that

u=limsup A"|]V" = A,

n-»>oo

completing the proof. O

3. A general algorithm
The proof of theorem 1 gives a practical procedure for finding an aperiodic matrix
with a specified Perron number as its spectral radius. This can be roughly described
as follows. Given A € P, decompose R? under the action of the companion matrix
B of A into C® D, where D is the 1-dimensional dominant eigendirection and C
its invariant complement. Then find integral points z,,..., z, with positive D-
coordinate so that

Bz;= Y% ayz, a;eZ”, 2)

J

and take an irreducible component of the resulting matrix [a;]. The proof specifies
one way to choose the z; and a;
As an example, consider the Perron root A =3.8916 of

f()=1+32—15t—46.

The procedure above was carried out to obtain the 10-dimensional aperiodic matrix
with spectral radius A given in [14]. Notice that since f(¢) is irreducible, a 3-
dimensional matrix with spectral radius A has trace —3, and hence could not be
non-negative. Thus in general the dimension of the non-negative matrix obtained
by theorem 1 must strictly exceed the degree of A.

The following shows that every aperiodic non-negative integral matrix with
specified spectral radius arises this way by a suitable choice of the z;

THEOREM 2. Let A € P have degree d, and let B and D have the meaning above. If
A =[a;] is an n-dimensional aperiodic non-negative integral matrix with spectral radius
A, then there are z,€ Z° with positive D-coordinate such that Bz;=Y_, a;z.

Proof. Since vectors are column vectors, it is notationally convenient to replace A

n

by its transpose, and find z with Bz;=}/_, a;z;
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Consider A:R">R" and its restriction to Q(A)". The Perron-Frobenius theory
shows there is a positive eigenvector v € R” for A corresponding to A. By working
over Q(X) instead of R, we can guarantee that ve @Q(A)", and multiplying by
a positive integer, that veZ[A]" Thus there are integers z; such that
v; =zt ZpA+ '+Z.'d)‘d_l>0-

Define ¥:Q(A)-> Q4 by

W(r+rA+: - +rA ) =[rnr ... r]"

Put z; =W (v;) € Z% Since v is an eigenvector,
Ay =(Av); = ¥ a,v;
j=t

Multiplication by A on Q(A) has matrix B with respect to the basis {1, A,...,A?"'},
so applying ¥ yields

BY(v,)=Y¥(Av;) = i a; ¥(v;)

j:

or

It remains to verify that each z; has positive D-coordinate 7(z;). First note that
w¥=[1A - A4"]
is a left eigenvector for B with eigenvalue A. Linear algebra shows that
C={xeR:w*x=0},
$0 7p is a multiple of w*. But w*z; = v;> 0, so replacing every z; by —z; if necessary,
it follows that 5 (z;) > 0 for every i. O
To illustrate theorem 2, consider A =2. Then to produce all matrices with spectral
radius 2, it suffices to examine finite collections {z,, ..., z,} of positive integers and
the possible ways of writing 2z;=Y.|_, a;z. The proof of theorem 1, together with
the normal form of a reducible matrix [10], shows that every matrix [a;] produced
this way has spectral radius 2, although it may be reducible. Conversely, theorem
2 shows that every aperiodic matrix with spectral radius 2 arises this way.
Finally, we wish to point out the role of positivity of the D-coordinate of the z;
Since all that seems to be required of the z; is that (2) holds, it seems plausible to
use the choice z; = e, z4.; = —e, for 1 <i=<d, where ¢ is the ith unit vector of R%
The signs can be adjusted so that (2) holds, yielding a 2d-dimensional matrix A.
The proof in theorem 1 that A, =A holds until the last paragraph. The essential
point is that if v is a positive eigenvector for A4, then positivity of #5(z;) guarantees
that

mo(Po)= ¥ vp(z)>0

i=1
and hence Pv # 0. In the method just suggested, it is possible that Pv =0, and thus
that A, > A. Indeed this occurs with the cubic example above. If A denotes the
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6-dimensional matrix produced, then
xa(t)= (£ +362—-15t—46)(£2 - 31— 15t —46).
The first factor has maximum root A =3.8916 while for the second it is A, = 6.4390.

Indeed, this method never works unless the companion matrix is already non-
negative itself. For suppose A has minimal polynomial

f=tt—ct "= —c,
It can be shown that the 2d-dimensional A produced as above has charactristic
polynomial
(=t = =) = et T = = eal)

An elementary argument shows that the maximum root of the second factor strictly
exceeds A unless each ¢; =0, proving our assertion.

4. Periodic matrices

The focus so far has been on aperiodic matrices. A weaker condition is irreducibility
of A, that for every pair i, j there is an n>0 with (A"); > 0. Irreducibility of A
corresponds to topological transitivity of ..

Perron’s original paper concerned positive, hence aperiodic, matrices. Frobenius
extended the theory to non-negative irreducible matrices, and analysed possible
periodic phenomena. For such an A he showed there is a positive dominant
eigenvalue A 4 corresponding to a positive eigenvector. Furthermore, there is a period
k for A such that the spectrum of A is invariant under multiplication under the kth
roots of unity, and the other eigenvalues of A with absolute value A are the kth roots
of unity times A. The aperiodic case corresponds to k = 1. Since the conjugates of
A occur among the roots of x4(t), it follows that A* must be Perron.

Thus the spectral radii of irreducible matrices are positive numbers some positive
power of which is Perron. An example is A =~/§, which is not Perron, but whose
square is. The next result shows that the converse holds.

THEOREM 3. A positive number is the spectral radius of an irreducible non-negative
integral matrix if and only if some positive integral power of it is Perron.

Proof. Although it is likely the geometric ideas from the proof of theorem 1 can be
adapated here, the following proof uses only the statement of that theorem.

Let A >0 and A* e P. By theorem 1, there is an aperiodic matrix A with A, =A%
Let P be a cyclic permutation matrix of dimension k. Then A® P is irreducible, and

(AQP) =A*®@I=diag(A,..., A)
has spectral radius A, =A% Hence A gp = A. O

Recall that the matrix A produced in theorem 1 has tr A= 1. Hence this gives a
different proof of a result of Adler and Marcus [1] that if the greatest common
divisor of the periods of an irreducible matrix is k, there is another such matrix
with the same spectral radius containing an actual k-cycle.

We remark that the proof of theorem 1 breaks down if A £ P but A* €P because
the region  is no longer strictly curved towards the dominant eigendirection.
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Specifically, the inclusion
(B—I)Q(s, ©) < Ko

always fails, regardless of the size of s.

Our results can be used to characterize the spectral radii of general non-negative
integral matrices.
CoROLLARY. The set of spectral radii of non-negative integral matrices equals

{AVe:reP, k=1}u{0}.

Proof. Let A be non-negative integral. By a permutation of coordinates, A can be
given the form ([10])

A“ 0 Cee 0
A21 Azz e 0
Anl Anz e Am'l

where the A; are irreducible and square. Since A, =max A,,, either A4 is zero or

some power of it is Perron. The reverse inclusion is a consequence of theorem 3.
a

5. Perron arithmetic

In this section we study the arithmetic structure of the class P of Perron numbers.
The principal results are that each Perron number can be decomposed into a finite
product of irreducibles incapable of further decomposition, that this decomposition
is not always unique although the number of decompositions is finite, and that
non-unique Perron factorization occurs in every field containing a non-rational
Perron number. These results are applied to Markov shifts in § 6, 7. They have also
recently been applied by Boyle and Tuncel [7] to study infinite-to-one codings of
Markov shifts.

ProOPOSITION 1. P is closed under addition and multiplication.

Proof. Let A € P with conjugates A, = A, A, ..., A,, and u € P with conjugates u, =
M, ..., Mo Then A +u > 1, and its conjugates are among the numbers A; + u;. Now

|Ai + il = 1A+l < A +p,
with equality only when A; = A and u; = u. This proves A + u €P. A similar argument
shows Au €P. 0
PrOPOSITION 2. P is dense in [1, o).

Proof. This follows from proposition 1 if we can show that'1 is a limit point of P.
Consider the largest root A, of p,(¢)=1t"—t~1. Since the companion matrix of
p.(1) is aperiodic and non-negative, A, € P. Now p,(1)=—1,and p,(t)=nt""'—1=
n—1for t=1.Thus A,e(l,n/n—1),s0 A,~> 1. O
In contrast to proposition 2, the next results show that certain algebraically defined
subsets of P are discrete.

ProPOSITION 3. For every d > 1, {A € P: deg A = d} is discrete in [1, ).
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Proof. Fix abound M =1. Suppose A eP withdegA =r=d and A = M. Let A have
conjugates A; = A, A,, ..., A,. The minimal polynomial for A is

MU-A)=t—at" "t+at" > = - -+ (-1)0,,

where the o; are the elementary symmetric functions in the A The o; are integers,
and since |A;| <A and r=d,

|o-j|s('t))«’s2"M", lsj=r
J

There are only a finite number of possible polynomials, so
{AeP:deg A =d}n][l, M]

is finite. O
ProrosITION 4. If J is a finite extension of Q then K n P is discrete.

Proof. If [K:Q]=d, then KnPc{AeP:degA <d}. O
The next result is crucial to establishing factorizations of Perron numbers into
irreducibles.

PROPOSITION 5. If A = afB with a, B, A €P, then a, B Q(A).

Proof. Suppose a £ Q(A). Then the minimal polynomial f(t) of @ over Q(A) has
degree d =2. Let f(t) = Hi, (1 - ;) with a, = a. Since f(t) is irreducible over Q(A),
SO is

g(t) =1t fli[. (%—ai).

Now g(B)=0, so the conjugates of B8 over Q(A) are B;=A/a;, 1=i=<d. Since a;
and B; are also rational conjugates of a and B, for i =2 we have by definition of

P that
A A
B=—<—=|Bl|<B.
a |aj
This contradiction proves a € @(A). Then B=A/acQ(A) as well. O

Call A €P irreducible if A>1 and A cannot be written as af with a, B€P and
a, B> 1. Proposition 5 proves that a rational integer is irreducible if and only if it
is prime. As a further example, we show that A =(1 +~/§)/2 is irreducible. For
suppose A = af with a, B8 € P. By proposition 5, «, eQ(«/g). Since A is a unit, «
and B must also be units. The unit group of Q(v5) is {+A": neZ}. Thus a=A"
and B=A" Since o, BeP, it follows m,n=1. But A =aB implies 1=m+n, a
contradiction. A similar argument shows A +2 is irreducible by using primality of
its norm. This will be used shortly.

In the following result, Perron factorizations that differ only in the order of terms
are counted as being the same.

THeOREM 4. Every Perron number greater than 1 can be factored into a finite number
of irreducibles. There are only a finite number of such factorizations, but factorization
into irreducibles is not always unique.
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Proof. If AP with A#1, and A =a, - - a, with 1# a;eP, then proposition §
shows that each a; € Q(A). Since @(A) is a finite extension of Q, proposition 4 shows
that S=Q(A)nPn[1, A] is finite. Since a;€[1, A], all Perron factorizations of A
use only terms from the finite set S. Thus there are only a finite number of possibilities,
some of which must be irreducible factorizations. Finally, if A =(1++v5)/2,
then 5, A, and A +2 are irreducible and so 5-A-A=(A+2)-(A+2) is a case of
non-unique irreducible factorization. O

Not every number field has non-unique Perron factorizations since the field may
not contain any non-trivial real subfields. For example, let @ be a non-real root of
t? —t—1, where p is prime, and let K =Q(a). Since ¢ —t—1 is irreducible over Q
(see [13, p. 215]), we have [K:Q]=p. Let L=K nR, and suppose L# Q. Since
p=[K:L][L:Q] and [L:Q]=1, it follows [L:Q@]=p, so L= K. But K is not real.
This forces L=Q. Here K ~nQ={2, 3, ...} has unique Perron factorizations. If the
intersection is any larger, then non-uniqueness occurs.

THEOREM 5. Let K be a finite extension of Q. Then the following are equivalent.

(a) K P has non-unique Perron factorizations

(b) K NP contains non-rational Perron numbers;

(c) KnR#Q.

Proof. Since the rational integers have unique factorization in primes, (a) implies
(b). If Ae KNP and A £Q, then Q# Q(A) < K nR, proving that (b) implies (c).

To prove (c) implies (a), assume K is real by replacing it with K nR. Let U be
the multiplicative group of units of K. There will be three cases to consider:
[K:Q)=2, rank U=2, and [K:Q]=3. The first and third are handled by special
arguments, while the second uses the Dirichlet unit theorem.

First suppose [K:Q]=2. Then K =Q(\/E) for a square-free integer d. Since
K nR#Q, we have d > 1. Let u be a fundamental unit for K, so U ={+tu": neZ}.
We may assume u > 1. The proof that (1 +~/§)/ 2 is irreducible extends directly to
show that u is irreducible. Consider A = uv/d. Clearly A € P. Factor A into a product
A; - -+ A, of irreducibles. Since d is square-free, it is a product p, - - - p, of distinct
primes, which are also irreducible. Thus

AP=A%- AL, =uup, - p,
But every irreducible on the left occurs to an even power, while each p; occurs once.
Hence A? has distinct irreducible factorizations.

To consider the next case we use information about U supplied by the Dirichlet
unit theorem. Recall that K has s real embeddings @, ..., 6, and ¢ conjugate pairs
of complex embeddings 6,.,,, 0,.1,..., 0., 05,,, where [K:Q]=s+2f Assume
without loss that 6, is the identity. The unit group of K is best studied using the
logarithmic embedding

gla)=(log|6i(a)l,...,log|6,(a)l,log |6, .i(a)]’ ..., log |6, (a)) eR"™"
If V={xeR**": Z, x; =0}, then for a € U we have g(a) € V. The content of Dirichlet’s

theorem is that g(U) is a cocompact lattice in V, so g(U) is a free abelian group
on s + ¢ — 1 generators. Since here g(U) = U /{+£1}, it follows thatrank U =s +¢— 1.
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Since K is real, s=1. Then if [K:Q]=4 or s =3 and t =0, it is easily deduced that
rank U =2. Thus the only case left is s =t =1, where [ K: Q] =3. We deal with this
case shortly.

The condition 6,(A)>|6,())|, j=2 defines an cpen cone in V. Since g(U) is a
cocompact lattice in V, it follows that U nP is non-empty and discrete. Hence
UnP has a smallest element «, which is clearly irreducible. Let L=0Q(a). If
[L:Q] =2 we are done by the first case. We handle the possibility [L:Q@]=3 and L
has non-real embeddings below. Thus replace K by L and assume rank U =2.
Hence there is a Be UnP such that B8 # a” for n=1. Then A =a"/B e U, and
clearly A P if n is sufficiently large. Consider a” = AB. Since B is a unit that is not
a power of a, the irreducible factorization of 8 must contain units different from
a, Since a is irreducible, this yields distinct irreducible factorizations of a”, conclud-
ing this case.

Finally, consider the case [ K: Q]= 3 with s = t = 1. Here K has one real embedding,
the identity 6,, and one conjugate pair of complex embeddings 6,, 8,. Thus rank
U =1, so there is a fundamental unit ¥, and we may assume u > 1. It follows that
ucP, and that u is irreducible from a previous argument.

Let ZU denote the set of rational integers times units. We next find an irreducible
a€ KNP that is not in ZU. Define 8: K >RXC by 0(a)=(0,{a), 6,(a)). Put
0(u) = (u, v) and define T(x, z) = (ux, vz). For a>0 put

xv
—u—’ <lzl=|x|, |xz? = a}.

W, = {(x, z)eRXC:

Then W, is a fundamental wedge for T in that {T"W,: neZ} is a partition of

{(x, 2): |xz’l = a}. Thus if nu*€ 6(ZU)~ W,, then k=0 and n=<a'’>. Hence
|86(ZU) N W,|=O(a'?).

On the other hand, if O denotes the ring of integers in K, then 6(0) is a cocompact

lattice in R X C. Now vol( W,,) = *vol( W,), s0|6(0) n W,| / a converges to a positive

limit as a - c0. This disparity shows there are quantitatively many more integers in

K thanin ZU.
Take ye 0, y¢ZU, and assume y>0. Note that |8,(u)|<u, so a= yu* P for
large enough k. Decompose a« =« - - - a, into irreducibles. Since a £Z U, some

a;2ZU. Replace a by a;,so now « is an irreducible not in ZU. Since a2 Q and
[K:Q]=3, we have K =Q(«a), 50 |6,(a)|<a. Thus A =a" /uecP for sufficiently
large n. Then a” = uA, and since both a and u are irreducible, K nP has non-unique
Perron factorizations. O
In the case rank U =2, a slightly more elaborate proof, using the geometry of the
lattice g(U) in V, shows there is a pairwise distinct set
{/\l’-"akm,y‘l,---al"n}
of irreducibles in K with A, - - A, =pu; " - up.

6. Topological factorizations of Markov shifts
In this section are some applications of Perron arithmetic to Markov shifts. We
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show that the inability to factor a Markov shift into a direct product of homeomorph-
isms can sometimes be deduced from the arithmetic nature of its entropy. One
consequence is that if p is a prime number, then the full p-shift has no such
factorizations. Since this fact does not seem to be in the literature, we give two other
proofs. Another consequence is that the full n-shift has a kth root exactly when n
is a perfect kth power. We also use the Adler-Marcus theorem to deduce that, up
to almost topological conjugacy, there is a bijection between direct product factori-
zations of o4 and Perron factorizations of A 4.

We begin by showing that direct factors of Markov shifts are again Markov shifts.
Recall our convention that Markov shifts are assumed to be aperiodic. For brevity,
say that a homeomorphism is Markov if it is topologically conjugate to a Markov
shift.

ProposITION 6. If ¢ and  are homeomorphisms such that ¢ Xy is Markov, then
both ¢ and ¢ are Markov.

Proof. Since ¢ Xy is Markov, it follows that both ¢ and ¢ are expansive homeo-
morphisms of zero-dimensional compact spaces and have canonical coordinates.
Clearly both are topologically mixing. A result of Bowen [3] shows that ¢ and ¢
are Markov. |

Call a homeomorphism topologically prime if it is not topologically conjugate to the
direct product of two non-trivial homeomorphisms. The following shows that an
arithmetic condition on entropy alone is enough to imply topological primality.

THEOREM 6. If A is an aperiodic matrix with A, irreducible, then o, is topologically
prime.

Proof. Suppose o4 = ¢ X . By proposition 6, there are aperiodic matrices B, C with
¢=0p and Yy =0, Hence A, Ac €P and A, = AgA., contradicting irreducibility of
Aa O

THEOREM 7. The full n-shift is topologically prime if and only if n is prime.

First proof. If n is prime, it is irreducible, so the n-shift is topologically prime by
theorem 6. If n = ab, then o, =0, X0, (]

This can be obtained more directly. The second proof, recently communicated by
G. Hansel, uses only a periodic point count and does not rely on proposition 6.

Second proof (Hansel). Suppose p is prime, and o, = ¢ X, where ¢: X > X and
¢: Y > Y. Let N,(¢) be the number of fixed points for ¢", and L,(¢) be the number
of points of least period n under ¢. Then N,(¢) =1, La(¢). Clearly

N,(¢ X¢) = N,(¢)N,(¢).

Now p = N\(g,) = N,(¢)Ni(¢), so assume without loss that N,(¢/)=1. Let y, be
the unique fixed point of . We show Y ={y,}, showing ¢ is trivial. Note that

pp" = Np"(a-p) = Np"(¢)Np"(dJ)
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Since p|L,«(¢) for k=1, there is an integer r such that
Ny»(¢) =1 +kz—:| L (¢)=1+pr.

Then (1 +pr)|p”’, so r=0. Therefore N,»(¢)=1 for n=0. Thus for all n=0 the

points of period p” under o, have Y-coordinate y,. But these are dense, so Y ={y,}.
O

This approach is elementary and elegant, but it appears difficult to extend it to a
proof of theorem 6. The following proof is more analytic.

Third proof. We anticipate material on zeta functions from the next section. Refer
there for unexplained notation and terminology.
Let p be prime. Suppose as in the first proof that g, =0 X0 Let

GB=M0-at)™, LO=[T0-B"
Since (1—pt)~' = L (t) = {p(t)® (1), taking inverses gives
1—pt=n (l-aiBjt).

Unique factorization in C[¢] shows that both {z(t)”' and {c(t)" are linear, say
1 —ngt and 1 — nct with ng, nc € Z. Then p = ngng, a contradiction unless one of the
factors is trivial. O

Another result of number theoretic considerations is a necessary condition for the
existence of roots of Markov shifts.

THEOREM 8. A necessary condition for a Markov shift o4 to have a k’th root is
A{*eP. In particular, o, has a k’th root if and only if n is a perfect k’th power.

Proof. If ¢ is a homeomorphism such that ¢* = o4, an argument similar to that in
proposition 6 shows that ¢ is a mixing Markov shift as well, say ¢ =op Then
AY*¥ =z cP. The second statement then follows since n'/* e P exactly when n'/*
is an integer. O

In {1] Adler and Marcus introduced a natural relationship between Markov shifts
which they called almost topological conjugacy. They showed that topological
entropy classified aperiodic Markov shifts up to almost topological conjugacy.
Combining this with proposition 6 and theorem 1 yields the following.

THEOREM 9. Let o be a Markov shift with entropy log A. Then up to almost topological
conjugacy there is a bijection between factorizations of o into a direct product of
non-trivial homeomorphisms and Perron factorizations of A. In particular, the number
of such factorizations is finite.

7. Non-unique factorizations

It is a consequence of the finiteness of the number of Perron factorizations together
with proposition 6 that a Markov shift is the direct product of a finite number of
topologically prime Markov shifts. Is such a factorization unique up to order? Direct
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factorization of a Markov shift induces a kind of factorization of its zeta function,
providing a necessary condition for the former. The non-uniqueness of Perron
factorizations suggests corresponding non-uniqueness for factorizations of zeta
functions and of Markov shifts. We illustrate this here with an example, leading to
a case of a non-unique topological factorization.

The periodic point information about a Markov shift o4 is summarized in its zeta
function

c=esp (5 M)

n=1 n

The zeta function has a product formula [9]
La=Ta-¢"",
P

where the product is over all periodic orbits P of o4. Bowen and Lanford [5] showed
that if xa(£) =[], (t—A;) then £, (1) =T[, (1 —A;)"".

The zeta function of a product is computed as follows. There is a natural conjugacy
between o5 Xoc and agee. If xp(t) =[[, (t—A;) and xc(¢) =], (t—p;), then

Xpoc(t)= r; (= Aapsy).
Thus
{soc(t) = [E (= Apt) ™"
If we define the ®-product of zeta functions of Markov shifts by
I'_] (1 —A,-t)_'®];[ (1—p;t)™! =[£ (1= A;t)™",

then {gec = {s® . Thus a factorization o, =0y Xo- implies a ®-factorization
{a={s® - of the corresponding zeta functions, which in turn implies a Perron
factorization A, = AgAc.

Do distinct Perron factorizations always arise from distinct ®-factorizations of
zeta functions, or from direct product factorizations of Markov shifts? We do not
know the general answer, but give here one example of this phenomenon.

Let a=(1 +~/§)/2, and B=(1 -«/g)/Z be its conjugate. Then as above a, a +2,
and S are irreducible, so (a +2)?=5a? are distinct irreducible factorizations. We
will find matrices B for a +2 and A for a® which will yield corresponding distinct
zeta function factorizations. Next using a theorem of Krieger, we show that B® B
is shift equivalent to 5A. Taking fifth powers will give conjugate Markov shifts
having distinct factorizations into topologically prime shifts. Let

31
=)} 1]
Then xa(t)=[t~(a +2)]ly~ (8 +2)] so

{sop(t)=[1—(a+2)*] ' [1-(B+2)*1]'[1 =51
and Agep = (@ +2)% Next consider
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2 1
C =
[1 1]
with eigenvalues a” and B In order to match zeta functions, we need to modify
C to an aperiodic matrix A with an additional eigenvalue 1 of multiplicity two. An

elegant technique from [6] can be used to construct a Markov cover o4 for o such
that N,(o4) = N,(oc) fot n=2, while N\(c4) = N,(o¢)+2. Specifically,

2 0 0 01
1 1.0 0 1
A=i1 0 1 0 1
01 1 01
0 0 0 1 1

The product formula implies that {4(f) = {c(t)(1 — ). Hence { ® {5 = {s® {4 gives
distinct zeta function factorizations.

From this we conclude that o X oy and o5 X o4 have identical zeta functions. In
fact, they are shift equivalent with lag 4. We sketch the use of Krieger’s theorem to
find a shift equivalence, and then give the explicit matrices.

The idea is to identify the dimension groups of B® B and 5A, and show there
is an order-preserving isomorphism between them. We use the notation and ter-
minology of [8]. Let S denote the ring Z[3]. The dimension group G(B® B) embeds
naturally in R* as S$*. Let

4 3 -2 1
50 00
M=12 4 -1 3|
31 2
00 50

The columns of M generate G(5A) over S, and M gives an order isomorphism
between G(B® B) and G(5A). Using Krieger’s theorem [12], this produces matrices

8 6 1 2
9 3 3 1
Vv={6 7 2 4|
7 4 4 3
31 6 2

875 250 125 375 1000
W= 625 0 125 250 625
250 250 250 250 625/
125 125 250 125 375
suchthat WV = (B® B)*, VW =(5A)*, (B® B)W = W(5A),and V(B® B)=(5A) V.
Thus V and W give a shift equivalence of lag 4 between B® B and 5A.

https://doi.org/10.1017/50143385700002443 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002443

300 D. A. Lind

It follows that for n =4, o2 Xoh =07 X o's. Let n=5. Since Ags=5%a*(a +2) and
a*(a+2) is not divisible by 5 in P, it follows that any prime factorization of o3
contains at most two terms conjugate to os. Fix a prime factorization of o3 and
use it twice to factor o X 3. Now o3=05X- - - X0 (5 times) has more copies of
os than occur in the above factorization of o3 X o's. Take any prime factorization
of o> to complete the non-uniqueness example.

Itis unknown to us whether o5 X 04 and oz X op are themselves conjugate. A positive
answer would be an interesting example of non-unique topological factorization,
while of course a negative answer would settle the shift equivalence problem of
Williams.
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