DIAGRAMMATICALLY REDUCIBLE COMPLEXES AND HAKEN MANIFOLDS

J. M. CORSON and B. TRACE

(Received 16 April 1999; revised 28 February 2000)

Communicated by W. D. Neumann

Abstract

We show that diagrammatically reducible two-complexes are characterized by the property: every finite subcomplex of the universal cover collapses to a one-complex. We use this to show that a compact orientable three-manifold with nonempty boundary is Haken if and only if it has a diagrammatically reducible spine. We also formulate an analogue of diagrammatic reducibility for higher dimensional complexes. Like Haken three-manifolds, we observe that if $n \geq 4$ and M is a compact connected n-dimensional manifold with a triangulation, or a spine, satisfying this property, then the interior of the universal cover of M is homeomorphic to Euclidean n-space.

2000 Mathematics subject classification: primary 57M20, 57N10, 20F06.

Keywords and phrases: diagrammatically reducible, manifold, Haken manifold, spine, collapse, covering space, two-complex.

1. Introduction

In this paper we establish a connection between Haken 3-manifolds and diagrammatically reducible 2-complexes. More precisely, we show that a compact orientable 3-manifold M with nonempty boundary is Haken if and only if it has a diagrammatically reducible spine K (Theorem 4.4).

To carry out this construction, we first give a characterization of diagrammatically reducible 2-complexes, which is a result of independent significance (Theorem 2.4): A 2-complex X is diagrammatically reducible if and only if every finite subcomplex of the universal cover of X collapses to a 1-complex. In the case of finite 2-complexes, this was conjectured by Brick [Bk].
Diagrammatically reducible 2-complexes were introduced by Sieradski [Si] and were subsequently studied by Gersten [Ge1, Ge2] and others. They are an interesting class of aspherical 2-complexes, with applications in equations over groups. Haken manifolds are an important, well-behaved, class of compact 3-manifolds; see, for example, [He] as a general reference. Knot complements are examples of orientable Haken 3-manifolds. Gersten has previously shown [Ge2] that orientable Haken 3-manifolds have the homotopy type of a diagrammatically reducible 2-complex. And earlier Chiswell, Collins, and Huebschmann [CCH] had shown that bounded Haken 3-manifolds have the homotopy type of a Diagrammatically Aspherical 2-complex (a weaker property).

Our equivalent formulation of diagrammatic reducibility makes sense, with a minor modification, for higher dimensional complexes. With this in mind, we say that a simplicial complex K satisfies the property P_1 if: every finite subcomplex of the universal cover of K is contained in a finite subcomplex that collapses to a 1-complex. In dimension two it is not necessary to go to a larger subcomplex since subcomplexes of a finite 2-complex that collapses to a 1-complex also collapse to 1-complexes. In fact it is easy to see that a finite 2-complex collapses to a 1-complex if and only if every 2-dimensional subcomplex contains a 2-cell with a free face; see Section 2 for this terminology. Thus, for 2-complexes the P_1 condition is equivalent to diagrammatic reducibility, by Theorem 2.4.

Using this notion we extend a well-known result about Haken manifolds in dimension three. Namely, if M^n is a compact, connected, n-dimensional manifold with a triangulation, or a spine, with the property P_1 ($n \geq 4$), then the interior of M^n is covered by \mathbb{R}^n (Theorem 3.2). By a spine of a PL manifold M we mean a simplicial complex K such that some triangulation of M simplicially collapses to a subcomplex isomorphic to K. For a general reference on piecewise linear topology, we refer the reader to [RS].

It should be noted that there is also an interesting characterization, due to Gersten [Ge2], of diagrammatic reducibility in terms of branched coverings. It may be worth investigating what this condition means in higher dimensions, and possibly comparing with the P_1 condition above.

2. Diagrammatically reducible complexes

In this section we work in the category of combinatorial 2-complexes. Thus, for our purposes every 2-cell of a 2-complex is attached along a (finite) edge-circuit, and by a map of 2-complexes we mean a combinatorial map (that is, a map in which each open cell in the domain is mapped homeomorphically onto an open cell in the target).

Let X be a 2-complex. We say that an open $(n - 1)$-cell t is a free face of an
open \(n \)-cell \(e \) if it occurs exactly once in the boundary of \(e \) and it does not occur in the boundary of any other \(n \)-cell. Recall that under these circumstances, the passage from \(X \) to the subcomplex \(X \setminus (e \cup i) \) is called an elementary collapse. We say that \(X \) collapses to a subcomplex \(A \) if there is a finite sequence of elementary collapses passing from \(X \) to \(A \). (In this case, of course, \(X \) and \(A \) have the same homotopy type.)

For convenience, we say that a 2-complex is \textit{closed} if it is finite and none of its cells has a free face. Notice that every finite 2-complex collapses to a closed subcomplex.

Given a closed surface \(F \), we say that a map \(f : F \rightarrow X \) is a \textit{near immersion} if \(F \) supports a combinatorial cell structure for which \(f \) is a combinatorial map and \(f |_{F \setminus F^0} \) is an immersion. Here \(F^0 \) denotes the 0-skeleton of the cell structure of \(F \), and by an immersion we mean a local embedding. Then we have:

Definition. A 2-complex \(X \) is \textit{diagrammatically reducible} (abbreviated DR) if there is no near immersion of \(S^2 \) into \(X \).

The next lemma is used in the proof of the main result in this section. For use in the proof we make a definition: \textit{A complete set of cutting curves} on a closed orientable surface \(F \) is a collection of disjoint simple closed curves such that cutting the surface along these curves yields a genus zero surface.*

Lemma 2.1. Suppose \(f : F \rightarrow X \) is a near immersion, where \(F \) is a closed surface and \(X \) is a 1-connected 2-complex. Then there exists a near immersion \(S^2 \rightarrow X \) (that is, \(X \) is not DR).

Proof. By first subdividing \(X \), and \(F \) correspondingly, we may assume that \(X \) is a simplicial complex. We may also assume, by taking an orientable double cover, that \(F \) is orientable.

Choose a complete set of cutting curves \(\gamma_1, \ldots, \gamma_k \) for \(F \) such that each curve avoids the finitely many points at which \(f \) is not a local embedding. Then each \(f(\gamma_i) \) is an immersed curve in \(X \). By appropriately subdividing \(X \) (and pulling back the subdivision to \(F \)), we can arrange that the \(\gamma_i \) lie in the 1-skeleton and thus are embedded edge-circuits. Since \(X \) is simply connected, each \(f(\gamma_i) \) is null-homotopic and hence bounds a van Kampen diagram \((D_i, \phi_i)\) in \(X \). Recall that a van Kampen diagram \((D, \phi)\) in \(X \) is a finite 1-connected planar 2-complex \(D \) and a combinatorial map \(\phi : D \rightarrow X \); see, for example, [LS] for more details.

Form a 2-complex \(L \) by \textit{attaching} the diagram \(D_i \) to \(F \) along \(\gamma_i \), for each \(i = 1, \ldots, k \). It should be noted that under this \textit{attaching} some identifications of \(F \) along \(\gamma_i \) may be performed. Define a combinatorial map \(\phi : L \rightarrow X \) by \(\phi|_F = f \) and \(\phi|_{D_i} = \phi_i \) (\(1 \leq i \leq k \)). Note that \(L \) is a closed, 1-connected 2-complex and that \(L \) embeds in \(S^3 \) (as shown in Figure 1) such that \(S^3 \setminus L \) is a disjoint union of open 3-cells.
Diagrammatically reducible complexes and Haken manifolds

(a) (b)

FIGURE 1. Embedding of \(L \) in the 3-sphere in the case where \(F \) is the torus. In (a) the attached diagrams are disks however in general, as in (b), they are 'pinched' disks.

(two of them in this case). Furthermore, the map \(f \) factors through \(L \); \(f = \phi \circ \iota \), where \(\iota : F \to L \) is the natural map into the adjunction space \(L \).

Hence, there exists a 2-complex \(K \) with the following four properties:

1. \(K \) is a closed 1-connected 2-complex embedded in \(S^3 \).
2. \(S^3 \setminus K \) is a disjoint union of open 3-cells, each of which is attached to \(K \) by an immersion \(S^2 \to K \).
3. The map \(f \) factors through \(K \); that is, there exist combinatorial maps \(g : F \to K \) and \(h : K \to X \) such that \(f = h \circ g \).
4. Amongst all 2-complexes satisfying 1–3, \(K \) has a minimal number of 2-cells.

Now let \(j : S^2 \to K \) be the attaching map (immersion) of one of the 3-cells in \(S^3 \setminus K \). We claim that the map \(h \circ j : S^2 \to X \) is a near immersion.

To see this, suppose \(h \circ j \) is not a near immersion. Then there exists a pair of distinct closed 2-cells \(\sigma \) and \(\tau \), in the pull-back cell structure of \(S^2 \), such that \(\sigma \cap \tau \) contains a 1-cell \(e \) and \(h(j(\sigma)) = h(j(\tau)) \). Thus, for each point \(x \in \sigma \), there is a unique point \(x' \in \tau \) such that \(h(j(x)) = h(j(x')) \), and \(x = x' \) if \(x \in e \). Let \(K' \) denote the 2-complex obtained by identifying \(j(x) \) and \(j(x') \), for each \(x \in \sigma \).

There are four ways in which the 2-cells \(\sigma \) and \(\tau \) can meet: in one edge, the union of two edges, one edge and a disjoint vertex, or the three edges making up the entire (common) boundary of the 2-cells. In any case, observe that the embedding of \(K \) in \(S^3 \) can be continuously deformed to an embedding of \(K' \), folding \(j(\sigma) \cup j(\tau) \) at \(e \) in the direction of the 3-cell bounded by the immersion \(j \). In the first two cases, the number of 3-cells in \(S^3 \setminus K' \) is the same as in \(S^3 \setminus K \). In the third case, the number of
3-cells is increased by one. And in the last case, the number of 3-cells is decreased by one.

The complement of this embedding of K' is again a disjoint union of open 3-cells, and after collapsing any 2-cells of K' with a free edge that may have been introduced, we see that (1) and (2) hold. Also (3) holds for K', since h factors through K'. But K' has one less 2-cell than K, contradicting (4). Our claim therefore follows, and hence X is not DR. \hfill \square

REMARK. As an alternative to viewing K as embedded in S^3 in the above proof, the conditions (1) and (2) can be replaced by simply requiring the existence of a collection of immersions $S^2 \to K$ such that each open 2-cell of K is hit exactly twice.

We note two easy consequences before turning to the theorem.

COROLLARY 2.2. Suppose $f : F \to X$ is a near immersion, where F is a closed surface and X is DR. Then the image of $f_* : \pi_1(F) \to \pi_1(X)$ is nontrivial.

PROOF. If f_* is the trivial homomorphism, then f lifts to the universal cover \widetilde{X}. But \widetilde{X} is DR, contradicting Lemma 2.1. \hfill \square

COROLLARY 2.3. Let X be a closed 2-complex. If X is DR, then $\pi_1(X, x_0)$ is infinite (and torsion-free).

PROOF. By [CT1, Theorem 2.1] there is a near immersion $f : F \to X$, where F is some closed surface. Thus, $\pi_1(X, x_0) \neq 1$ by Corollary 2.2. The result now follows since X is an aspherical 2-complex; see [Ge1]. \hfill \square

THEOREM 2.4. A 2-complex X is DR if and only if every finite subcomplex of the universal cover \widetilde{X} collapses to a 1-complex.

PROOF. First assume that X is DR and let L be a finite subcomplex of \widetilde{X}. Then L collapses to a closed subcomplex L_0, which we claim is a 1-complex. For if L_0 were 2-dimensional, then by [CT1, Theorem 2.1] there would be a near immersion $f : F \to L_0$, for some closed surface F. But that would imply, by Lemma 2.1, that \widetilde{X} is not DR, a contradiction. (Clearly a 2-complex is DR if and only if its universal cover is DR.)

Conversely, suppose $f : S^2 \to X$ is a near immersion. Then f lifts to a near immersion $f' : S^2 \to \widetilde{X}$ in the universal cover. But the image of a near immersion of a closed surface is a closed 2-dimensional subcomplex. Thus the image of f' is a finite subcomplex of \widetilde{X} that does not collapse to a 1-complex. \hfill \square
In the case of a finite 2-complex X (or any 2-complex whose universal cover has only a countable number of cells), note that Theorem 2.4 can be stated as was conjectured by Brick [Bk]: X is DR if and only if the universal cover of X is the union of an ascending sequence of finite subcomplexes, each of which collapses to a 1-complex.

3. Generalization of diagrammatic reducibility

Henceforth, we consider only simplicial complexes. Thus by a k-complex we now mean a simplicial complex of dimension $\leq k$. To indicate that a simplicial complex L (simplicially) collapses to a subcomplex K, we write $L \searrow K$. See the book by Rourke and Sanderson [RS] for a general reference on piecewise linear topology.

DEFINITION. For each nonnegative integer k, we say that a simplicial complex K satisfies the property P_k provided: every finite subcomplex of K is contained in a finite subcomplex that collapses to a k-complex.

We are only interested here in the cases $k = 0$ and $k = 1$. As we noted in the introduction, a 2-complex X satisfies P_1 if and only if it is DR. Thus the condition P_1 can be viewed as a generalization of diagrammatic reducibility, for simplicial complexes of arbitrary dimension.

The next lemma is true for any nonnegative integer k.

LEMMA 3.1. Suppose K is a subcomplex of a finite simplicial complex L and that $L \searrow K$. If K satisfies property P_k, then L also satisfies P_k.

PROOF. We may assume that $L = K \cup \{s^n, s^{n-1}\}$, where s^n and s^{n-1} are open simplices that are not contained in K and s^{n-1} is a face of s^n. Let X be a finite subcomplex of \tilde{L}. Observe that \tilde{L} is obtained from \tilde{K} by attaching lifts of s^n, each of which has a free face projecting to s^{n-1}. So $X \searrow A$ where A is the subcomplex of X obtained by deleting all the lifts of s^n and s^{n-1}. Since $A \subseteq \tilde{K}$, there is a finite subcomplex B of \tilde{K}, containing A, such that B collapses to a k-complex. Put $Y = B \cup X$, a finite subcomplex of \tilde{L} containing X. Then $Y \searrow B$ (by collapsing away each lift of s^n) which then collapses to a k-complex. \[\square\]

In the next section we show that every Haken 3-manifold has a triangulation satisfying property P_1, and it is well known that the interior of every Haken 3-manifold is covered by \mathbb{R}^3. We observe next that the same is true in higher dimensions.

THEOREM 3.2. Let M^n be a compact, connected, n-dimensional manifold ($n \geq 4$) that has a triangulation or spine with the property P_1. Then the universal cover of $\text{Int} M^n$ is (topologically) homeomorphic to \mathbb{R}^n.
PROOF. If M^n has a spine satisfying P_1, then by Lemma 3.1 it also has a triangulation with this property. So let M^n be triangulated in this fashion.

Let C be a compact subset of \tilde{M}. We show that C is contained in a PL n-cell. By property P_1, there is a finite connected subcomplex X of \tilde{M}, that collapses to a 1-complex, such that $C \subseteq X$. Let V be a regular neighbourhood of X in \tilde{M}. Then V is an n-dimensional handlebody (a 0-handle with 1-handles attached).

Since \tilde{M} is simply connected, there exists a finite connected subcomplex Y of \tilde{M}, containing X, such that $\pi_1(X) \to \pi_1(Y)$ is the trivial homomorphism. Let W be a regular neighbourhood of Y, so that W is an n-dimensional handlebody and $V \subseteq W$ induces a trivial homomorphism of fundamental groups.

Now, since $n \geq 4$, it follows by a general position argument that V is ambient isotopic in W to a subset of the 0-handle of W. This is a special case of the Zeeman Engulfing Theorem; see for example [Ru, Theorem 4.6.1]. Therefore, V is contained in an n-cell, and hence this n-cell contains C.

Thus, every compact subset of \tilde{M} is contained in an n-cell. It follows that $\text{Int} \tilde{M}$ is the union of an ascending sequence of open n-cells. The proof is completed by appealing to Brown’s Theorem [Bn].

As a consequence we have the following (the case $n = 3$ is handled in the next section): Let K be a finite, connected, diagrammatically reducible 2-complex. If M is any n-dimensional thickening of K, that is, triangulated n-manifold that collapses to K, then $\text{Int} M$ is covered by \mathbb{R}^n. Of course, not every finite 2-complex has a 3-dimensional thickening, but they all have n-dimensional thickenings, for every $n \geq 4$.

4. Haken three-manifolds

Turning to 3-dimensional manifolds we next show that an orientable Haken 3-manifold with nonempty boundary has a spine which is DR, in a strong sense.

THEOREM 4.1. Let M be an orientable Haken 3-manifold with nonempty boundary. Then M has a 2-dimensional spine K satisfying the property P_0 (in particular, K is DR).

We first establish two preliminary results. Here, and elsewhere, we say that an embedding $j : A \to X$, or its image $j(A)$, is incompressible if $j_* : \pi_1(A) \to \pi_1(X)$ is injective for any choice of base point in $j(A)$.

LEMMA 4.2. Suppose K and Σ are finite simplicial complexes and $g : \Sigma \times \{-1, 1\} \to K$ is a simplicial map such that $g|_{\Sigma \times \{-1\}}$ and $g|_{\Sigma \times \{1\}}$ are incompressible embeddings. If K and Σ both have the property P_0, then $L = K \cup_g (\Sigma \times [-1, 1])$ also satisfies P_0.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 20 May 2019 at 00:47:12, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788700001865
PROOF. We may assume that L and Σ are connected, and that K has one or two components. Then $\pi_1(L)$ is either an HNN extension of $\pi_1(K)$ or an amalgamated free product of the fundamental groups of the distinct components of K; in each case the splitting is over a subgroup isomorphic to $\pi_1(\Sigma)$. The universal cover of L therefore consists of copies of the universal covers of the components of K connected by copies of the universal cover of $\Sigma \times [-1, 1]$ in a ‘tree-like’ fashion.

Denote by $p : \widetilde{L} \to L$ the universal covering map, and let X be a finite connected subcomplex of \widetilde{L}. Then X meets only finitely many closures of components of $p^{-1}(\Sigma \times (-1, 1))$, each of which is a copy of $\widetilde{\Sigma} \times [-1, 1]$. Denote these components $((\widetilde{\Sigma} \times [-1, 1]), \ldots, ((\widetilde{\Sigma} \times [-1, 1])_m$. By hypothesis, we can choose a subcomplex of the form $A_1 = T_i \times [-1, 1]$ of $((\widetilde{\Sigma} \times [-1, 1])_i$ where T_i is a finite collapsible subcomplex of $\widetilde{\Sigma}$, large enough that $X \cap ((\widetilde{\Sigma} \times [-1, 1])_i \subset A_i$ (for $i = 1, \ldots, m$). Put $Y = X \cup A_1 \cup A_2 \cdots \cup A_m$, a finite subcomplex of L.

Then Y meets only finitely many components of $p^{-1}(K)$, say $\widetilde{K}_1, \ldots, \widetilde{K}_n$, each of which is a copy of the universal cover of a component of K. Choose, as we may by the hypothesis on K, a collapsible subcomplex B_j of \widetilde{K}_j such that $Y \cap \widetilde{K}_j \subset B_j$ for each $j = 1, \ldots, n$. Set $Z = B_1 \cup \cdots \cup B_n \cup A_1 \cup \cdots \cup A_m$, a finite subcomplex of L containing X. Note that Z consists of the complexes B_i joined by ‘generalized 1-handles’ A_j in a ‘tree-like’ manner.

We complete the proof by observing that Z is collapsible. Initially collapse each $A_i = T_i \times [-1, 1]$ onto the subcomplex $(T_i \times (-1, 1)) \cup (\ast_i \times [-1, 1])$ where \ast_i is some vertex of T_i. In this way we collapse Z onto a subcomplex consisting of the parts B_j joined together by arcs (in a ‘tree-like’ fashion). Then we can collapse each part B_j onto a spanning tree in its 1-skeleton, thus collapsing Z onto a tree in its 1-skeleton. Finally we collapse this tree to a vertex, as required. \(\square\)

It is obvious that 1-dimensional simplicial complexes have property P_0. We next observe that the same is true for triangulations of compact aspherical surfaces.

LEMMA 4.3. If Σ is a 2-dimensional simplicial complex homeomorphic to a compact aspherical surface, then Σ satisfies property P_0.

PROOF. If Σ has nonempty boundary, then Σ has a 1-dimensional spine and the result follows from Lemma 3.1. So assume that Σ is a closed surface. Then each component of $\widetilde{\Sigma}$ is a triangulation of the plane, and it is easy to see that every finite subcomplex of a triangulation of the plane is contained in a collapsible one. \(\square\)

PROOF OF THEOREM 4.1. We assume, without loss of generality, that M is connected.

It is well known (see [He, Theorem 13.3]) that M admits a hierarchy of the following
form:

\[M = M_0 \supset M_1 \supset \cdots \supset M_n = B^3, \]

where \(M_i \) is obtained from \(M_{i-1} \) by cutting along a properly embedded surface \(F_i \subset M_{i-1} \) which satisfies:

1. \(F_i \) is incompressible in \(M_{i-1} \);
2. \(F_i \) is compact, connected, and orientable;
3. \(\partial F_i \neq \emptyset \);
4. (implicit from \(M_n = B^3 \)) \(F_i \) does not separate \(M_{i-1} \).

We now associate to such a hierarchy of \(M \) a 2-dimensional spine—which satisfies property \(P_0 \).

To begin, let \(K_i \) denote a 1-dimensional spine for each \(F_i, i = 1, \ldots, n \). For simplicity, we assume that \(K_i \) is collapsed as much as possible. In particular, \(K_i \) is a point if \(F_i = D^2 \). Recall that \(M_i \) is obtained from \(M_{i-1} \) by cutting along \(F_i \) means that we view \(F_i \times [-1, 1] \subset M_{i-1} \) such that

\[\partial (F_i \times [-1, 1]) \cap \partial M_{i-1} = \partial (F_i \times [-1, 1]) \cap \partial M_{i-1} = \partial F_i \times [-1, 1] \]

and \(M_i = M_{i-1} - \left[F_i \times (-1, 1) \right] \). Evidently, there are two copies of \(F_i \) in \(\partial M_i : F_i^+ = F_i \times \{1\} \) and \(F_i^- = F_i \times \{-1\} \). Let \(K_i^+ \) and \(K_i^- \) denote the copies of \(K_i \) in \(F_i^+ \) and \(F_i^- \), respectively.

We next construct certain 1-complexes \(C_i \subset \partial M_i \) for \(i = 1, \ldots, n \). Initially, set \(C_1 = K_1^+ \cup K_1^- \). We assume (without loss) that \(F_2 \) meets \(C_1 \) transversely in a finite number of points, say \(\{p_1, \ldots, p_k\} \). For \(i = 1, \ldots, k \), let \(A_i \) denote an embedded arc in \(F_2 \) such that \(A_i \) joins \(p_i \) to \(K_2 \), \(\text{Int} A_i \) misses \(K_2 \cup \partial F_2 \), and \(A_i \cap A_j = \emptyset \) if \(i \neq j \).

Set \(S_2 = K_2 \cup (\bigcup_{i=1}^k A_i) \).

Since \(F_2 \) meets \(C_1 \) transversely, we may assume that \(C_1 \cap (F_2 \times [-1, 1]) = \{p_1, \ldots, p_k\} \times [-1, 1] \); that is, that \(C_1 \) meets \(F_2 \times [-1, 1] \) in \([-1, 1]\)-fibers. Now \(C_2 \) is defined by cutting \(C_1 \) along \(\{p_1, \ldots, p_k\} \) and gluing \(S_2^- \) and \(S_2^+ \) to this cut 1-complex, where \(S_2^\pm \) are the copies of \(S_2 \) in \(F_2^\pm \), respectively. In other words, \(C_2 = \left[C_1 - ((p_1, \ldots, p_k) \times [-1, 1]) \right] \cup S_2^- \cup S_2^+ \).

The process of passing from \(C_i \) to \(C_2 \) is now repeated in obtaining \(C_{i+1} \) from \(C_i \) for \(i = 1, \ldots, n-1 \).

We now describe the spine \(K \) for \(M \) by stating the intersection of \(K \) with the ‘generalized handles’ of \(M \) associated to its hierarchy: \(K \) is defined by the property that \(K \cap M_n \) is the cone on \(C_n \), and \(K \cap (F_i \times [-1, 1]) \) is \(S_i \times [-1, 1] \) if \(i > 1 \), and \(K \cap (F_i \times [-1, 1]) = K_1 \times [-1, 1] \).

It is relatively straightforward to see that \(K \) is a spine for \(M \). First of all, \(F_1 \times [-1, 1] \) collapses to \((K_1 \times [-1, 1]) \cup (F_1 \times [-1, 1]) \). Note that \(S_2 \) is a spine of \(F_2 \) and \(F_2 \times [-1, 1] \) collapses to \((S_2 \times [-1, 1]) \cup (F_2 \times [-1, 1]) \). Proceeding sequentially in
this manner we obtain \(M \setminus (K \cup M_n) \) and finally \(M \setminus K \) since \(K \cap M_n \) is the cone over \(C_n \).

We show that \(K \) satisfies property \(P_0 \) inductively. Note that the preceding paragraph actually shows more, namely that \(K \cap M_i \) is a spine of \(M_i \) for \(i = 1, \ldots, n \). The induction starts at \(K \cap M_n \), which is collapsible and hence satisfies \(P_0 \). Then observe that \(S^*_i, S^-_i \hookrightarrow K \cap M_i \) are incompressible embeddings and \(K \cap M_{i-1} = (K \cap M_i) \cup (S_i \times [-1, 1]) \). The inductive step, and hence the proof, is thus completed by Lemma 4.2.

We next observe that the converse of Theorem 4.1 holds, thus giving a characterization of orientable Haken 3-manifolds with boundary.

Theorem 4.4. A compact orientable 3-manifold \(M \) with nonempty boundary is Haken if and only if it has a diagrammatically reducible 2-dimensional spine \(K \).

Proof. Suppose \(M \) is a compact 3-manifold with a DR spine \(K \), and choose a triangulation of \(M \) that collapses to \(K \). Then, by Lemma 3.1, the triangulation of \(M \) satisfies the condition \(P_1 \) (as \(K \) satisfies \(P_1 \) by Theorem 2.4). Recall that \(K \) and hence \(M \), is aspherical. It is well known that an irreducible, compact, aspherical 3-manifold with boundary is Haken. Thus, the proof is completed by the claim (which also holds for closed manifolds): Every compact 3-manifold with a triangulation satisfying \(P_1 \) is irreducible.

To see this, let \(S \) be a PL 2-sphere in \(M \). Then \(S \) lifts to a 2-sphere \(\tilde{S} \) in \(\tilde{M} \) which, by property \(P_1 \), is contained in some finite connected subcomplex \(X \) of \(\tilde{M} \) that collapses to a 1-complex. Then a regular neighbourhood of \(X \) in \(M \) must be a 3-dimensional handlebody (consisting of a 0-handle and 1-handles). Since such handlebodies are irreducible, we conclude that \(\tilde{S} \) bounds a 3-cell which projects to a 3-cell in \(M \) bounded by \(S \), as required.

Remark 4.5. For closed 3-manifolds the situation is more complicated. On the one hand, a construction similar to that of the spine for Theorem 4.1, using induction on the length of a hierarchy, shows that every closed Haken 3-manifold has a triangulation satisfying \(P_0 \) (and thus \(P_1 \)). However, the converse is false for the following reason. There are closed 3-manifolds which are not Haken, but for which some finite sheeted cover is Haken (virtually Haken manifolds). Let \(M \) be such a 3-manifold and let \(M' \) be a finite cover of \(M \) which is Haken. Then \(M' \) supports a triangulation satisfying the property \(P_0 \). By a standard fact from PL topology, there is a subdivision of the triangulation of \(M' \) and a triangulation of \(M \) for which the covering projection is a simplicial map. This subdivided triangulation of \(M' \) also satisfies \(P_0 \), which follows from the fact that every subdivision of a 3-dimensional collapsible simplicial complex...
remains collapsible [Ch]. Since M and M' have the same universal cover, it follows that the triangulation of M also satisfies P_0.

We do not know whether every closed 3-manifold with a triangulation satisfying P_0 is virtually Haken.

References

Department of Mathematics
University of Alabama
Box 870350
Tuscaloosa, AL 35487-0350
USA
e-mail: jcorson@mathdept.as.ua.edu
e-mail: btrace@mathdept.as.ua.edu