PAIRED AMS 14C DATES ON PLANKTIC FORAMINIFERA FROM A GULF OF MEXICO SEDIMENT CORE: AN ASSESSMENT OF STRATIGRAPHIC CONTINUITY

B P Flower1 • D W Hastings2 • N J Randle2

ABSTRACT. A series of recent papers has called for multiple radiocarbon dates on planktic foraminifera to assess stratigraphic continuity in deep-sea sediment cores. This recommendation comes from observations of anomalous 14C dates in planktic foraminifera from the same stratigraphic level. Potential reasons include bioturbation, downslope transport, secondary calcification, carbonate dissolution, and differential preservation. In this study, paired 14C dates on dissolution-susceptible Globigerinoides ruber and dissolution-resistant Neogloboquadrina dutertrei are used to evaluate a Gulf of Mexico sediment core. Fourteen of 15 pairs (between 8815 and 12,995 uncorrected 14C yr BP) yield concordant uncorrected 14C ages (mean difference -2 ± 75 yr), attesting to continuous deposition at high accumulation rates (>35 cm/kyr). For 1 pair, N. dutertrei is nearly 1000 yr younger, which is difficult to explain by any combination of dissolution and bioturbation or downslope transport, given the excellent carbonate preservation and persistent laminations. The concordant ages underscore the utility of paired 14C dates in planktic foraminifera as a means of assessing stratigraphic continuity in deep-sea sediment sequences.

INTRODUCTION

Radiocarbon dating of foraminifera from marine sediment cores is widely used as a means of developing age models for paleoceanographic and paleoclimatic reconstructions. Accelerator mass spectrometry (AMS) techniques currently allow measurement of milligram quantities of Holocene foraminifera to ±30–40 yr precision. Application of AMS 14C dating on multiple species of planktic foraminifera, however, has revealed enigmatic offsets between species from the same stratigraphic level (Broecker et al. 1988a,b, 2006). These 14C offsets question the stratigraphic continuity of the sediment cores. Yet, very few studies have analyzed more than 1 species separately to test for stratigraphic problems, with notable exceptions (Broecker et al. 1988b, 1990; Manighetti et al. 1995; Skinner and Shackleton 2004; Hughen et al. 2004, 2006).

Potential reasons for anomalous 14C dates among different species include bioturbation, downslope transport, secondary calcification, carbonate dissolution, and differential preservation. In some cases, 14C differences appear to relate to the susceptibility to dissolution of certain foraminifera species. For example, Globigerinoides ruber and Gs. sacculifer are considered more dissolution-susceptible than Pulleniatina obliquiloculata and Neogloboquadrina dutertrei (Berger 1970). Preferential dissolution has been demonstrated to affect foraminiferal assemblages (Le and Thunell 1996). In studies of western equatorial Pacific Ocean sediments, dissolution-susceptible species yielded 14C ages significantly younger than dissolution-resistant species, which implicated differential dissolution and bioturbation (Broecker et al. 1988a, 2006). These observations led to suggestions that multiple planktic foraminiferal species be analyzed separately for 14C in developing age models and in determining planktic-benthic age differences for deep-water residence times (Broecker et al. 1988a, 1999, 2006; Barker et al. 2007). In this study, paired 14C dates on Gs. ruber and N. dutertrei from a Gulf of Mexico sediment core are used to assess stratigraphic continuity in a deglacial sequence. Uncorrected 14C dates are used throughout to avoid uncertainties related to reservoir correction and calibration to calendar years.

1College of Marine Science, University of South Florida, 140 7th Avenue South, St. Petersburg, Florida 33701, USA. Corresponding author. Email: bflower@marine.usf.edu.
2Collegium of Natural Sciences, Eckerd College, 4200 54th Avenue South, St. Petersburg, Florida 33711, USA.
METHODS

Orca Basin is a small (~400 km²) anoxic intraslope basin on the Louisiana slope 300 km southwest of the Mississippi River delta (McKee and Sidner 1976) that contains a >200-m-thick brine lake, with salinity >250 (Shokes et al. 1977). Brine derives from exposure and dissolution of a salt diapir from the Jurassic Louann evaporite formation on the southeastern flank (Pilcher and Blumstein 2007). The high salinity limits benthic life and results in the preservation of fine laminations. Abundant pteropods and pristine, glassy planktic foraminifera, some with intact spines, attest to minimal carbonate dissolution. These attributes in combination with high accumulation rates make this site a prime archive for proxy reconstruction of Gulf of Mexico climate and Mississippi River history. Orca Basin core MD02-2550 is a Calypso square giant gravity core (25 cm² by 9 m) collected in July 2002 at 26°56.78’N, 91°20.75’W (2248 m water depth) onboard the R/V Marion Dufresne PAGE cruise. The core is laminated to 307 cm, faintly laminated from 307–366 cm, and laminated from 366–550 cm except for a homogeneous interval from 442–453 cm. Subsample cores were taken by pressing 9 × 13 cm cross-section D-tubes lengthwise into the sediment. These subcores were sampled at 0.5-cm intervals from top to 466 cm and at 1-cm intervals below.

Samples were freeze-dried, washed over a 63-m sieve, and oven-dried at <50 °C. Between 1–9 mg of Gs. ruber and N. dutertrei were picked separately from the >150-μm size fraction in 15 washed sediment samples from core MD02-2550, sonicated, oven-dried at <50 °C, and analyzed in the Center for Accelerator Mass Spectrometry (CAMS) at Lawrence Livermore National Laboratory (LLNL). At LLNL, samples were evacuated in individual vacutainers, heated and acidified with orthophosphoric acid at 90 °C, graphitized with Fe as a catalyst, and pressed into aluminum target holders for AMS analysis using standard procedures (Vogel et al. 1987; Guilderson et al. 2003). Raw 14C dates are corrected for background and δ13C (Stuiver and Polach 1977). Results are given in Table 1 and shown versus depth in the core (Figure 1).

Table 1 AMS 14C dates on Gs. ruber and N. dutertrei from core MD02-2550.

<table>
<thead>
<tr>
<th>CAMS#</th>
<th>Depth (cm)</th>
<th>C (mg)</th>
<th>Gs. ruber 14C yr BP ±</th>
<th>N. dutertrei 14C yr BP ±</th>
<th>Difference ±b</th>
</tr>
</thead>
<tbody>
<tr>
<td>100674c</td>
<td>270</td>
<td>0.67</td>
<td>8815 40</td>
<td>8915 35 100 53</td>
<td></td>
</tr>
<tr>
<td>137078</td>
<td>270</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100675c</td>
<td>290</td>
<td>0.59</td>
<td>9285 40</td>
<td>9365 45 80 60</td>
<td></td>
</tr>
<tr>
<td>137079</td>
<td>290</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130344</td>
<td>318</td>
<td>0.73</td>
<td>9965 35</td>
<td>9970 35 5 49</td>
<td></td>
</tr>
<tr>
<td>130382</td>
<td>318</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130345</td>
<td>329.5</td>
<td>0.54</td>
<td>10,215 35</td>
<td>10,260 45 60</td>
<td></td>
</tr>
<tr>
<td>137083</td>
<td>329.5</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130346</td>
<td>337.5</td>
<td>0.52</td>
<td>10,500 45</td>
<td>10,550 60 50 75</td>
<td></td>
</tr>
<tr>
<td>137084</td>
<td>337.5</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137085</td>
<td>342</td>
<td>0.49</td>
<td>10,470 40</td>
<td>10,540 70 70 81</td>
<td></td>
</tr>
<tr>
<td>137086</td>
<td>342</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130349</td>
<td>367</td>
<td>0.77</td>
<td>10,925 40</td>
<td>11,040 160 115 165</td>
<td></td>
</tr>
<tr>
<td>137087</td>
<td>367</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137088</td>
<td>389.5</td>
<td>0.32</td>
<td>11,575 50</td>
<td>11,650 90 75 103</td>
<td></td>
</tr>
<tr>
<td>137089</td>
<td>389.5</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130352</td>
<td>407</td>
<td>1.06</td>
<td>12,085 40</td>
<td>12,090 35 5 53</td>
<td></td>
</tr>
<tr>
<td>130353</td>
<td>407</td>
<td>0.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130354</td>
<td>418.5</td>
<td>0.54</td>
<td>12,515 40</td>
<td>12,345 45 –170 60</td>
<td></td>
</tr>
<tr>
<td>137090</td>
<td>418.5</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RESULTS

Fourteen of 15 pairs of *Gs. ruber* and *N. dutertrei* 14C dates (between 8815 and 12,995 uncorrected 14C yr BP) yield similar 14C ages (mean difference –2 ± 75 yr; Table 1). Age differences for 8 pairs are not significantly different from zero. Among the 14 pairs, maximum age differences reach 170 ±...
80 yr. In the 1 exception at 475 cm (discussed below), the *N. dutertrei* 14C age is 955 ± 72 yr younger than *Gs. ruber*. Age plateaus appear to be recorded by both species at about 337–342 cm (~10,400 14C yr) and about 418–466 cm (~12,500 14C yr) (Figure 1). These appear to correlate with well-known 14C age plateaus (Stuiver et al. 1998) that assist in age model development (Guilderson et al. 2005). The concordant 14C ages attest to continuous deposition in Orca Basin at high accumulation rates (>35 cm/kyr; calibration in Williams et al. 2010). This data set represents a positive step toward “best practices” in 14C age control, which should include multiple 14C ages to assess stratigraphic continuity (Broecker et al. 1988a, 1999, 2006; Barker et al. 2007).

When age differences are plotted versus depth (Figure 2), a downcore trend is apparent in which *N. dutertrei* 14C ages become younger than *Gs. ruber*. Below 407 cm, age differences change sign (Table 1). Five of the 6 lowermost pairs yield age differences significantly different from zero. However, given the compounded error in 14C age differences, the downcore trend is not significant without the anomalous results at 475 cm.

![Figure 2](https://doi.org/10.1017/S0033822200056599)

DISCUSSION

The *Gs. ruber* and *N. dutertrei* dates (12,805 ± 40; 11,850 ± 60 yr BP, respectively) at 475 cm is the only pair with a large offset (~955 ± 72 yr; Table 1). Four of the 5 lowest *Gs. ruber/N. dutertrei* pairs were analyzed on the same day, including the dates at 475 cm, arguing against instrumental problems between runs. Although *N. dutertrei* is known to prefer deeper waters than *Gs. ruber* in the Gulf of Mexico (Bé 1982), the lower 14C/12C ratio in modern thermocline waters can only explain a difference of a few hundred years at most. We also have no ready explanation for the downcore trend in which *N. dutertrei* 14C ages become younger than *Gs. ruber* below 407 cm (12.09 ka BP). Even if surface waters were indeed more stratified with respect to 14C/12C, it is difficult to explain higher 14C/12C ratios in the thermocline necessary for younger *N. dutertrei* 14C ages.
Figure 3 Comparison of AMS 14C ages BP of *Gs. ruber* (filled circles) and *N. dutertrei* (open squares) (panel A), percent *Gs. ruber* (panel B), percent *N. dutertrei* (panel C), percent foraminiferal fragments (panel D), and δ^{18}O of *Gs. ruber* (Williams et al. 2010; panel E) vs. depth in core MD02-2550. The δ^{18}O record (panel E) demonstrates that the anomalous 14C ages bear no relation to inferred meltwater input.
Anomalously young dates are sometimes found near the regional reappearance of a given species, e.g. *Globorotalia menardii* in the lower Holocene in the western equatorial Atlantic (Broecker et al. 1999). In our core, downward mixing of young *N. dutertrei* into late glacial sediments where its abundances are low (Kennett et al. 1985; Flower and Kennett 1990) might contribute to young 14C ages. Figure 3 demonstrates substantial changes in percent frequency of *N. dutertrei* in the studied interval, including low abundances (<3%) and concentrations (not shown) below 480 cm. For that reason, there were insufficient *N. dutertrei* for paired 14C dates below this depth. In contrast, *Gs. ruber* averages about 50% of the planktic foraminiferal assemblage, while exhibiting a long-term increase toward the glacial section. Accordingly, bioturbational mixing of younger *N. dutertrei* might have decreased the mean 14C age at 475 cm. However, we note that specimens would have had to mix down at least 75 cm to explain the ~1000 yr younger age, which seems unlikely given persistent laminations in this interval (Meckler et al. 2008).

A second possibility is that dissolution may preferentially break up older tests because of their greater residence time in the sedimentary mixed layer (Broecker and Clark 2001; Barker et al. 2007). Younger ages are determined because of fewer whole tests of greater ages, and this is indeed a problem in low-accumulation rate cores. In our core, young *N. dutertrei* would again have had to mix down at least 75 cm. Furthermore, there is no evidence for substantial changes in dissolution near 475 cm, based on either percent foraminiferal fragment data (Figure 3) or weight/foram data (Williams et al. 2010).

Anomalously old 14C ages have been observed in dissolution-resistant species from Ontong Java Plateau sediment cores (e.g. Broecker et al. 1988a). In this case, a systematic mean age difference of 890 yr was observed between *Gs. sacculifera* and *Pulleniatina obliquiloculata*, with the latter dissolution-resistant species yielding older ages. This finding was interpreted to reflect preferential dissolution of the dissolution-susceptible species *Gs. sacculifera* (Broecker et al. 1988a). In part because a nearby core yielded a much smaller offset of 190 yr, the possibility of reworked older *P. obliquiloculata* was considered (Broecker et al. 2006). The idea is that more robust species such as *P. obliquiloculata* might better survive reworking processes. However, in our core it is the dissolution-resistant species that yields a younger age, which is difficult to explain by either preferential dissolution or downslope transport. Furthermore, the *Gs. ruber* date also seems anomalously young (by ~100 yr instead of ~1000 yr) (Figure 1), so perhaps related processes are responsible for young dates in both species.

Equilibration with modern atmospheric CO2 may produce anomalously young ages, if isotopic exchange occurs after core collection. It has been suggested that diagenetic calcite may form during core curation and incorporate modern 14C (Barker et al. 2007). If this process were to increase test mass, both *Gs. ruber* and *N. dutertrei* weights per specimen should be elevated, yet they are not (Williams et al. 2010). Furthermore, this process might be expected to affect thinner-walled *Gs. ruber* more than *N. dutertrei* because secondary calcite should form a greater fraction of shell mass, yet it is *N. dutertrei* that yields a ~1000 yr younger age. Accordingly, there is no clear evidence for modern equilibration, but we cannot rule it out.

Overall, it is difficult to imagine how stratigraphic problems at 475 cm might yield ages that are substantially newer relative to the surrounding *Gs. ruber* dates. Well-defined laminations persist during this interval (Meckler et al. 2008), and there is no geochemical evidence for anomalous sedimentation or diagenesis. For example, neither magnetic susceptibility data (Labeyrie and Shipboard Scientific Party 2005), weight/foram data, nor Mn/Ca in *Gs. ruber* (Williams et al. 2010) show anomalous excursions. Finally, a comparison to *Gs. ruber* δ18O (Figure 3) indicates no obvious rela-
tion to inferred meltwater input. There are several positive and negative $\delta^{18}O$ excursions between 520 and 350 cm, with lowest values at 395 cm, but none coincide with the anomalous ^{14}C dates at 475 cm. Furthermore, the calibrated age for this sample (14.4 cal ka BP) does not appear to coincide with known climatic events that might affect ^{14}C age. Accordingly, we find no evidence for an environmental cause. Nevertheless, the anomalous *Gs. ruber* and *N. dutertrei* ^{14}C dates may indicate potential stratigraphic problems at least with this sample, and related data are treated with caution in our paleoceanographic records (e.g. Williams et al. 2010).

IMPLICATIONS

In addition to the stratigraphic integrity of the MD02-2550 core, the concordance observed between *Gs. ruber* and *N. dutertrei* ^{14}C dates indicates that paired proxy data can be compared with confidence that the signals are coeval within compounded ^{14}C error. For example, $\delta^{18}O$ data on surface-dwelling *Gs. ruber* and deeper-dwelling *N. dutertrei* can be used to assess the thickness of the deglacial meltwater layer in the Gulf of Mexico (Leventer et al. 1982; Flower and Kennett 1990). The $\delta^{18}O$ gradient represents some combination of temperature and salinity difference across the depth habitats of the 2 species. Furthermore, comparison of Mg/Ca data on paired *Gs. ruber* and *N. dutertrei* can assess the Mg/Ca temperature and $\delta^{18}O$ seawater gradients in the upper water column. These comparisons would not be robust without concordant ^{14}C ages.

CONCLUSION

Fourteen of 15 pairs of *Gs. ruber* and *N. dutertrei* ^{14}C dates (between 8815 and 12,995 ^{14}C yr BP) yield concordant uncorrected ^{14}C ages (mean difference -2 ± 75 yr; $n = 14$), attesting to continuous deposition in Orca Basin at high accumulation rates (>35 cm/kyr). For 1 pair at 475 cm, *N. dutertrei* is nearly 1000 yr younger, which is difficult to explain by any combination of dissolution and bioturbation or downslope transport, given the excellent carbonate preservation and persistent lamina- tions, but could potentially reflect equilibration with modern atmospheric CO$_2$. These results underscore the utility of paired ^{14}C dates in planktic foraminifera as a means of assessing stratigraphic continuity deep-sea sediment sequences, and highlight the value of high accumulation rate cores in paleoceanographic reconstructions. In particular, paired *Gs. ruber* and *N. dutertrei* proxy data such as $\delta^{18}O$ and Mg/Ca can be compared with confidence that the signals are coeval within compounded ^{14}C error.

ACKNOWLEDGMENTS

We thank the IMAGES program, Viviane Bout-Roumazeilles, Yvon Balut, and Laurent Labeyrie for a productive cruise on the R/V *Marion Dufresne* in 2002; Wally Broecker for suggesting paired ^{14}C dating; and Tom Guilderson for training students at LLNL. This work was supported by the Gary Comer Science and Education Foundation (CP-18 to BPF and DWH), with partial support from the National Science Foundation under grants OCE-0318361 and OCE-0903017. ^{14}C analyses were performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (contract W-7405-Eng-48). We thank Jenna LoDico Cummings for faunal counts, USF PaleoLab members for useful discussions, and Eckerd College interns Hilary Browning, Kaela Wuestoff, and Missy Gilbert for help in sample preparation. We also thank 2 anonymous reviewers for helpful reviews and Mark McClure for editorial handling.
REFERENCES

